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Preface

Lie algebras were originally introduced by S. Lie as algebraic structures
used for the study of Lie groups. The tangent space of a Lie group at the
identity element has the natural structure of a Lie algebra, called by Lie the
infinitesimal group. However, Lie algebras also proved to be of interest in
their own right. The finite dimensional simple Lie algebras over the complex
field were investigated independently by E. Cartan and W. Killing and the
classification of such algebras was achieved during the decade 1890–1900.
Basic ideas on the structure and representation theory of these Lie algebras
were also contributed at a later stage by H. Weyl. Since then the theory of
finite dimensional simple Lie algebras has found many and varied applications
both in mathematics and in mathematical physics, to the extent that it is now
generally regarded as one of the classical branches of mathematics.
In 1967 V.G. Kac and R.V. Moody independently introduced the Lie alge-

bras now known as Kac–Moody algebras. The finite dimensional simple Lie
algebras are examples of Kac–Moody algebras; but the theory of Kac–Moody
algebras is much broader, including many infinite dimensional examples.
The Kac–Moody theory has developed rapidly since its introduction and has
also turned out to have applications in many areas of mathematics, includ-
ing among others group theory, combinatorics, modular forms, differential
equations and invariant theory. It has also proved important in mathematical
physics, where it has applications to statistical physics, conformal field theory
and string theory. The representation theory of affine Kac–Moody algebras
has been particularly useful in such applications.
In view of these applications it seems clear that the theory of Lie algebras,

of both finite and affine types, will continue to occupy a central position
in mathematics into the twenty-first century. This expectation provides the
motivation for the present volume, which aims to give a mathematically
rigorous development of those parts of the theory of Lie algebras most relevant

xiii
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to the understanding of the finite dimensional simple Lie algebras and the
Kac–Moody algebras of affine type. A number of books on Lie algebras are
confined to the finite dimensional theory, but this seemed too restrictive for the
present volume in view of the many current applications of the Kac–Moody
theory. On the other hand the Kac–Moody theory needs a prior knowledge of
the finite dimensional theory, both to motivate it and to supply many technical
details. For this reason I have included an account both of the Cartan–Killing–
Weyl theory of finite dimensional simple Lie algebras and of the Kac–Moody
theory, concentrating particularly on the Kac–Moody algebras of affine type.
We work with Lie algebras over the complex field, although any algebraically
closed field of characteristic zero would do equally well.
I was introduced to the theory of Lie algebras by an inspiring course of

lectures given by Philip Hall at Cambridge University in the late 1950s.
I have given a number of lecture courses on finite dimensional Lie algebras at
Warwick University, and also two lecture courses on Kac–Moody algebras.
The present book has developed as a considerably expanded version of the
lecture notes of these courses. The main prerequisite for study of the book is
a sound knowledge of linear algebra. I have in fact aimed to make this the
sole prerequisite, and to explain from first principles any other techniques
which are used in the development.
The most influential book on Kac–Moody algebras is the volume Infinite-

Dimensional Lie Algebras, third edition (1990), by V. Kac. That formidable
treatise contains a development of the Kac–Moody theory presupposing a
knowledge of the finite dimensional theory, and includes information on
several of the applications. The present volume will not rival Kac’ account
for experts on Kac–Moody algebras. About half of the theory covered in
the 3rd edition of Kac’ book has been included. However, for those new to
the Kac–Moody theory, our account may be useful in providing a gentler
introduction, making use of ideas from the finite dimensional theory developed
earlier in the book.
The content of the book can be summarised as follows. The basic definitions

of Lie algebras, their subalgebras and ideals, representations and modules,
are given in Chapter 1. In Chapter 2 the standard results are proved on the
representation theory of soluble and nilpotent Lie algebras. The results on
representations of nilpotent Lie algebras are used extensively in the subsequent
development. The key idea of a Cartan subalgebra is introduced in Chapter 3,
where the existence and conjugacy of Cartan subalgebras are proved. We
make use of some ideas from algebraic geometry to prove the conjugacy of
Cartan subalgebras. In Chapter 4 the Killing form is introduced and used
to describe the Cartan decomposition of a semisimple Lie algebra into root
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spaces with respect to a Cartan subalgebra. The well-known example of the
special linear Lie algebra is used to illustrate the general ideas. In Chapter 5
the Weyl group is introduced and shown to be a Coxeter group. This leads on
to the definition of the Cartan matrix and the Dynkin diagram. The possible
Dynkin diagrams and Cartan matrices are classified in Chapter 6, and in
Chapter 7 the existence and uniqueness of a semisimple Lie algebra with a
given Cartan matrix are proved. In Chapter 8 the finite dimensional simple
Lie algebras are discussed individually and their root systems determined.
Chapters 9 to 13 are concerned with the representation theory of finite

dimensional semisimple Lie algebras. We begin in Chapter 9 with the intro-
duction of the universal enveloping algebra, of free Lie algebras and of Lie
algebras defined by generators and relations. The finite dimensional irre-
ducible modules for semisimple Lie algebras are obtained in Chapter 10 as
quotients of infinite dimensional Verma modules with dominant integral high-
est weight. In Chapter 11 the enveloping algebra is studied in more detail. Its
centre is shown to be isomorphic to the algebra of polynomial functions on a
Cartan subalgebra invariant under the Weyl group, and to the algebra of poly-
nomial functions on the Lie algebra invariant under the adjoint group. This
algebra is shown to be isomorphic to a polynomial algebra. The properties of
the Casimir element of the centre of the enveloping algebra are also discussed.
These are important in subsequent applications to representation theory. Char-
acters of modules are introduced in Chapter 12, and Weyl’s character formula
for the irreducible modules is proved. The fundamental irreducible modules
for the finite dimensional simple Lie algebras are discussed individually in
Chapter 13. Their discussion involves exterior powers of modules, Clifford
algebras and spin modules, and contraction maps.
This concludes the development of the structure and representation theory

of the finite dimensional Lie algebras. This development has concentrated
particularly on the properties necessary to obtain the classification of the
simple Lie algebras and their finite dimensional irreducible modules. Among
the significant results omitted from our account are Ado’s theorem on the
existence of a faithful finite dimensional module, the radical splitting theorem
of Levi, the theorem of Malcev and Harish-Chandra on the conjugacy of
complements to the radical, and the cohomology theory of Lie algebras.
The theory of Kac–Moody algebras is introduced in Chapter 14, where the

Kac–Moody algebra associated to a generalised Cartan matrix is defined. In
fact there are two slightly different definitions of a Kac–Moody algebra which
have been used. There is a definition in terms of generators and relations
which appears the more natural, but there is a different definition, given by
Kac in his book, which is more convenient when one wishes to show that a
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given Lie algebra is a Kac–Moody algebra. I have used the latter definition,
but have included a proof that, at least for symmetrisable generalised Cartan
matrices, the two definitions are equivalent.
The trichotomy of indecomposable generalised Cartan matrices into those

of finite, affine and indefinite types is obtained in Chapter 15. The Kac–Moody
algebras of finite type turn out to be precisely the non-trivial finite dimensional
simple Lie algebras, and a classification of those of affine type is given.
The important special case of symmetrisable Kac–Moody algebras is also
introduced. This class includes all those of finite and affine types, and some of
those of indefinite type. In Chapter 16 it is shown that symmetrisable algebras
have an invariant bilinear form, which plays a key role in the subsequent
development. The Weyl group and root system of a Kac–Moody algebra are
also discussed. The roots divide into real roots and imaginary roots, and a
remarkable theorem of Kac is proved which characterises the set of positive
imaginary roots. Kac–Moody algebras of affine type are singled out for more
detailed discussion in Chapter 17. In Chapter 18 it is shown how some of
them can be realised in terms of a central extension of a loop algebra of a
finite dimensional simple Lie algebra, whereas the remainder can be obtained
as fixed point subalgebras of these under a twisted graph automorphism.
Chapters 19 and 20 are devoted to the representation theory of Kac–Moody

algebras. The representations considered are those from the category � intro-
duced by Bernstein, Gelfand and Gelfand. In Chapter 19 the irreducible mod-
ules in this category are classified, and their characters are obtained in Kac’
character formula, a generalisation to the Kac–Moody situation of Weyl’s
character formula. In Chapter 20 the representations of affine Kac–Moody
algebras are discussed. The remarkable identities of I. G. Macdonald are
obtained by specialising the denominator of Kac’ character formula, interp-
reted in two different ways; one as an infinite sum and the other as an infinite
product. The phenomenon of strings of weights with non-decreasing multi-
plicities is investigated inside an irreducible module for an affine algebra.
Many of the applications of the representation theory of affine Kac–Moody

algebras use the theory of vertex operators. This theory lies beyond the scope
of the present volume. However, we have introduced the idea of a vertex
operator in Chapter 20 with the aim of encouraging the reader to explore the
subject further.
A theory of generalised Kac–Moody algebras was introduced in 1988 by

R. Borcherds. These Lie algebras were introduced as part of Borcherds’
proof of the Conway–Norton conjectures on the representation theory of the
Monster simple group. They are now frequently called Borcherds algebras.
In Chapter 21 we have given an account of Borcherds algebras, including the
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definition and statements of the main results concerning their structure and
representation theory, but detailed proofs are not given. Many of the results
on Borcherds algebras are quite similar to those for Kac–Moody algebras,
but there are examples of Borcherds algebras which are quite different from
Kac–Moody algebras. The best known such example is the Monster Lie
algebra, which we describe in the final section.
We conclude with an appendix containing one section for each of the

algebras of finite and affine types, in which the most important pieces of
information about the algebra concerned are collected.
I would like to express my thanks to Roger Astley of Cambridge University

Press for his encouragement to complete the half finished manuscript of this
book. This was eventually achieved after I had reached the status of Emeritus
Professor, and therefore had more time to devote to it. I would also like to
thank my colleague Bruce Westbury for the sustained interest he has shown
in this work.





1
Basic concepts

1.1 Elementary properties of Lie algebras

A Lie algebra is a vector space L over a field k on which a multiplication

L×L→ L

�x� y�→ �xy�

is defined satisfying the following axioms:

(i) �x� y�→ �xy� is linear in x and in y;
(ii) �xx�=0 for all x∈L;
(iii) ��xy�z�+ ��yz�x�+ ��zx�y�=0 for all x� y� z∈L.
Axiom (iii) is called the Jacobi identity.

Proposition 1.1 �yx�=−�xy� for all x� y∈L.

Proof. Since �x+y� x+y�=0 we have �xx�+ �xy�+ �yx�+ �yy�=0. It follows
that �xy�+ �yx�=0, that is �yx�=−�xy�.
Proposition 1.1 asserts that multiplication in a Lie algebra is anticommutative.
Now let H , K be subspaces of a Lie algebra L. Then �HK� is defined as the

subspace spanned by all products �xy� with x∈H and y∈K. Each element of
�HK� is a sum

�x1y1�+· · ·+ �xryr�
with xi ∈H , yi ∈K.

Proposition 1.2 �HK�= �KH� for all subspaces H�K of L.

1



2 Basic concepts

Proof. Let x∈H , y∈K. Then �xy�= �−y� x�∈ �KH�. This shows that �HK�⊂
�KH�. Similarly we have �KH�⊂ �HK� and so we have equality.

Proposition 1.2 asserts that multiplication of subspaces in a Lie algebra is
commutative.

Example 1.3 Let A be an associative algebra over k. Thus we have a map

A×A→ A

�x� y�→ xy

satisfying the associative law

�xy�z=x�yz� for all x� y� z∈A�
Then A can be made into a Lie algebra by defining the Lie product �xy� by

�xy�=xy−yx
We verify the Lie algebra axioms. Product �xy� is clearly linear in x and
in y. It is also clear that �xx�=0. Finally we check the Jacobi identity.
We have

��xy�z�= �xy−yx�z−z�xy−yx�
= xyz−yxz−zxy+zyx�

We have similar expressions for ��yz�x� and ��zx�y�. Hence

��xy�z�+ ��yz�x�+ ��zx�y� =xyz−yxz−zxy+zyx+yzx−zyx−xyz
+xzy+zxy−xzy−yzx+yxz=0�

The Lie algebra obtained from the associative algebra A in this way will be
denoted by �A�.
Now let L be a Lie algebra over k. A subset H of L is called a subalgebra

of L if H is a subspace of L and �HH�⊂H . Thus H is itself a Lie algebra
under the same operations as L.
A subset I of L is called an ideal of L if I is a subspace of L and �IL�⊂ I .

We observe that the latter condition is equivalent to �LI�⊂ I . Thus there is no
distinction between left ideals and right ideals in the theory of Lie algebras.
Every ideal is two-sided.

Proposition 1.4 (i) If H , K are subalgebras of L so is H∩K.
(ii) If H , K are ideals of L so is H∩K.
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(iii) If H is an ideal of L and K a subalgebra of L then H+K is a sub-
algebra of L.

(iv) If H , K are ideals of L then H+K is an ideal of L.

Proof. (i) H∩K is a subspace of L and �H∩K�H∩K�⊂ �HH�∩ �KK�⊂
H∩K. Thus H∩K is a subalgebra.
(ii) This time we have �H∩K�L�⊂ �HL�∩ �KL�⊂H∩K. Thus H∩K is an

ideal of L.
(iii) H+K is a subspace of L. Also �H+K�H+K�⊂ �HH�+ �HK�+ �KH�+

�KK�⊂H+K, since �HH�⊂H� �HK�⊂H� �KK�⊂K. Thus H+K is a
subalgebra.

(iv) This time we have �H+K�L�⊂ �HL�+ �KL�⊂H+K. Thus H+K is
an ideal of L.

We next introduce the idea of a factor algebra. Let I be an ideal of a Lie
algebra L. Then I is in particular a subspace of L and so we can form the
factor space L/I whose elements are the cosets I+x for x∈L. I+x is the
subset of L consisting of all elements y+x for y∈ I .

Proposition 1.5 Let I be an ideal of L. Then the factor space L/I can be
made into a Lie algebra by defining

�I+x� I+y�= I+ �xy� for all x� y∈L�

Proof. We must first show that this definition is unambiguous, that is if
I+x= I+x′ and I+y= I+y′ then I+ �xy�= I+ �x′y′�.

Now I+x= I+x′ implies that x=x′ + i1 for some i1 ∈ I . Similarly I+y=
I+y′ implies y=y′ + i2 for some i2 ∈ I . Thus

I+ �xy�= I+ �x′ + i1� y′ + i2�
= I+ �i1y′�+ �x′i2�+ �i1i2�+ �x′y′�
= I+ �x′y′�

since �i1y
′�� �x′i2�� �i1i2� all lie in I . Thus our multiplication is well defined.

We also have

�I+x� I+x�= I+ �xx�= I
and the Jacobi identity in L/I clearly follows from the Jacobi identity in L.
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Now suppose we have two Lie algebras L1, L2 over k. A map � �L1→L2

is called a homomorphism of Lie algebras if � is linear and

��xy�= ��x� �y� for all x� y∈L1�

The map � �L1→L2 is called an isomorphism of Lie algebras if � is a
bijective homomorphism of Lie algebras. The Lie algebras L1�L2 are said to
be isomorphic if there exists an isomorphism � �L1→L2.

Proposition 1.6 Let � �L1→L2 be a homomorphism of Lie algebras. Then
the image of � is a subalgebra of L2, the kernel of � is an ideal of L1 and
L1/ker � is isomorphic to im �.

Proof. im � is a subspace of L2. Moreover for x, y in L1 we have

���x�� ��y��=��xy�∈ im ��

Hence im � is a subalgebra of L2.
Now ker � is a subspace of L1. Let x∈ker � and y∈L1. Then

��xy�= ���x�� ��y��= �0� ��y��=0�

Hence �xy�∈ker � and so ker � is an ideal of L1.
Now let x� y∈L1. We consider when ��x� is equal to ��y�. We have

��x�=��y� ⇔��x−y�=0⇔x−y∈ker �
⇔ker �+x=ker �+y�

This shows that there is a bijective map ��x�→ker �+x between im � and
L1/ker �. We show this bijection is an isomorphism of Lie algebras. It is
clearly linear. Moreover given x� y� z∈L1 we have

���x�� ��y��=��z�⇔��xy�=��z�
⇔ker �+ �xy�=ker �+z
⇔ �ker �+x�ker �+y�=ker �+z�

Thus the bijection preserves Lie multiplication, so is an isomorphism of Lie
algebras.

Proposition 1.7 Let I be an ideal of L and H a subalgebra of L. Then

(i) I is an ideal of I+H .
(ii) I∩H is an ideal of H .
(iii) �I+H�/I is isomorphic to H/�I∩H�.



1.2 Representations and modules 5

Proof. We recall from Proposition 1.4 that I∩H and I+H are subalgebras.
We have �I� I+H�⊂ �IL�⊂ I , thus I is an ideal of I+H . Also �I∩H�H�⊂
�IH�∩ �HH�⊂ I∩H , thus I∩H is an ideal of H .
Let � �H→ �I+H�/I be defined by ��x�= I+x. This is clearly a linear

map, and is also evidently a homomorphism of Lie algebras. It is surjective
since each element of �I+H�/I has form I+x for some x∈H . Finally its
kernel is the set of x∈H for which I+x= I , that is I∩H . Thus �I+H�/I is
isomorphic to H/�I∩H� by Proposition 1.6.

1.2 Representations and modules

Let Mn�k� be the associative algebra of all n×n matrices over the field k and
let �Mn�k�� be the corresponding Lie algebra. This is often called the general
linear Lie algebra of degree n over k and we write

��n�k�= �Mn�k���

We have dim ��n�k�=n2.
A representation of a Lie algebra L over k is a homomorphism of Lie

algebras

	 �L→��n�k�

for some n, and 	 is called a representation of degree n. Two representations
	�	′ of degree n are called equivalent if there exists a non-singular n×n
matrix T such that

	′�x�=T−1	�x�T forall x∈L�
A left L-module is a vector space V over k together with a multiplication

L×V → V

�x� v�→ xv

satisfying the axioms:

(i) �x� v�→xv is linear in x and in v;
(ii) �xy�v=x�yv�−y�xv� for all x� y∈L and v∈V .
Suppose V is a finite dimensional L-module. Let e1� � � � � en be a basis of

V . Let

xej=
∑
i

	ij�x�ei
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with 	ij�x�∈k and let 	�x�= �	ij�x��. Then 	 is a representation of L. For
we have

�xy�ej = x�yej�−y�xej�

= x

(∑
k

	kj�y�ek

)
−y

(∑
k

	kj�x�ek

)
=∑

k

	kj�y�xek−
∑
k

	kj�x�yek

=∑
k

	kj�y�

(∑
i

	ik�x�ei

)
−∑

k

	kj�x�

(∑
i

	ik�y�ei

)

=∑
i

(∑
k

�	ik�x�	kj�y�−	ik�y�	kj�x��
)
ei

=∑
i

�	�x�	�y�−	�y�	�x��ij ei�

Thus 	�xy�=	�x�	�y�−	�y�	�x�= �	�x��	�y�� and 	 is a representation
of L.
Suppose now we take a second basis f1� � � � � fn of V . Let 	′ be the repre-

sentation of L obtained from this basis. Then 	′ is equivalent to 	. For there
exists a non-singular n×n matrix T such that

fj=
∑
i

Tijei�

Thus we have

xfj=
∑
k

Tkjxek=
∑
k

Tkj

(∑
i

	ik�x�ei

)
=∑

i

(∑
k

	ik�x�Tkj

)
ei�

On the other hand

xfj=
∑
k

	′kj�x�fk=
∑
k

	′kj�x�

(∑
i

Tikei

)
=∑

i

(∑
k

Tik	
′
kj�x�

)
ei�

It follows that 	�x�T =T	′�x�, that is 	′�x�=T−1	�x�T for all x∈L. Hence
the representation 	′ is equivalent to 	.

Example 1.8 L is itself a left L-module.
The left action of L on L is defined as x ·y= �xy�. Then we have

��xy�z�= �x�yz��− �y�xz��
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which is a consequence of the Jacobi identity. This shows that L is a left
L-module. This is called the adjoint module. We define ad x �L→L by

ad x ·y= �xy� for x� y∈L�
Then we have

ad�xy�= ad x ad y−ad y ad x�

Now let V be a left L-module, U be a subspace of V and H a subspace
of L. We define HU to be the subspace of V spanned by all elements of the
form xu for x∈H , u∈U .
A submodule of V is a subspace U of V such that LU ⊂U . In particular

V is a submodule of V and the zero subspace O= 
0� is a submodule of V .
A proper submodule of V is a submodule distinct from V and O.
An L-module V is called irreducible if it has no proper submodules. V is

called completely reducible if it is a direct sum of irreducible submodules.
V is called indecomposable if V cannot be written as a direct sum of two
proper submodules. Of course every irreducible L-module is indecomposable,
but the converse need not be true.
We may also define right L-modules, but we shall mainly work with left

L-modules, and L-modules will be assumed to be left L-modules unless
otherwise stated.

1.3 Abelian, nilpotent and soluble Lie algebras

A Lie algebra L is abelian if �LL�=O. Thus �xy�=0 for all x� y∈L when
L is abelian.
Given any Lie algebra L we define the powers of L by

L1=L� Ln+1= �LnL� for n≥1�

Thus L is abelian if and only if L2=O.

Proposition 1.9 Ln is an ideal of L. Also

L=L1⊃L2⊃L3⊃· · · �

Proof. We first observe that if I , J are ideals of L then �IJ� is also an ideal
of L. For let x∈ I , y∈ J , z∈L. Then

��xy�z�= �x�yz��− �y�xz��∈ �IJ��
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It follows that Ln is an ideal of L for each n>0. Thus we have

Ln+1= �LnL�⊂Ln�

A Lie algebra L is called nilpotent if Ln=O for some n≥1. Thus every
abelian Lie algebra is nilpotent. It is clear that every subalgebra and every
factor algebra of a nilpotent Lie algebra are nilpotent.
We now consider a different kind of powers of L. We define

L�0�=L� L�n+1�= �L�n��L�n�� for n≥0�

Proposition 1.10 L�n� is an ideal of L. Also

L=L�0�⊃L�1�⊃L�2�⊃· · · �

Proof. L�n� is an ideal of L since the product of two ideals is an ideal. Also

L�n+1�= �L�n��L�n��⊂L�n��

A Lie algebra L is called soluble if L�n�=O for some n≥0.

Proposition 1.11 (a) �LmLn�⊂Lm+n for all m�n≥1. (b) L�n�⊂L2n for all
n≥0. (c) Every nilpotent Lie algebra is soluble.

Proof. (a). We use induction on n. The result is clear if n=1. Suppose it is
true for n= r. Then

�LmLr+1�= �Lm�LrL��= ��LrL�Lm�

⊂ ��LLm�Lr�+ ��LmLr�L� by the Jacobi identity

⊂ �Lm+1Lr�+ ��LmLr�L�

⊂ Lm+r+1 by inductive hypothesis�

Thus the result holds for n= r+1, so for all n.
(b). We again use induction on n. The result is clear if n=1. Suppose it is

true for n= r. Then
L�r+1�= �L�r�L�r��⊂ �L2r L2r �⊂L2r+1

by (a). Thus the result holds for n= r+1, so for all n.
(c). Suppose L is nilpotent. Then L2n =O for n sufficiently large. Hence

L�n�=O by (b) and so L is soluble.
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It is clear that every subalgebra and every factor algebra of a soluble Lie
algebra are soluble.

Proposition 1.12 Suppose I is an ideal of L and both I and L/I are soluble.
Then L is soluble.

Proof. Since L/I is soluble we have �L/I��n�=O for some n. This implies
L�n�⊂ I . Since I is soluble we have I�m�=O for some m. Hence

L�n+m�= �L�n���m�⊂ I�m�=O
and so L is soluble.

Proposition 1.13 Every finite dimensional Lie algebra L contains a unique
maximal soluble ideal R. Also L/R contains no non-zero soluble ideal.

Proof. Let I , J be soluble ideals of L. Then I+J is also an ideal of L and
�I+J �/I is isomorphic to J/�I∩J � by Proposition 1.7. Now J is soluble,
thus J/�I∩J � is soluble and so �I+J �/I is soluble. Since I is soluble we see
that I+J is soluble by Proposition 1.12. Thus the sum of two soluble ideals
of L is a soluble ideal. It follows that L has a unique maximal soluble
ideal R.
If I/R is a soluble ideal of L/R then I is a soluble ideal of L by Proposi-

tion 1.12. Hence I=R and I/R=O.
The ideal R is called the soluble radical of L. A Lie algebra L is called

semisimple if R=O. Thus L is semisimple if and only if L has no non-zero
soluble ideal.
L is called simple if L has no proper ideal, that is no ideal other than L

and O.
Suppose L is a Lie algebra of dimension 1 over k. Then L has a basis 
x�

with 1 element. Since �xx�=0 we have L2=O. Thus L is abelian. We see that
any two 1-dimensional Lie algebras over k are isomorphic. Of course any such
Lie algebra is simple, because L has no proper subspaces. The 1-dimensional
Lie algebra is called the trivial simple Lie algebra. A non-trivial simple Lie
algebra is a simple Lie algebra L with dim L>1.

Proposition 1.14 Each non-trivial simple Lie algebra is semisimple.

Proof. Suppose L is simple but not semisimple. Then the soluble radical R
satisfies R 	=O. Since R is an ideal of L this implies R=L. Thus L is soluble.
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Hence L�n�=O for some n≥0. This implies that L�1� 	=L since L�1�=L would
imply L�n�=L for all n. Now L�1� is an ideal of L, hence L�1�=O since L is
simple. Thus �LL�=O. But then every subspace of L is an ideal of L. Since
L is simple L has no proper subspaces, so dimL=1. Thus the only simple
Lie algebra which is not semisimple is the trivial simple Lie algebra.



2
Representations of soluble and nilpotent

Lie algebras

2.1 Representations of soluble Lie algebras

We shall now and subsequently take the base field k to be the field � of
complex numbers. We shall also assume until further notice that L is a finite
dimensional Lie algebra over�, although at a later stage we shall also consider
infinite dimensional Lie algebras.
We first consider 1-dimensional representations of a Lie algebra L.

A 1-dimensional representation is a linear map 	 �L→� such that 	�xy�=
�	�x��	�y�� for all x� y∈L.

Lemma 2.1 A linear map 	 �L→� is a 1-dimensional representation of L
if and only if 	 vanishes on L2.

Proof. Suppose 	 is a representation. Then for x� y∈L we have

	�xy�= �	�x��	�y��=	�x�	�y�−	�y�	�x�=0�

Hence 	 vanishes on L2.
Conversely suppose that 	 vanishes on L2. Then

	�xy�=0= �	�x��	�y��
and so 	 is a representation of L.

We shall now prove a theorem of Lie which shows that any irreducible
representation of a soluble Lie algebra is 1-dimensional.

Theorem 2.2 (Lie’s theorem). Let L be a soluble Lie algebra and V be a
finite dimensional irreducible L-module. Then dimV =1.

11
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Proof. Since L is soluble we have L2 	=L. Let I be a subspace of L such that
I⊃L2 and dim I=dimL−1. Then I is an ideal of L since

�IL�⊂ �LL�=L2⊂ I�
Thus I is an ideal of L of codimension 1.
We shall prove Lie’s theorem by induction on dim L. Suppose dimL=1

and V be an irreducible L-module. Let L=�x and v be an eigenvector of
x in V . Then �v is an L-submodule of V . Since V is irreducible we have
V =�v and dimV =1.
Now suppose dimL>1 and V is an irreducible L-module. We may regard

V as an I-module. Then V contains an irreducible I-submodule W and we
may assume dimW =1 by induction. Let w be a non-zero vector in W . Then

yw=��y�w for all y∈ I
where � is the 1-dimensional representation of I given by W . Let

U = 
u∈V yu=��y�u for all y∈ I��
Then we have

O 	=W ⊂U ⊂V�
We shall show that U is an L-submodule of V . Let u∈U , x∈L. Then

y�xu�=x�yu�− �xy�u=��y�xu−���xy��u
since �xy�∈ I . We shall show ���xy��=0. Once we know this we have xu∈U
and so U is an L-submodule. Since V is irreducible we have U =V . Hence

yv=��y�v for all v∈V�y∈ I�
Since dim I=dimL−1 we can write L= I⊕�x, a direct sum of subspaces.
Let v be an eigenvector for x on V . Then �v is an L-submodule of V , being
invariant under the action of both I and x. Since V is irreducible we have
V =�v and so dimV =1.

In order to complete the proof we must show that ���xy��=0 for all x∈L,
y∈ I . In fact it is sufficient to prove this for the element x chosen above such
that L= I⊕�x.
Let u be any non-zero element of U . We write

v0=u� v1=xu� v2=x�xu�� � � �
We have v0� v1� v2� � � �∈V and so there exists p≥0 such that v0� v1� � � � � vp
are linearly independent and vp+1 is a linear combination of these. Consider
the subspace �v0� v1� � � � � vp� of V spanned by these vectors. This subspace
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is invariant under the action of x. We consider the effect on this subspace of
elements y∈ I . We have

yv0=yu=��y�u=��y�v0�

We shall show

yvi=��y�vi+a linear combination of v0� � � � � vi−1�

This is true for i=0. Assuming it for vi−1 we have

yvi = y�xvi−1�=x�yvi−1�− �xy�vi−1
= x���y�vi−1+a linear combination of v0� � � � � vi−2�

− �a linear combination of v0� � � � � vi−1�

= ��y�vi+a linear combination of v0� � � � � vi−1�

Thus the subspace �v0� v1� � � � � vp� is invariant under the action of y for all
y∈ I , as well as being invariant under x. Hence it is an L-submodule of V .
Since V is irreducible we have

V = �v0� v1� � � � � vp��

Now �xy�∈ I and we see from the above description of the action of I that

traceV �xy�= �p+1����xy���

Thus we have �p+1����xy��= traceV �xy�= traceV xy− traceV yx=0, since
traceV xy= traceV yx. Hence ���xy��=0 and the proof is complete.

Corollary 2.3 Let L be soluble and V be a finite dimensional L-module.
Then a basis can be chosen for V with respect to which we obtain a matrix
representation 	 of L of the form

	�x�=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∗
0 ∗ ∗
0 ·
· 0 ·
· ∗
0 · · 0 0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for all x∈L�

Thus the matrices representing elements of L are all of triangular form.
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Corollary 2.4 Let L be a soluble Lie algebra with dimL=n. Then L has a
chain of ideals

O= I0⊂ I1⊂· · ·⊂ In−1⊂ In=L
with dim Ir = r.

Proof. We apply Theorem 2.2 to the adjoint L-module L. The submodules of
L are the ideals of L. By taking a maximal chain of submodules we obtain
ideals of L with the required property.

2.2 Representations of nilpotent Lie algebras

When L is a nilpotent Lie algebra we can obtain even stronger results about
its representations. Moreover these results on representations of nilpotent Lie
algebras play a crucial role in the understanding of semisimple Lie algebras,
which we shall deal with subsequently. We begin by recalling results from
linear algebra related to the Jordan canonical form. Any n×n matrix over �
is similar to a diagonal sum of Jordan block matrixes of form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� 1
� 1 0
· ·
· ·
· 1

0 � 1
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In a similar way any linear transformation � �V→V on a finite dimensional
vector space V over � gives rise to a decomposition of V as in the following
proposition.

Proposition 2.5 Let � �V→V be a linear map with characteristic polynomial

��t�= �t−�1�
m1�t−�2�

m2 � � � �t−�r�
mr

where �1� � � � � �r are the distinct eigenvalues of � and m1� � � � �mr are their
multiplicities. Let Vi be the set of all v∈V annihilated by some power of
�−�i1. Then we have

V =V1⊕V2⊕· · ·⊕Vr�

Moreover dimVi=mi, ��Vi�⊂Vi and the characteristic polynomial of � on
Vi is �t−�i�

mi .
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Proof. Although this is a standard result from linear algebra we shall prove it
in view of its importance for the theory of Lie algebras.

We begin by showing that Vi is equal to Wi= 
v∈V  ��−�i1�
miv=0�. It

is clear that Wi⊂Vi. So let v∈Vi. Then

��−�i1�
Nv=0 for some N�

We may choose N ≥mi. Also

r∏
j=1

��−�j1�
mj v=0

for, by the Cayley–Hamilton theorem, � satisfies its own characteristic equa-
tion. Now the polynomials

�t−�i�
N �

r∏
j=1

�t−�j�
mj

have highest common factor �t−�i�
mi . Thus there exist polynomials

p�t�� q�t�∈��t� such that

�t−�i�
mi =p�t��t−�i�

N +q�t�
r∏

j=1
�t−�j�

mj �

Hence

��−�i1�
miv=p�����−�i1�

Nv+q���
r∏

j=1
��−�j1�

mj v=0�

Thus v∈Wi and Vi=Wi.

We next show that V =V1⊕· · ·⊕Vr . Let fi�t�= �t−�1�
m1 � � � �t−�i−1�mi−1

�t−�i+1�mi+1 � � � �t−�r�
mr . Then the polynomials f1�t�� � � � � fr�t� have high-

est common factor 1. Thus there exist polynomials p1�t�� � � � � pr�t�∈��t�
with

∑
i fi�t�pi�t�=1.

Let v∈V . Then v=∑i fi���pi���v. Let vi=fi���pi���v. Then

��−�i1�
mivi=�����pi���v�=0

by the Cayley–Hamilton theorem. Thus vi ∈Vi. Hence v=v1+· · ·+vr with
vi ∈Vi, and so V =V1+· · ·+Vr .

In order to show the sum is direct we must prove

Vi∩�V1+· · ·+Vi−1+Vi+1+· · ·+Vr�=O�



16 Representations of soluble and nilpotent Lie algebras

Now the polynomials �t−�i�
mi and fi�t� have highest common factor 1, thus

there exist p�t�� q�t�∈��t� with
p�t��t−�i�

mi+q�t�fi�t�=1�

Let v∈Vi∩�V1+· · ·+Vi−1+Vi+1+· · ·+Vr�. Since v∈Vi we have

��−�i1�
miv=0�

Since v∈V1+· · ·+Vi−1+Vi+1+· · ·+Vr we have

fi���v=0�

Hence v=p�����−�i1�
miv+q���fi���v=0. Thus we have shown that

V =V1⊕· · ·⊕Vr�

We next observe that � acts on each Vi. For let v∈Vi. Then

��−�i1�
mi�v=���−�i1�

miv=��0�=0�

thus �v∈Vi.
We next show that the only eigenvalue of � �Vi→Vi is �i. Suppose if

possible that �j is an eigenvalue for some j 	= i and let v∈Vi be an eigenvector
for �j . Then v 	=0� ��−�i1�

miv=0 and ��−�j1�v=0. But the polynomials
�t−�i�

mi and t−�j have highest common factor 1 so there exist p�t�� q�t�∈
��t� with

p�t��t−�i�
mi+q�t��t−�j�=1�

Hence v=p�����−�i1�
miv+q�����−�j1�v=0, a contradiction. So all

eigenvalues of �i � Vi→Vi are equal to �i. It follows that dimVi≤mi since
mi is the multiplicity of eigenvalue �i on V. But

dimV =dimV1+· · ·+dimVr =m1+· · ·+mr�

It follows that dimVi=mi. Finally the characteristic polynomial of � on Vi is
�t−�i�

mi .

The subspace Vi is called the generalised eigenspace of V with eigen-
value �i. Thus the ordinary eigenspace of �i lies in the generalised eigenspace.
It is not in general true that V is the direct sum of its eigenspaces with respect
to its different eigenvalues, but Proposition 2.5 shows that this result is true
if the eigenspaces are replaced by the generalised eigenspaces.
The relevance of the decomposition into generalised eigenspaces for the

representations of nilpotent Lie algebras is shown by the following theorem.
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Theorem 2.6 Let L be a nilpotent Lie algebra and V be an L-module. Let
y∈L and 	�y� �V→V be the map v→yv. Then the generalised eigenspaces
Vi of V associated with 	�y� are all submodules of V .

Before proving this theorem we need a preliminary result.

Proposition 2.7 Let L be a Lie algebra and V be an L-module. Let v∈V ,
x� y∈L and ���∈�. Then

�	�y�−��+��1�n xv=
n∑
i=0

(
n

i

)(
�ad y−�1�ix) (�	�y�−�1�n−iv) �

Proof. We use induction on n. The result is clear when n=0. We assume it
for n= r . We write

xi= �ad y−�1�ix∈L�
Then we have

�	�y�−��+��1�r+1 xv= �	�y�−��+��1�
r∑

i=0

(
r

i

)
	�xi��	�y�−�1�r−iv�

Now

�	�y�−��+��1�	�xi�= 	��yxi��+	�xi�	�y�−��+��	�xi�
= 	��ad y−�1�xi�+	�xi��	�y�−�1�
= 	�xi+1�+	�xi��	�y�−�1��

Hence

�	�y�−��+��1�r+1xv

=
r∑

i=0

(
r

i

)
	�xi+1� �	�y�−�1�r−i v+

r∑
i=0

(
r

i

)
	�xi� �	�y�−�1�r+1−i v

=
r+1∑
i=0

(
r

i−1

)
	�xi��	�y�−�1�r+1−iv+

r+1∑
i=0

(
r

i

)
	�xi��	�y�−�1�r+1−iv(

interpreting
(

r

−1
)
=0 and

(
r

r+1

)
=0

)

=
r+1∑
i=0

(
r+1
i

)(
�ad y−�1�ix) (�	�y�−�1�r+1−iv) �

This completes the induction.
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Proof of Theorem 2.6. Let v∈Vi, x� y∈L. Then

�	�y�−�i1�
n xv=

n∑
j=0

(
n

j

)(
�ad y�jx

) (
�	�y�−�i1�

n−jv
)

by Proposition 2.7 with �=�i, �=0. Since v∈Vi, �	�y�−�i1�
n−jv=0 if

n−j is sufficiently large. Since L is nilpotent �ad y�jx=0 if j is sufficiently
large. Thus �	�y�−�i1�

nxv=0 if n is sufficiently large. Hence xv∈Vi and
so Vi is a submodule of V .

Corollary 2.8 Let L be a nilpotent Lie algebra and V a finite dimensional
indecomposable L-module. Then a basis can be chosen for V with respect to
which we obtain a matrix representation 	 of L of the form

	�x�=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

��x�

· ∗
·
·

0 ·
��x�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for all x∈L�

Proof. We can choose a basis as in Corollary 2.3 with respect to which each
	�x� is triangular. The generalised eigenspaces of V with respect to 	�x� are
all submodules of V by Theorem 2.6 and V is their direct sum. Since V is
indecomposable only one of the generalised eigenspaces is non-zero. Thus
all the eigenvalues of 	�x� on V are equal. Let this eigenvalue be ��x�. Then
the diagonal entries of the triangular matrix 	�x� are all equal to ��x�.

We observe that the map x→��x� is a 1-dimensional representation of L,
as it arises from a 1-dimensional submodule of V .
We have seen from Proposition 2.5 and Theorem 2.6 how to obtain a direct

decomposition of V into submodules for any element y∈L. We may use this
result to obtain a direct decomposition of V into submodules which does not
depend on the choice of any particular element of L.

Theorem 2.9 Let L be a nilpotent Lie algebra and V a finite dimensional
L-module. For any 1-dimensional representation � of L we define V�= 
v∈V ;
for each x∈L there exists N�x� such that �	�x�−��x�1�N�x�v=0�. Then

V =⊕
�

V�

and each V� is a submodule of L.
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Proof.We first express V as a direct sum of indecomposable L-modules. Each
of these defines a 1-dimensional representation � of L as in Corollary 2.8.
Let W� be the direct sum of all indecomposable components giving rise to �.
Then we have

V =⊕
�

W��

We shall show that W�=V� and so that W� is independent of the decom-
position chosen into indecomposable components. It is clear that W�⊂V�

by Corollary 2.8. Suppose if possible that W� 	=V�. Then there exists
v∈V�∩

⊕
�	=�W� with v 	=0. We write v=∑�∈S w� with w� ∈W�, where

the set S is finite. Since w� ∈W� there exists N� such that �	�x�−
��x�1�N�w� = 0. Hence∏

�∈S
�	�x�−��x�1�N� v=0�

However, we also have �	�x�−��x�1�N�v=0.
We recall from Lemma 2.1 that the 1-dimensional representations of L are

in bijective correspondence with linear maps L/L2→�. The vector space
L/L2 over � cannot be expressed as the union of finitely many proper
subspaces. For each �∈S the set of x satisfying ��x�=��x� is a proper
subspace. Thus there exists x∈L such that ��x� 	=��x� for all �∈S. Thus
the polynomials ∏

�∈S
�t−��x��N�� �t−��x��N�

are coprime. Thus there exist polynomials a�t�� b�t�∈��t� such that

a�t�
∏
�∈S

�t−��x��N�+b�t� �t−��x��N� =1�

Hence

a�	�x��
∏
�∈S

�	�x�−��x�1�N� v+b�	�x�� �	�x�−��x�1�N� v=v�

The left-hand side of this expression is zero, as we have seen above. Thus
v=0, a contradiction. Hence V�=W�, V =

⊕
�V� and each V� is a submodule

of V .

A 1-dimensional representation � of L is called a weight of V if V� 	=0, and
V� is called the weight space of �. The decomposition V =⊕�V� is called
the weight space decomposition of V . It follows from Corollary 2.8 that a
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basis can be chosen for V� with respect to which the matrix representation of
L on V� has form

	�x�=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

��x�

· ∗
·
·

0 ·
��x�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for each x∈L�

We shall make frequent use of the weight space decomposition in subsequent
chapters.
We next prove a theorem of Engel which gives a useful characterisation of

nilpotent Lie algebras in terms of the adjoint representation.

Theorem 2.10 (Engel’s theorem). A Lie algebra L is nilpotent if and only if
ad x �L→L is nilpotent for each x∈L.

Proof. Suppose L is nilpotent. Then Ln=O for some n. Let y∈L. Then we
have

ad x ·y∈L2� �ad x�2 ·y∈L3� � � �

and so (ad x�n−1y=0 for each y∈L. Thus �ad x�n−1=0 and so ad x is a nilpo-
tent linear map.
Now suppose conversely that ad x is a nilpotent linear map for each x∈L.

We wish to show L is nilpotent. We suppose if possible that this is false and
let H be a maximal nilpotent subalgebra of L. Thus H is nilpotent but any
subalgebra properly containing H is not nilpotent. We may regard L as an
H-module. Then H is an H-submodule of L and we can find an H-submodule
M of L containing H such that M/H is an irreducible H-module. We have

dim�M/H�=1 by Theorem 2�2�

Moreover the 1-dimensional representation of H afforded byM/H is the zero
representation, as otherwise ad x would fail to be nilpotent for some x∈H .
Hence we have �HM�⊂H . Now there exists x∈M such that

M=H⊕�x�

We have

�MM�⊂ �HH�+ �Hx�⊂H�
Thus M is a subalgebra of L and H is an ideal of M .
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We shall show that for each positive integer i there exists a positive integer
e�i� such that

Me�i�⊂Hi

This is true for i=1 since M2⊂H . We prove it by induction on i. Assume
that Me�r�⊂Hr . Then

Me�r�+1= �Me�r��H+�x�⊂Hr+1+ �Me�r�� x��

Hence Me�r�+1⊂Hr+1+ad x ·Me�r�.
We shall show that

Me�r�+j⊂Hr+1+�ad x�j ·Me�r�

for each positive integer j. This is true for j=1. Assuming it inductively for
j we have

Me�r�+j+1 ⊂ �Hr+1+�ad x�j ·Me�r��M�

⊂ Hr+1+ ��ad x�jMe�r��H+�x�

⊂ Hr+1+�ad x�j+1Me�r�

since Hr+1 is an ideal of M and �ad x�jMe�r�⊂Hr . Thus we have shown

Me�r�+j⊂Hr+1+�ad x�jMe�r� for all j�

Now we know that �ad x�j=0 when j is sufficiently large. For such j we
have

Me�r�+j⊂Hr+1�

Thus we define e�r+1�= e�r�+j and then Me�r+1�⊂Hr+1 as required.
Now H is nilpotent so Hi=O for i sufficiently large. For such i we have

Me�i�=O. Thus M is nilpotent. But this contradicts the maximality of H .
Thus our initial assumption was incorrect and so L must be nilpotent.

Corollary 2.11 A Lie algebra L is nilpotent if and only if L has a basis with
respect to which the adjoint representation of L has form

	�x�=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
· ∗
·

0 ·
0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for all x∈L�
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Proof. Suppose L is nilpotent. Then L has a series of ideals

L⊃L2⊃L3⊃· · ·⊃Lr =O for some r�

We refine this series by choosing a sequence of subspaces between consec-
utive terms, each of codimension 1 in its predecessor. Such subspaces are
automatically ideals of L since if Li⊃ I⊃Li+1 we have

�IL�⊂ �LiL�=Li+1⊂ I�
Thus we have a chain of ideals

L= In⊃ In−1⊃· · ·⊃ I1⊃ I0=O
with dim Ik=k and �LIk�⊂ Ik−1. By choosing a basis of L adapted to this
chain of ideals the map ad x �L→L is represented by a matrix 	�x� of zero-
triangular form (i.e. triangular with zeros on the diagonal).
Conversely if L has a basis with respect to which ad x is represented by

a zero-triangular matrix 	�x� for all x∈L, we have 	�x� nilpotent and so
ad x is nilpotent. Thus L must be a nilpotent Lie algebra by Engel’s theorem
(Theorem 2.10).



3
Cartan subalgebras

3.1 Existence of Cartan subalgebras

Let H be a subalgebra of a Lie algebra L. Let

N�H�= 
x∈L �hx�∈H for all h∈H��
N�H� is called the normaliser of H .

Lemma 3.1 (i) N�H� is a subalgebra of L.
(ii) H is an ideal of N�H�.
(iii) N�H� is the largest subalgebra of L containing H as an ideal.

Proof. (i) Let x� y∈N�H�. Then

�h�xy��= ��yh�x�+ ��hx�y�∈H�
Hence �xy�∈N�H� and N�H� is a subalgebra.
(ii) This is clear from the definition of N�H�.
(iii) If H is an ideal of M then �HM�⊂H so M⊂N�H�.

Definition A subalgebra H of L is called a Cartan subalgebra if H is
nilpotent and H=N�H�. Cartan subalgebras play a very important role in
the theory of semisimple Lie algebras. Our aim in this section is to show that
L contains a Cartan subalgebra.

Let us take an element x∈L and consider the linear map ad x � L→L. Let
L0�x be the generalised eigenspace of ad x with eigenvalue 0. Thus L0�x=

y∈L ; there exists n such that �ad x�ny=0�, and L0�x will be called the null
component of L with respect to x.

An element x∈L is called regular if dimL0�x is as small as possible. The
Lie algebra L certainly contains regular elements.

23



24 Cartan subalgebras

Theorem 3.2 Let x be a regular element of L. Then the null component L0�x

is a Cartan subalgebra of L.

Proof. Let H=L0�x. We must show that H is a subalgebra of L, that H is
nilpotent, and that H=N�H�.

We first show that H is a subalgebra. Let y� z∈H . We must show that
�yz�∈H . By Proposition 2.7 we have

�ad x�n�yz�=
n∑
i=0

(
n

i

)[
�ad x�iy� �ad x�n−iz

]
�

(We take V =L��=�=0 in Proposition 2.7 to obtain this.) Since y∈H we
have

�ad x�iy=0 if i is sufficiently large�

Since z∈H
�ad x�n−iz=0 if n− i is sufficiently large�

Hence �ad x�n�yz�=0 if n is sufficiently large. Thus �yz�∈H and H is a
subalgebra of L.

We next show that H is nilpotent. To do this we shall prove that all the
matrices in the adjoint representation of H are nilpotent and use Engel’s
theorem (Theorem 2.10). Let dimH= l and b1� � � � � bl be a basis for H . Let

y=�1b1+· · ·+�lbl ∈H �1� � � � � �l ∈��
Consider the linear map ad y � L→L. We have ad y � H→H since H is a
subalgebra and we obtain an induced map ad y � L/H→L/H .

Let ��t� be the characteristic polynomial of ad y on L��1�t� be its charac-
teristic polynomial on H and �2�t� be its characteristic polynomial on L/H .
Then we have

��t�=�1�t��2�t��

Since ��t�=det�t1−ad y� and y depends linearly on �1� � � � � �l we see that
the coefficients of ��t� are polynomial functions of �1� � � � � �l. The same
applies to �1�t� and �2�t�. Let

�2�t�=d0+d1t+d2t
2+· · ·

where d0�d1�d2� � � � are polynomial functions of �1� � � � � �l. We claim that d0

is not the zero polynomial. For in the special case when y=x we know that
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all eigenvalues of ad y on L/H are non-zero, so �2�t� has non-zero constant
term. Let

�1�t�= tm�c0+c1t+c2t2+· · · �
where c0� c1� c2� � � � are polynomial functions of �1� � � � � �l and c0 is not the
zero polynomial. We have

m≤ l=deg�1�t��

We then have

��t�= tm�c0d0+ terms involving positive powers of t��

Now c0d0 is not the zero polynomial so we can choose �1� � � � � �l ∈� to
make c0d0 non-zero. For such an element y∈H we have

dimL0�y=m�
Since x is regular and dimL0�x= l we have m≥ l. Since we also know m≤ l
we have m= l. Now �1�t� has degree l and is divisible by tl, hence

�1�t�= tl�
It follows by the Cayley–Hamilton theorem that �ad y�l � H→H is zero.
Hence by Engel’s theorem we deduce that H is nilpotent.
Finally we show that H=N�H�. It is certainly true that H⊂N�H�. So let

z∈N�H�. Then �xz�∈H . Thus

�ad x�n�xz�=0 for some n�

But then �ad x�n+1z=0 and so z∈H . Thus H=N�H� and we have shown
that H is a Cartan subalgebra of L.

3.2 Derivations and automorphisms

A derivation of a Lie algebra L is a linear map � � L→L such that

��xy�= ��x� y�+ �x��y� for all x� y∈L�

Lemma 3.3 Let x∈L. Then ad x is a derivation of L.

Proof. ad x�yz�= �ad x ·y� z�+ �y� ad x ·z� by the Jacobi identity.

An automorphism of L is an isomorphism � � L→L. The automorphisms
of L form a group AutL under composition.
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Proposition 3.4 Let � be a nilpotent derivation of L. Then exp � is an
automorphism of L.

Proof. Since � is nilpotent we have �n=0 for some n. Then we have

exp �=
n−1∑
r=0

�r

r!
The map exp � � L→L is clearly linear. Let x� y∈L. Then

��xy�= ��x� y�+ �x��y�

�r�xy�=
r∑

i=0

(
r

i

)[
�ix��r−iy

]
as is easily seen by induction on r. Hence

exp � · �xy�=∑
r≥0

r∑
i=0

1
r!
(
r

i

)[
�ix��r−iy

]=∑
i≥0

∑
j≥0

1
i!j!

[
�ix��jy

]
=
[∑
i≥0

1
i!�

ix�
∑
j≥0

1
j!�

jy

]
= �exp � ·x� exp � ·y� �

Thus exp � � L→L is a homomorphism. Similarly exp �−�� is a homo-
morphism and we have exp � exp �−��=1. Thus exp � � L→L is an
automorphism.

The subgroup of AutL generated by all automorphisms exp ad x for all x∈L
with ad x nilpotent is called the group of inner automorphisms InnL. Every
element of InnL has form

exp ad x1 ·exp ad x2 · · · · ·exp ad xr

where x1� � � � � xr ∈L and ad x1� � � � � ad xr are all nilpotent.

Lemma 3.5 Inn L is a normal subgroup of Aut L.

Proof. Let �∈AutL. It is sufficient to show that ��exp ad x��−1 ∈ InnL for
all x∈L with ad x nilpotent. Now we have

��ad x��−1y=� [x��−1y]= ��x� y�= �ad �x� ·y
for all y∈L. Hence

��ad x��−1= ad �x�
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It follows that

��exp ad x��−1= exp ad��x�∈ InnL�
Thus InnL is normal in AutL.

Two subalgebras M1�M2 of L are called conjugate in L if there exists �∈
InnL such that ��M1�=M2.

We wish to show that any two Cartan subalgebras of L are conjugate in L.
However, we first need some concepts from algebraic geometry.

3.3 Ideas from algebraic geometry

Let H be a nilpotent subalgebra of a Lie algebra L and regard L as an
H-module. Then we obtain a decomposition

L=⊕L�

as in Theorem 2.9, where

L�= 
x∈L for each h∈H there exists n such that �adh−��h�1�nx=0��

Now H lies in L0 by Corollary 2.11. We shall suppose that the nilpotent
subalgebra H satisfies the condition H=L0. Then there exist 1-dimensional
representations �1� � � � � �r of H with �1 	=0� � � � � �r 	=0 and

L=H⊕L�1
⊕· · ·⊕L�r

�

Given x∈L we then have

x=x0+x1+· · ·+xr
with x0 ∈H and xi ∈L�i

for i=1� � � � � r. We claim that ad xi � L→L is nilpo-
tent when i 	=0.
To see this let � � H→� be a weight of the H-module L and let y∈L�.

Then by Proposition 2.7 we have

�adh−��h�1−�i�h�1�
n �xiy�=

n∑
j=0

(
n

j

) [
�adh−�i�h�1�

j xi�

�adh−��h�1�n−j y] �
Because xi ∈L�i

then �adh−�i�h�1�
jxi=0 if j is sufficiently large. Since

y∈L� then �adh−��h�1�n−jy=0 if n−j is sufficiently large. Thus

�adh−��h�1−�i�h�1�
n �xiy�=0
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if n is sufficiently large, and so �xiy�∈L�i+�. Thus we have

ad xi ·L�⊂L�i+��

Since �i 	=0 and there are only finitely many � � H→� for which
L� 	=0 we see that �ad xi�

N =0 if N is sufficiently large. Thus ad xi is
nilpotent.
We deduce that exp ad xi ∈AutL for i 	=0. We now define a map

f � L→L by

f�x�= exp ad x1 ·exp ad x2 · · · · ·exp ad xr ·x0�
We shall discuss some properties of this function f . We choose a basis 
bij�
of L for 0≤ i≤ r where for fixed i the elements bij form a basis of L�i

with
respect to which the elements of H are represented by triangular matrices, as
in Corollary 2.3. Here �0=0.

Lemma 3.6 f � L→L is a polynomial function. Thus

f
(∑

�ijbij
)=∑�ijbij

where each �ij is a polynomial in the �kl.

Proof. Each map ad xi � L→L is linear. Also we have

exp ad xi=
N∑
k=0

�ad xi�
k

k! for some N

since ad xi is nilpotent. Thus exp ad xi � L→L is a polynomial function.
The given map f is a composition of the linear map x→x0 with polynomial

functions exp ad xi for i>0, so is a polynomial function.

We write �ij=fij��kl� where fij is a polynomial. We define the Jacobian
matrix

J�f�= (�fij/��kl

)
and the Jacobian determinant det J�f� of f . det J�f� is an element of the
polynomial ring ���kl�.

Proposition 3.7 det J(f) is not the zero polynomial.

Proof. We shall show det J�f� is not the zero polynomial by showing that it
is non-zero when evaluated at a carefully chosen element of H . So let h∈H
and consider ��fij/��kl�h.
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First suppose k 	=0. Then

��f/��kl�h = lim
t→0

f�h+ tbkl�−f�h�
t

= lim
t→0

�exp ad tbkl�h−h
t

= lim
t→0

h+ t�bkl� h�+· · ·−h
t

= �bkl� h�=−�hbkl�
=−�k�h�bkl+a linear combination of bk1� � � � � bk l−1�

Next suppose k=0. Then

��f/��0l�h = lim
t→0

f�h+ tb0l�−f�h�
t

= lim
t→0

h+ tb0l−h
t

=b0l�

Thus J�f�h is a block matrix of form

k=0
k=1
k=2
���

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
� � �

1

O O

O

−�1�h� ∗
� � �

O −�1�h�

O

O O

−�2�h� ∗
� � �

O −�2�h�

� � �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and so �det J�f��h=±

∏r
i=1 �i�h�

di where di=dimL�i
.

Now the linear maps �i � H→� for i=1� � � � � v are all non-zero. Thus
we can find an element h∈H with �i�h� 	=0 for i=1� � � � � v. For such an
element h we have �det J�f��h 	=0. Hence det J�f� is not the zero polynomial.

Proposition 3.8 The polynomial functions fij are algebraically independent.
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Proof. Suppose if possible that there is a non-zero polynomial F�xij�∈��xij�
such that F�fij�=0. We choose such a polynomial F whose total degree in
the variables xij is as small as possible. Then

�

��kl

F�fij�=0

and so ∑
i�j

�F

�fij

�fij

��kl

=0�

Let v be the vector ��F/�fij�. Then

vJ�f�= �0� � � � �0��
Since det J�f� is non-zero this implies that v= �0� � � � �0�, that is

�F/�fij=0 for each fij�

Now �F/�xij is a polynomial in ��xij� of smaller total degree than F . By the
choice of F �F/�xij must be the zero polynomial. Hence F does not involve
the variable xij . Since this is true for all xij F must be a constant. Since
F�fij�=0 this constant must be zero. Thus F is the zero polynomial and we
have a contradiction.

Let B=��fij� be the polynomial ring in the fij and A=���ij� the poly-
nomial ring in the �ij . We have a homomorphism � � B→A uniquely deter-
mined by

��fij�=fij��kl�∈A�

Proposition 3.9 The homomorphism � � B→A is injective.

Proof. Suppose F ∈B satisfies ��F �=0. Then F�fij�=0, regarded as a
function of the �kl. Since the fij are algebraically independent this implies
that F =0. Thus � is injective.

Thus we may regard B as a subring of A. A and B are integral domains
with a common identity element and A is finitely generated over B. We next
prove a general result which applies to this situation.

Proposition 3.10 Let A and B be integral domains such that B⊂A�A�B
have a common identity element 1, and A is finitely generated over B. Let
p be a non-zero element of A. Then there exists a non-zero element q of B
such that any homomorphism � � B→� with ��q� 	=0 can be extended to a
homomorphism � � A→� with ��p� 	=0.
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Proof. We may assume that A is generated over B by a single element � .
For then by iterating the process we can prove the result when A is finitely
generated over B. Thus we assume that A=B��� for some � ∈A.

Suppose first that � is transcendental over B. Given a non-zero element
p=p���∈A we choose q∈B to be one of the non-zero coefficients of p���.
Suppose we are given a homomorphism � � B→� with ��q� 	=0. We write
��b�= b̄∈�. By applying � to the coefficients of p��� we obtain p̄���∈����.
The element p̄��� is not the zero polynomial since ��q� 	=0. We can find an
element �∈� with p̄��� 	=0. We now define a homomorphism � � A→� by

��g����= ḡ����
� is well defined since � is transcendental over B, and � is a homomorphism,
being a composite of the homomorphisms

A=B���→����→� (3.1)

g��� →ḡ���→ḡ��� (3.2)

� clearly extends �. Finally we have ��p�= p̄��� 	=0.
Next suppose that � is algebraic over B. Then we can find f�t�∈B�t� of

minimal degree such that f���=0. We write

f�t�=b0tn+b1tn−1+· · ·+bn b0 	=0�

Now let g�t� be any polynomial in B�t� satisfying g���=0. We divide g�t� by
f�t� using the Euclidean algorithm. We are working over an integral domain B
rather than over a field. However, provided we multiply g�t� by a sufficiently
high power of the leading coefficient b0 of f�t� we can carry out the Euclidean
process over B. We thus obtain

bk0g�t�=u�t�f�t�+v�t�
where u�t�� v�t�∈B�t� and degv�t�<degf�t�. Thus

v���=bk0g���−u���f���=0�

Since degv�t�<degf�t� this implies that v�t�=0. Hence

bk0g�t�=u�t�f�t��
Let p be the given non-zero element of A. The element p is algebraic over
B since A is generated over B by the single algebraic element � . Thus there
exists a polynomial h�t�∈B�t� with non-zero constant term hm such that
h�p�=0. We define the element q∈B by q=b0hm. Thus q 	=0. We assume
we are given a homomorphism � � B→� with ��q� 	=0. Then ��b0� 	=0 and
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��hm� 	=0. We write ��b�= b̄∈�. The polynomial f�t�∈B�t� gives rise to a
polynomial f̄ �t�∈��t�. We choose an element �∈� with f̄ ���=0. We note
that

b̄k0 ḡ���= ū���f̄ ���=0�

hence ḡ���=0 since b̄0=��b0� 	=0.
We now define a homomorphism

� � A→�

by ��g����= ḡ���. We note that the map � is well defined, since we have
shown that g���=0 implies ḡ���=0. The map � is a homomorphism since
the maps

B�t�→ ��t�→�

g�t�→ ḡ�t�→ ḡ���

are homomorphisms. The definition of � shows that � extends �. Finally we
show ��p� 	=0. Since h�p�=0 we have h̄���p��=0. However, the constant
term of h�t� is ��hm�, which is non-zero. Since h̄�t� has non-zero constant
term and h���p��=0 we must have ��p� 	=0.

We now apply this result to our earlier situation. Let d=dimL and

f � �d→�d

be the polynomial function

��ij�→
(
fij��kl�

)
�

We write V =�d and for each polynomial p∈��xij� we write

Vp= 
v∈V  p�v� 	=0��

Corollary 3.11 For each non-zero polynomial p∈��xij� there exists a non-
zero polynomial q∈��xij� such that f�Vp�⊃Vq.

Proof. We apply Proposition 3.10 to the integral domains B⊂A discussed
earlier. Thus A is the polynomial ring ���ij� and B is the polynomial ring
��fij�. We choose a non-zero polynomial p∈A. Then there exists a non-zero
polynomial q∈B such that any homomorphism � � B→� with ��q� 	=0 can
be extended to a homomorphism � � A→� with ��p� 	=0. This means that
given any v∈Vq we have v=f�w� for some w∈Vp. Hence Vq⊂f�Vp� as
required.
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3.4 Conjugacy of Cartan subalgebras

We showed in Theorem 3.2 that the null component L0�x of a regular ele-
ment x∈L is a Cartan subalgebra of L. We shall now show conversely that
any Cartan subalgebra is the null component of some regular element. We
shall then prove that, given two regular elements, their null components are
conjugate in L.

Proposition 3.12 Let H be a Cartan subalgebra of L. Then there exists a
regular element x∈L such that H=L0�x.

Proof. Since H is nilpotent we may regard L as an H-module and decompose
L into weight spaces with respect to H as in Theorem 2.9. H lies in the zero
weight space L0 by Corollary 2.11. SinceH=N�H� we can show thatH=L0.
For if H 	=L0 the H-module L0/H will have a 1-dimensional submodule
M/H on which H acts with weight 0. Hence �HM�⊂H and so M⊂N�H�.
This contradicts H=N�H�. Thus we have H=L0. Let

L=H⊕L�1
⊕· · ·⊕L�r

�1� � � � � �r 	=0

be the weight space decomposition of L with respect to H . Let x∈L and

x=x0+x1+· · ·+xr
with x0 ∈H and xi ∈L�i

for i 	=0. Then we can define a polynomial function
f � L→L as in Section 3.3 with

f�x�= exp ad x1 ·exp ad x2 · · · · ·exp ad xr ·x0�
We define p � L→� by

p�x�=�1�x0��2�x0� · · ·�r�x0��

Then p is a polynomial function on L. p is not the zero polynomial since
we can find x0 ∈H for which each �i�x0� 	=0 for i=1� � � � � r. Hence by
Corollary 3.11 there exists a non-zero polynomial function q � L→� such
that f�Lp�⊃Lq.
We next consider the set R of regular elements of L. Let y∈L and

��y�=det�t1−ad y�= tn+�1�y�t
n−1+· · ·+�n�y�

be the characteristic polynomial of ad y on L. Then �1��2� � � � ��n are poly-
nomial functions on L. There exists a unique integer k such that �n−k is
not the zero polynomial but �n−k+1� � � � ��n are identically zero. The gener-
alised eigenspace of ad y with eigenvalue 0 has dimension k if �n−k�y� 	=0
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and dimension greater than k if �n−k�y�=0. Thus y is regular if and only if
�n−k�y� 	=0.
Now there exists y∈L such that y∈Lq∩R. For we may choose y with

�q�n−k��y� 	=0. Since Lq⊂f�Lp� we can find x∈Lp such that f�x�=y. Thus
we have

exp ad x1 ·exp ad x2 · · · · exp ad xr ·x0=y�
Hence x0� y are conjugate elements of L. Since y is regular, x0 must also be
regular. Since x∈Lp we have

�1�x0��2�x0� · · ·�r�x0� 	=0�

Now x0 ∈H and H is nilpotent, hence L0�x0
⊃H by Corollary 2.11. On the

other hand L0�x0
cannot be larger than H since

�1�x0� 	=0� � � � � �r�x0� 	=0�

Hence H=L0�x0
where x0 is regular.

Theorem 3.13 Any two Cartan subalgebras of L are conjugate.

Proof. Let H�H ′ be Cartan subalgebras of L. We regard L as an
H-module and decompose L into weight spaces with respect to H . We have
seen in the proof of Proposition 3.12 that H=L0. Let the weight space
decomposition be

L=H⊕L�1
⊕· · ·⊕L�r

�1� � � � � �r 	=0�

For each x∈L we have

x=x0+x1+· · ·+xr
with x0 ∈H and xi ∈L�i

for i 	=0.
Now for each x0 ∈H we have L0�x0

⊃H and for some x0 ∈H we have
L0�x0
=H since H is a Cartan subalgebra. An element x0 ∈H is regular if and

only if L0�x0
=H . This is equivalent to the condition

�1�x0��2�x0� · · ·�r�x0� 	=0�

We now consider the polynomial function f � L→L defined by

f�x�= exp ad x1 ·exp ad x2 · · · · ·exp ad xr ·x0�
Let p � L→� be the function given by

p�x�=�1�x0��2�x0� · · ·�r�x0�
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where p is a polynomial function on L which is not identically zero, since
p�x� is non-zero when x0 is a regular element of H . By Corollary 3.11 there
exists a non-zero polynomial function q � L→� such that f�Lp�⊃Lq.

We now start with the second Cartan subalgebra H ′. We can define a corre-
sponding function f ′ � L→L and a corresponding function p′ � L→�. There
exists a non-zero polynomial function q′ � L→� such that f ′�Lp′�⊃ Lq′ .
Now Lq∩Lq′ = 
x∈L  �qq′��x� 	=0�. Thus Lq∩Lq′ is non-empty. We

choose z∈Lq∩Lq′ . Thus z∈f�Lp�∩f ′�Lp′�. Thus there exists x∈L with
z=f�x� and p�x� 	=0. Similarly there exists x′ ∈L with z=f ′�x′� and
p′�x� 	=0. Thus

z= exp ad x1 ·exp ad x2 · · · · ·exp ad xr ·x0
and so z is conjugate to x0. Since p�x� 	=0 x0 is regular. Similarly z is
conjugate to x′0 and x

′
0 is regular. Thus we have found regular elements x0 ∈H

and x′0 ∈H ′ such that x0� x
′
0 are conjugate in L.

Now we have H=L0�x0
and H ′ =L0�x′0 since x0� x

′
0 are regular. Thus an

inner automorphism of L which transforms x0 to x′0 will transform H to H ′.
Hence H�H ′ are conjugate in L.

The dimension of the Cartan subalgebras of L will be called the rank of L.



4
The Cartan decomposition

4.1 Some properties of root spaces

Let L be a Lie algebra and H be a Cartan subalgebra of L. We regard L as
an H-module. Since H is nilpotent we have a weight space decomposition

L=⊕
�

L�

as in Theorem 2.9, where

L�= 
x∈L  for each h∈H there exists n such that �adh−��h�1�nx=0��

Proposition 4.1 L0=H�

Proof. The algebra H is contained in L0 by Corollary 2.11. Suppose if
possible that H 	=L0. Then L0/H is an H-module, and this module contains
a 1-dimensional submodule M/H on which H acts with weight 0. Hence
�HM�⊂H and so M⊂N�H�. This implies H 	=N�H�, a contradiction.

The 1-dimensional representations � of H such that � 	=0 and L� 	=O are
called the roots of L with respect to H . The set of roots of L with respect to
H will be denoted by �. Thus we have

L=H⊕
(⊕
�∈�

L�

)
This decomposition is called the Cartan decomposition of L with respect
to H . L� is called the root space of �.

Proposition 4.2 Let ��� be 1-dimensional representations of H . Then[
L��L�

]⊂L�+��

36
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Proof. Let y∈L�� z∈L�. We show that �yz�∈L�+�. Let x∈H . Then by
Proposition 2.7 we have

�ad x−��x�1−��x�1�n�yz�=
n∑
i=0

(
n

i

)[
�ad x−��x�1�iy� �ad x−��x�1�n−iz] �

Since y∈L� �ad x−��x�1�iy=0 if i is sufficiently large. Since z∈L�

�ad x−��x�1�n−iz=0 if n− i is sufficiently large. Hence

�ad x−��x�1−��x�1�n�yz�=0

if n is sufficiently large. This shows that �yz�∈L�+�.

Corollary 4.3 Let ���∈� be roots of L with respect to H . Then[
L��L�

]⊂L�+� if �+�∈�[
L��L�

]⊂H if �=−�[
L��L�

]=0 if �+� 	=0 and �+����

Proof. This follows from Proposition 4.2 and the fact that L0=H .

Proposition 4.4 Let �∈� and consider the subspace �L�L−�� of H . Given
any �∈� there exists a number r ∈�, depending on � and �, such that
�= r� on �L�L−��.

Proof. If −� is not a weight of L with respect to H then L−�=O and there
is nothing to prove. Thus we assume −� is a weight. Then −�∈� since
� 	=0.

We consider the functions i�+� � H→� where i∈�. Since � is finite
there exist p�q∈� with p≥0� q≥0 such that

−p�+�� � � � ��� � � � � q�+�
are all in � but −�p+1��+�� �q+1��+� are not in �. If either
−�p+1��+�=0 or �q+1��+�=0 the result is obvious. Thus we assume
−�p+1��+� 	=0, �q+1��+� 	=0. Thus −�p+1��+�� �q+1��+� are
not weights of L with respect to H .

Let M be the subspace of L given by

M=L−p�+�⊕ · · · ⊕Lq�+��
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Let y∈L�� z∈L−�. Let x= �yz�∈ �L�L−��. Then we have

ad y�M�⊂M by Proposition 4�2� since L�q+1��+�=O
ad z�M�⊂M by Proposition 4�2� since L−�p+1��+�=O�

Thus

ad x�M�= �ad y ad z−ad z ad y�M⊂M�

We calculate the trace trMad x. Since x∈H each weight space Li�+� is
invariant under ad x. Thus

trMad x=
q∑

i=−p
trLi�+�ad x�

Now ad x acts on the weight space Li�+� by means of a matrix of form⎛⎜⎜⎜⎜⎜⎝
�i�+��x ∗

·
·
·

0 �i�+��x

⎞⎟⎟⎟⎟⎟⎠
Thus trLi�+� ad x =dimLi�+���i�+���x�. Thus

trM ad x =
q∑

i=−p
dimLi�+��i��x�+��x��

=
(

q∑
i=−p

idimLi�+�

)
��x�+

(
q∑

i=−p
dimLi�+�

)
��x��

On the other hand we have

trM ad x = trM�ad y ad z−ad z ad y�

= trM�ad y ad z�− trM�ad z ad y�=0�

Hence (
q∑

i=−p
idimLi�+�

)
��x�+

(
q∑

i=−p
dimLi�+�

)
��x�=0�

Moreover dimLi�+� >0 for −p≤ i≤q. Hence for x∈ �L�L−�� we have

��x�=−
(∑q

i=−p idimLi�+�
)(∑q

i=−p dimLi�+�
) ��x��

Thus ��x�= r��x� for some r ∈� independent of x. Hence �= r� on
�L�L−��.
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4.2 The Killing form

In order to make further progress in understanding the Cartan decomposition
of L we introduce a bilinear form on L called the Killing form. We define
a map

L×L→�

x� y→�x� y�
given by

�x� y�= tr�ad x ad y��

Wehave ad x � L→L, ad y � L→L and ad x ad y � L→L, so tr�ad x ad y�∈�.

Proposition 4.5 (i) �x� y� is bilinear, i.e. linear in x and y.
(ii) �x� y� is symmetric, i.e. �y� x�=�x� y�.
(iii) �x� y� is invariant, i.e.

��xy�� z�=�x� �yz�� for all x� y� z∈L�

Proof. (i) is clear from the definition.
(ii) follows from the fact that tr AB= trBA.
(iii) ��xy�� z�= tr�ad�xy�ad z�= tr ��ad x ad y−ad y ad x� ad z�

= tr�ad x ad y adz�− tr�ad y ad x ad z�

= tr�ad x ad y ad z�− tr�ad x ad z ad y�

= tr�ad x �ad y ad z−ad z ad y��= tr�ad x ad�yz��=�x� �yz���

Proposition 4.6 Let I be an ideal of L and x� y∈ I . Then
�x� y�I =�x� y�L�

Thus the Killing form of L restricted to I is the Killing form of I .

Proof. We choose a basis of I and extend it to give a basis of L. With respect
to this basis ad x � L→L is represented by a matrix of form(

A1 A2

O O

)
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since x∈ I , and similarly ad y � L→L is represented by a matrix of form(
B1 B2

O O

)
Thus ad x ad y � L→L is represented by the matrix(

A1B1 A1B2

O O

)
Hence trL�ad x ad y�= trA1B1= trI �ad x ad y� and so �x� y�L=�x� y�I
For any subspace M of L we define M⊥ by

M⊥= 
x∈L  �x� y�=0 for all y∈M��

M⊥ is also a subspace of L.

Lemma 4.7 If I is an ideal of L then I⊥ is also an ideal of L.

Proof. Let x∈ I⊥� y∈L. We must show that �xy�∈ I⊥. So let z∈ I . Then
��xy�� z�=�x� �yz��=0

since �yz�∈ I and x∈ I⊥. Thus �xy�∈ I⊥ and I⊥ is an ideal of L.

We see in particular that L⊥ is an ideal of L. The Killing form of L is said
to be non-degenerate if L⊥=O. This is equivalent to the condition that if
�x� y�=0 for all y∈L then x=0.

The Killing form of L is identically zero if L⊥=L. This means that
�x� y�=0 for all x� y∈L.
We now prove a deeper result on the Killing form which will be very

useful subsequently.

Proposition 4.8 Let L be a Lie algebra such that L 	=0 and L2=L. Let H
be a Cartan subalgebra of L. Then there exists x∈H such that �x�x� 	=0.

Proof. We consider the Cartan decomposition of L with respect to H . Let
this be L=⊕L�. Then we have

L2= �LL�=
[⊕

�

L��
⊕
�

L�

]
=∑

���

[
L�L�

]
�
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Now we have
[
L�L�

]⊂L�+� by Proposition 4.2. Now L�+�=O if �+� is
not a weight. Thus each non-zero product

[
L�L�

]
lies in some weight space

L�. We consider the zero weight space L0. Since L
2=L we have

L0=
∑
�

�L�L−��

summed over all weights � such that −� is also a weight. Now L0=H by
Proposition 4.1, thus we have

H= �HH�+∑
�

�L�L−��

summed over all roots �∈� such that −� is also a root.
Now L is not nilpotent since L2=L. H is nilpotent and so H 	=L. So there

is at least one root �∈�. � is a 1-dimensional representation of H and so
vanishes on �HH� since

��xy�=��x���y�−��y���x�=0 x� y∈H�
But � does not vanish on H since � 	=0. So using the above decomposition
of H we see that there is some root �∈� such that −�∈� and � does not
vanish on �L�L−��.

We choose x∈ �L�L−�� such that ��x� 	=0. Then we have

�x�x�= tr�ad x ad x�=∑
�

dimL����x��
2

since ad x is represented on L� by a matrix of form⎛⎜⎜⎜⎜⎜⎝
��x� ∗

·
·
·

O ��x�

⎞⎟⎟⎟⎟⎟⎠
Now by Proposition 4.4 there exists r��� ∈� such that ��x�= r�����x�. Thus
we have

�x�x�=
(∑

�

dimL�r
2
���

)
��x�2�

Now ��x�= r�����x� and ��x� 	=0. Thus ��x� 	=0 and r��� 	=0. It follows
that �x�x� 	=0.

We shall now obtain some important consequences of this result.
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Theorem 4.9 If the Killing form of L is identically zero then L is soluble.

Proof. We use induction on the dimension of L. If dimL=1 then L is
soluble. So suppose dimL>1. By Proposition 4.8 we have L 	=L2. L2 is an
ideal of L so the Killing form of L2 is the restriction of the Killing form of
L, by Proposition 4.6. Thus the Killing form of L2 is identically zero. By
induction L2 is soluble. Since L/L2 is soluble it follows that L is soluble, by
Proposition 1.12.

Theorem 4.10 The Killing form of L is non-degenerate if and only if L is
semisimple.

Proof. Suppose first that the Killing form of L is degenerate. Then L⊥ 	=O.
Now L⊥ is an ideal of L by Lemma 4.7. Thus the Killing form of L⊥ is the
restriction of that of L by Proposition 4.6. Thus the Killing form of L⊥ is
identically zero. This implies that L⊥ is soluble, by Theorem 4.9. Thus L has
a non-zero soluble ideal, so L is not semisimple.
Now suppose conversely that L is not semisimple. Then the soluble radical

R of L is non-zero. We consider the chain

R⊃R�1�⊃R�2�⊃· · ·⊃R�k−1�⊃R�k�=O
where as usual R�i+1�= [R�i�R�i�

]
. The subspaces R�i� are all ideals of L since

the product of two ideals is an ideal. Let I=R�k−1�. Then I is a non-zero ideal
of L such that I2=O.
We choose a basis of I and extend it to a basis of L. Let x∈ I and y∈L.

With respect to this basis ad x is represented by a matrix of form(
O A

O O

)
since I2=O and I is an ideal of L, ad y is represented by a matrix of form(

B1 B2

O B3

)
and ad x ad y is represented by the matrix(

O AB3

O O

)
Hence �x� y�= tr�ad x ad y�=0. Since this holds for all x∈ I and y∈L we
have I⊂L⊥. Thus L⊥ 	=O and so the Killing form of L is degenerate.
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We now define the direct sum of Lie algebras L1�L2. L1⊕L2 is the vector
space of all pairs �x1� x2� with x1 ∈L1� x2 ∈L2 under the Lie multiplication
given by

��x1� x2� �y1� y2��= ��x1y1� � �x2y2�� �
In this direct sum we define I1= 
�x1�0�  x1 ∈L1� and I2= 
�0� x2�  x2 ∈L2�.
Then I1 and I2 are ideals of L1⊕L2 such that I1∩ I2=O and I1+ I2=L1⊕L2.
Moreover I1 is isomorphic to L1 and I2 is isomorphic to L2.
Conversely let L be a Lie algebra containing two ideals I1� I2 such that

I1∩ I2=O and I1+ I2=L. Then the Lie algebra I1⊕ I2 is isomorphic to L

under the isomorphism

� � I1⊕ I2→L

�x1� x2�→x1+x2�
For � is certainly an isomorphism of vector spaces. But � also preserves Lie
multiplication. To see this we first observe that

�I1I2�⊂ I1∩ I2=O�
Thus

�� �x1� x2� � � �y1� y2��= �x1+x2� y1+y2�= �x1y1�+ �x2y2�
= � ��x1y1� � �x2y2��=� ��x1� x2� � �y1� y2�� �

Thus if a Lie algebra has two complementary ideals I1� I2 the Lie algebra is
isomorphic to I1⊕ I2.

We may in a similar way consider direct sums L1⊕L2⊕ · · · ⊕Ln of more
than two Lie algebras.

Theorem 4.11 A Lie algebra L is semisimple if and only if L is isomorphic
to a direct sum of non-trivial simple Lie algebras.

Proof. Suppose L is semisimple. If L is simple then L must be non-trivial
since the trivial simple Lie algebra is not semisimple. Thus we suppose L is
not simple. Let I be a minimal non-zero ideal of L. Then I 	=O and I 	=L.
Consider the subspace I⊥ of L; I⊥ is also an ideal of L by Lemma 4.7. Now
the Killing form of L is non-degenerate by Theorem 4.10. Thus an element
x∈L lies in I⊥ if and only if the coordinates of x with respect to a basis of L
satisfy dim I homogeneous linear equations which are linearly independent.
It follows that

dim I⊥=dimL−dim I�
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Now consider the subspace I∩ I⊥. This is an ideal of L. Thus the Killing form
of I∩ I⊥ is the restriction of the Killing form of L, by Proposition 4.6. Hence
I∩ I⊥ is soluble, by Theorem 4.9. Since L is semisimple we have I∩ I⊥=O.
Thus

dim
(
I+ I⊥)= dim I+dim I⊥−dim

(
I∩ I⊥)

= dim I+dim I⊥=dimL�

Hence I+ I⊥=L. Thus L is the direct sum of its ideals I and I⊥. Hence L is
isomorphic to the Lie algebra I⊕ I⊥.
We shall now show that I is a simple Lie algebra. Let J be an ideal of I .

Then we have

�JL�⊂ �JI�+[JI⊥]⊂ �JI�⊂ J
since

[
JI⊥

]⊂ [II⊥]⊂ I∩ I⊥=O. Thus J is an ideal of L contained in I . Since
I is a minimal ideal of L we have J =O or J = I . Thus I is simple.
We show next that I⊥ is semisimple. Let J be a soluble ideal of I⊥. Then

�JL�⊂ �JI�+[JI⊥]⊂ [JI⊥]⊂ J
since �JI�⊂ [I⊥I]⊂ I∩ I⊥=O. Thus J is an ideal of L. Since L is semisimple
and J is soluble we have J =O. Thus I⊥ is semisimple.

Now we know dim I⊥<dimL. By induction we may assume I⊥ is a direct
sum of simple non-trivial Lie algebras. Since L= I⊕ I⊥ and I is simple and
non-trivial, L is also a direct sum of simple non-trivial Lie algebras.

Conversely suppose that

L=L1⊕ · · · ⊕Lr

where each Li is a simple non-trivial Lie algebra. Each Li is semisimple so
has non-degenerate Killing form by Theorem 4.10. Now each Li is an ideal
of L. Moreover if xi ∈Li� xj ∈Lj and i 	= j then 〈xi� xj 〉=0. For

ad xi ad xj ·y∈Li∩Lj=O for all y∈L
thus

〈
xi� xj

〉= tr�ad xi ad xj�=0.
Now let x=x1+· · ·+xr ∈L⊥ with xi ∈Li. Let yi ∈Li. Then we have

�xi� yi�=�x� yi�=0�

Since this holds for all yi ∈Li we have xi=0. This holds for all i, hence x=0.
Thus L⊥=O and the Killing form of L is non-degenerate. This implies that
L is semisimple by Theorem 4.10.
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4.3 The Cartan decomposition of a semisimple Lie algebra

When L is semisimple we can say much more about its Cartan decomposition
than in the general case. We shall now investigate this Cartan decomposition
in detail.
Let L be semisimple, H be a Cartan subalgebra of L, and L=⊕L� be the

Cartan decomposition of L with respect to H . We recall from Proposition 4.1
that L0=H .

Proposition 4.12 L� and L� are orthogonal with respect to the Killing form,
provided � 	=−�.

Proof. Let x∈L�� y∈L�. We assume �+� 	=0 and must show that �x� y�=0.
Now for any weight space L� we have

ad x ad y L�⊂L�+�+� by Proposition 4�2�

We choose a basis of L adapted to the Cartan decomposition. With respect
to such a basis ad x ad y will be represented by a block matrix of form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0 ∗
·
·
·

∗ 0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
since �+�+� 	=�. Hence we have

�x� y�= tr�ad x ad y�=0�

Proposition 4.13 If � is a root of L with respect to H then −� is also a
root.

Proof. We recall that � is a root if � 	=0 and L� 	=O. Suppose if possible that
−� is not a root. Since −� 	=0 we have L−�=O. By Proposition 4.12 we
see that L� is orthogonal to all L�, hence L�⊂L⊥. But since L is semisimple
we have L⊥=O by Theorem 4.10. Thus L�=O, which contradicts the fact
that � is a root.

Proposition 4.14 The Killing form of L remains non-degenerate on restric-
tion to H . Thus if x∈H satisfies �x� y�=0 for all y∈H then x=0.
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Proof. Let x∈H and suppose �x� y�=0 for all y∈H . We also have �x� y�=0
for all y∈L� where � 	=0, by Proposition 4.12. Thus �x� y�=0 for all y∈L
and so x∈L⊥. Since L is semisimple L⊥=O, hence x=0 as required.

Note that the Killing form of L restricted to H does not coincide with the
Killing form of H . The latter is degenerate since H is not semisimple.

Theorem 4.15 �HH�=O. Thus the Cartan subalgebras of a semisimple Lie
algebra are abelian.

Proof. Let x∈ �HH� and y∈H . Then we have

�x� y�= tr �ad x ad y�=∑
�

dimL� ��x���y�

since ad x ad y is represented on L� by a matrix of form⎛⎜⎜⎜⎜⎜⎝
��x���y� ∗

·
O ·

·
��x���y�

⎞⎟⎟⎟⎟⎟⎠
However, � is a 1-dimensional representation of H and x∈ �HH�, hence
��x�=0. Thus �x� y�=0 for all y∈H . This implies x=0 by Proposition 4.14.
Thus �HH�=O.
Let H∗ =Hom�H��� be the dual space of H . This is the vector space of

all linear maps from H to �. We have dimH∗ =dimH .
We define a map H→H∗ using the Killing form of L. Given h∈H we

define h∗ ∈H∗ by
h∗�x�=�h�x� for all x∈H�

Lemma 4.16 The map h→h∗ is an isomorphism of vector spaces between
H and H∗.

Proof. The map is certainly linear. Suppose h∈H lies in the kernel. Then
�h�x�=0 for all x∈H . This implies h=0 by Proposition 4.14. Thus the
kernel is O. Hence the image must be the whole of H∗, since dimH∗ =dimH .
Hence our map is bijective.

Now we have a finite subset �⊂H∗, the set of roots of L with respect
to H . For each �∈� there is a unique element h′� ∈H such that

��x�=�h′�� x� for all x∈H�
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(The notation h� might seem more natural, but this will be reserved for the
coroot of �, to be discussed in Chapter 7.)

Proposition 4.17 The vectors h′� for �∈� span H .

Proof. Suppose if possible that the h′� lie in a proper subspace of H . Then
there exists an element x∈H with x 	=0 and �h′�� x�=0 for all �∈�. Thus
��x�=0 for all �∈�. Let y∈H . Then we have

�x� y�= tr �ad x ad y�=∑
�

dimL� ��x���y�=0

since ��x�=0 for all weights �. Thus �x� y�=0 for all y∈H . This implies
x=0 by Proposition 4.14, a contradiction.

Proposition 4.18 h′� ∈ �L�L−�� for all �∈�.

Proof. L� is an H-module. Since all irreducible H-modules are 1-dimensional
L� contains a 1-dimensional H-submodule �e�. We have �xe��=��x�e� for
all x∈H .

Let y∈L−�. Then �e�y�∈ �L�L−��⊂H . We shall show that �e�y�=
�e�� y�h′�. In order to prove this we define

z= �e�y�−�e�� y�h′� ∈H�
Let x∈H . Then

�x� z� = �x� �e�y��−�e�� y� �x�h′��
= ��xe�� � y�−�e�� y���x�
= ��x� �e�� y�−�e�� y���x�=0�

Thus �x� z�=0 for all x∈H , and it follows that z=0. Hence

�e�y�=�e�� y�h′� for all y∈L−��
Now we can choose y∈L−� such that �e�� y� 	=0. Otherwise e� would be

orthogonal to L−�, so orthogonal to the whole of L by Proposition 4.12. Then
e� ∈L⊥. But L⊥=0 since L is semisimple. Thus e�=0, a contradiction. Thus
we can find y∈L−� with �e�� y� 	=0. Then

h′�=
1

�e�� y�
�e�y� ∈ �L�L−�� �
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Proposition 4.19 �h′��h′�� 	=0 for all �∈�.

Proof. We suppose that �h′��h′��=0 for some �∈� and obtain a contra-
diction. Let � be any element of �. By Proposition 4.4 there is a number
r��� ∈� such that �= r���� when restricted to �L�L−��. Since h′� ∈ �L�L−��
by Proposition 4.18 we obtain

��h′��= r���� �h′��
that is

〈
h′��h

′
�

〉= r��� �h′��h′��=0.

This holds for all �∈�. But by Proposition 4.17 the elements h′� for �∈�
span H . Thus we have �x�h′��=0 for all x∈H . This implies that h′�=0 by
Proposition 4.14. This in turn implies that �=0, which contradicts �∈�.

Having obtained a number of results on the Cartan decomposition of a
semisimple Lie algebra, each depending on previous results, we are now able
to obtain one of the most important properties of the Cartan decomposition.

Theorem 4.20 dim L�=1 for all �∈�.

Proof. We choose a 1-dimensional H-submodule �e� of L� as in Propo-
sition 4.18 and, as in the proof of that proposition, we can find an element
e−� ∈L−� with �e�e−��=h′�.
We consider the subspace M of L given by

M=�e�⊕�h′�⊕L−�⊕L−2�⊕· · ·
There are only finitely many summands of M since � is finite and there are
only finitely many non-negative integers r with L−r� 	=O.
We observe that ad e�M⊂M . For

�e�e��=0

�e�h
′
��=−��h′�� e�

�e�y�=�e�� y�h′� for all y∈L−��
by the proof of Proposition 4.18, and

ad e� ·L−r�⊂L−�r−1�� for all r≥2�

by Proposition 4.2.
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Similarly we can show that ad e−�M⊂M . For we have

�e−�e��=−h′�
�e−�h

′
��=��h′�� e−�

and ad e−�L−r�⊂L−�r+1�� for all r≥1.
Now h′�= �e�e−�� and so

adh′�= ad e� ad e−�−ad e−� ad e��

Hence ad h′�M⊂M . We shall calculate the trace of ad h′� on M in two
different ways. On the one hand we have

trM �adh′��= ��h′��+dimL−� �−��h′���+dimL−2� �−2��h′���+· · ·
= ��h′�� �1−dimL−�−2dimL−2�−· · · � �

On the other hand we have

trM �adh′��= trM �ad e� ad e−�−ad e−� ad e��=0�

Thus

��h′�� �1−dimL−�−2dimL−2�−· · · �=0�

Now ��h′��=�h′��h′�� 	=0 by Proposition 4.19. Thus

1−dimL−�−2dimL−2�−· · ·=0�

This implies that dimL−�=1 and dimL−r�=0 for all r≥2. Now �∈� if
and only if −�∈�, by Proposition 4.13. Thus dimL�=1 for all �∈�.

Note that although all the root spaces L� are 1-dimensional the space
H=L0 need not be 1-dimensional.

Proposition 4.21 If �∈� and r�∈� where r ∈� then r=1 or −1.

Proof. This follows from the proof of Theorem 4.20, where we showed that,
for all �∈��−r� 	∈� for all r≥2. This, together with the fact that r�∈�
if and only if −r�∈�, gives the required result.

We shall now obtain some further properties of the set � of roots. Let
���∈� be such that � 	=� and � 	=−�. Then � cannot be an integer multiple
of �, by Proposition 4.21. There exist integers p≥0� q≥0 such that the
elements

−p�+�� � � � �−�+�� ���+�� � � � � q�+�
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all lie in �, but −�p+1��+� and �q+1��+� do not lie in �. The set of
roots

−p�+�� � � � � q�+�
is called the���-chain of roots through �. LetM be the subspace of L defined by

M=L−p�+�⊕· · ·⊕Lq�+��

Then we have ad e�M⊂M . This follows from the fact that ad e�Lr�+�⊂
L�r+1��+� and L�q+1��+�=0 since �q+1��+� 	∈� and �q+1��+� 	=0. Sim-
ilarly we see that ad e−�M⊂M .

We assume that �e�e−��=h′�, as in the proof of Theorem 4.20. Then we
have

adh′�= ad e� ad e−�−ad e−� ad e�

and so adh′��M⊂M . We calculate the trace of adh′� on M in two different
ways. We have

trM �adh′��=
q∑

r=−p
�r�+�� �h′��

since dimLr�+�=1. We also have

trM �adh′��= trM �ad e� ad e−��− trM �ad e−� ad e��=0�

Thus
q∑

r=−p
�r�+�� �h′��=0�

that is (
q�q+1�

2
− p�p+1�

2

)
��h′��+�p+q+1�� �h′��=0�

Since p+q+1 	=0 we obtain

�q−p�
2
�h′��h′��+

〈
h′��h

′
�

〉=0�

that is

2

〈
h′��h

′
�

〉
�h′��h′��

=p−q

since �h′��h′�� 	=0 by Proposition 4.19. Thus we have proved the following
result.
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Proposition 4.22 Let ��� be roots such that � 	=� and � 	=−�. Let
−p�+�� � � � ��� � � � � q�+�

be the �-chain of roots through �. Then

2

〈
h′��h

′
�

〉
�h′��h′��

=p−q�

This result has some useful corollaries. The first gives a strengthening of
the result of Proposition 4.21.

Proposition 4.23 If �∈� and ��∈� where � ∈�, then �=1 or −1.

Proof. Suppose if possible that � 	=±1. We put �= �� and apply Proposi-
tion 4.22. This gives

2�=2

〈
h′��h

′
�

〉
�h′��h′��

=p−q�

Hence 2� ∈�. If � ∈� then �=±1 by Proposition 4.21. Hence � 	∈�. Then
the �-chain of roots through � is

−
(
p+q
2

)
�� � � � ��=

(p−q
2

)
�� � � � �

(
p+q
2

)
��

Now p�q are not both 0 since � 	=0. So all the roots in the �-chain are odd
multiples of 1

2�. Since the first and the last are negatives of one another
and consecutive roots differ by � it is clear that 1

2� lies in the chain. Hence
1
2�∈�. Since �∈� we have a contradiction to Proposition 4.21. Hence �

must be 1 or −1.
Thus the only roots which are scalar multiples of a root � are � and −�.

Proposition 4.24
〈
h′��h

′
�

〉∈� for all ���∈�.

Proof. We know from the outset that
〈
h′��h

′
�

〉∈�. Now we have

2

〈
h′��h

′
�

〉
�h′��h′��

∈� by Proposition 4�22�

Thus

〈
h′��h

′
�

〉
�h′��h′��

∈�. It will therefore be sufficient to show that �h′��h′��∈�.

Now we have

�h′�� h′��= tr �adh′� adh′��=
∑
�∈�

���h′���
2=∑

�∈�

〈
h′��h

′
�

〉2
�
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If follows that

1

�h′��h′��
=∑

�∈�

( 〈
h′��h

′
�

〉
�h′��h′��

)2

∈��

Hence �h′��h′��∈� and the result is proved.

4.4 The Lie algebra ��n���

We shall now illustrate the general results about the Cartan decomposition of
a semisimple Lie algebra by considering in detail the Lie algebra ��n���. The
special linear Lie algebra ��n��� is the Lie algebra of all n×n matrices of
trace 0 under Lie multiplication �AB�=AB−BA. ��n��� is a subalgebra of
��n���= �Mn����. We have

dim ��n���=n2� dim ��n���=n2−1�

We shall assume n≥2. Then ��n��� has a basis

E11−E22� E22−E33� � � � � En−1�n−1−Enn� Eij i 	= j
where the Eij are elementary matrices.

Theorem 4.25 ��n��� is a simple Lie algebra.

Proof. We have ��n���=��n���⊕�In. Now every ideal of ��n��� is an
ideal of ��n���. For �I���n����⊂ I implies �I���n����⊂ I since �x� In�=0
for all x∈ I . It will therefore be sufficient to show that the only non-zero ideal
of ��n��� contained in ��n��� is equal to ��n���.
Let I be a non-zero ideal of ��n��� contained in ��n���. Let x∈ I with

x 	=0. Then

x=∑xpqEpq with xpq ∈��
Not all xpq are zero.
Suppose first that there exist i 	= j with xij 	=0. Then[

Eii�
∑

xpqEpq

]=∑
q

xiqEiq−
∑
p

xpiEpi ∈ I�

Also [
�Eii� x� �Ejj

]=xijEij+xjiEji ∈ I�
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Hence [
Eii−Ejj� xijEij+xjiEji

]=2xijEij−2xjiEji ∈ I�
Thus 4xijEij ∈ I . Since xij 	=0 we have Eij ∈ I .
Now suppose that xij=0 for all i 	= j. Then x=∑xppEpp. Since

∑
xpp=0

and not all xpp=0 the xpp are not all equal. Suppose xii 	=xjj . Then[
x�Eij

]= (xii−xjj)Eij ∈ I
and so Eij ∈ I .
Thus in either case there exist i 	= j with Eij ∈ I . Let q 	= i� j. Then[

Eij�Ejq

]=Eiq ∈ I�
Thus Eiq ∈ I for all q 	= i. Now let p 	= i� q. Then[

Epi�Eiq

]=Epq ∈ I�
Hence Epq ∈ I for all p 	=q. Also[

Epq�Eqp

]=Epp−Eqq ∈ I for all p 	=q�
But the Epp−Eqq for p 	=q and the Epq for p 	=q generate ��n���. Thus
I=��n��� and ��n��� is simple.

We next determine a Cartan subalgebra of ��n���. We write L=��n���.

Proposition 4.26 Let H be the set of diagonal matrices in L. Then dimH=
n−1 and H is a Cartan subalgebra of L.

Proof. The vector space of diagonal n×n matrices of trace 0 clearly has
dimension n−1. It is a subalgebraH of L with �HH�=O. ThusH is nilpotent.
To show H is a Cartan subalgebra we must show H=N�H�.
Let

∑
i�j �ijEij lie in N�H�. Suppose if possible that �ij 	=0 for some i 	= j.

We have [∑
k

�kEkk�
∑
i�j

�ijEij

]
∈H

for all
∑

k �kEkk ∈H . The coefficient of Eij in this matrix is
(
�i−�j

)
�ij .

Thus if we choose �i� j� such that i 	= j and �ij 	=0 and choose
∑

k �kEkk ∈H
with �i 	=�j we obtain a contradiction. Hence �ij=0 for all i 	= j. Thus
N�H�=H and H is a Cartan subalgebra of L.

We next obtain the Cartan decomposition of L with respect to H .
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Proposition 4.27 Let H be the subalgebra of diagonal matrices in L. Then
the Cartan decomposition of L with respect to H is

L=H⊕∑
i 	=j

�Eij�

Proof. This is certainly a decomposition of L into a direct sum of sub-
spaces. To show it is a Cartan decomposition it is sufficient to verify that
the 1-dimensional subspaces �Eij for i 	= j are H-submodules of L. Now we
have [

n∑
k=1

�kEkk�Eij

]
= (�i−�j

)
Eij

and so �Eij is indeed an H-submodule.

We next obtain the roots of L with respect to H .

Proposition 4.28 The roots of L with respect to H are the functions H→�
given by ⎛⎜⎜⎜⎜⎜⎜⎜⎝

�1 O

·
·
·

O ·
�n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
→�i−�j i 	= j�

Proof. This follows from the Cartan decomposition given in Proposition 4.27.

We next calculate the value of the Killing form �x� y� when x� y∈H .

Proposition 4.29 Let x=∑n
i=1 �iEii� y=

∑n
i=1�iEii lie in H . Then �x� y�=

2n tr�xy�.

Proof. We have

�x� y�= tr�ad x ad y�=∑
i�j
i 	=j

(
�i−�j

) (
�i−�j

)
since ad x ad yEij=

(
�i−�j

) (
�i−�j

)
Eij for i 	= j, and ad x ad y H=O.
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Hence

�x� y�=∑
i�j

(
�i−�j

) (
�i−�j

)
=∑

i�j

�i�i+
∑
i�j

�j�j−
∑
i�j

�i�j−
∑
i�j

�j�i

=2n tr�xy�−
(∑

i

�i

)(∑
j

�j

)
−
(∑

j

�j

)(∑
i

�i

)
=2n tr�xy�� since

∑
i

�i=
∑
i

�i=0�

We may use this knowledge of the Killing form of L restricted to H to
determine the elements h′� ∈H corresponding to the roots �∈�.

Proposition 4.30 Let �ij ∈� satisfy

�ij

⎛⎜⎜⎜⎜⎜⎝
�1

· O

·
O ·

�n

⎞⎟⎟⎟⎟⎟⎠=�i−�j i 	= j�

Then h′�ij =
1
2n

(
Eii−Ejj

)
.

Proof. Let x=∑n
k=1 �kEkk ∈H . Then we have〈

1
2n

(
Eii−Ejj

)
� x

〉
= 2n tr

(
1
2n

(
Eii−Ejj

)
x

)
= �i−�j=�ij�x�� by Proposition 4�29�

However, h′�ij ∈H is uniquely determined by the condition
〈
h′�ij � x

〉
=�ij�x�

for all x∈H . Hence h′�ij =
1
2n

(
Eii−Ejj

)
.
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The root system and the Weyl group

5.1 Positive systems and fundamental systems of roots

As before, let L be a semisimple Lie algebra and H be a Cartan subalgebra.
Let � be the set of roots of L with respect to H . We know by Proposition 4.17
that the elements h′���∈�, span H . Thus we can find a subset which forms
a basis of H . Let h′�1

�� � � � h′�l form a basis of H .

Proposition 5.1 Let �∈�. Then h′�=
∑l

i=1�ih
′
�i
where each �i lies in �.

Proof. We know that h′�=
∑l

i=1�ih
′
�i

for uniquely determined elements

�i ∈�. Let
〈
h′�i � h

′
�j

〉
=�ij . Then �ij ∈� by Proposition 4.24. We consider the

system of equations:〈
h′��h

′
�1

〉=�1�11+�2�21+· · ·+�l�l1〈
h′��h

′
�2

〉=�1�12+�2�22+· · ·+�l�l2
���〈

h′��h
′
�l

〉=�1�1l+�2�2l+· · ·+�l�ll�

This is a system of l equations in l variables �1� � � � ��l. Now det
(
�ij
) 	=0

since the Killing form on L is non-degenerate on restriction to H , by Propo-
sition 4.14. Thus we may solve this system of equations for �1� � � � ��l by
Cramer’s rule. Since

〈
h′��h

′
�i

〉∈� and all �ij ∈� we deduce that �i ∈� for
i=1� � � � � l.

We denote by H� the set of all elements of form
∑l

i=1�ih
′
�i

for �i ∈� and
H� the set of all such elements with �i ∈�. Proposition 5.1 shows that H�

and H� are independent of the choice of basis h′�i . Also H� is the set of all

56
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rational linear combinations of the h′���∈�, and H� is the set of all real
linear combinations of such elements.
We show next that the Killing form of L behaves in a favourable manner

when restricted to H�.

Proposition 5.2 Let x∈H�. Then �x�x�∈� and �x�x�≥0. If �x�x�=0 then
x=0.

Proof. Let x=∑l
i=1�ih

′
�i
. Then we have

�x�x� =
l∑

i=1

l∑
j=1

�i�j

〈
h′�i � h

′
�j

〉
=∑

i

∑
j

�i�j tr
(
adh′�i adh

′
�j

)
=∑

i

∑
j

�i�j

∑
�∈�

�
(
h′�i

)
�
(
h′�j

)
=∑

�∈�

∑
i

∑
j

�i�j�
(
h′�i

)
�
(
h′�j

)

=∑
�∈�

(∑
i

�i�
(
h′�i

))2

�

Now �
(
h′�i

)= 〈h′��h′�i 〉∈� by Proposition 4.24. Thus we have �x�x�∈�,
and also �x�x�≥0.
Suppose that �x�x�=0. Then we have

∑
i �i�

(
h′�i

)=0 for all �∈�. In

particular
∑

i �i�j

(
h′�i

)=0 for j=1� � � � � l. This gives
∑

i �i

〈
h′�i � h

′
�j

〉
=0,

that is
∑

i �i�ij=0. Since the matrix
(
�ij
)
is non-singular we deduce that

�i=0 for all i. Thus x=0.

This proposition shows that the Killing form restricted to H� is a map
H�×H�→� which is a symmetric positive definite bilinear form. The vec-
tor space H� endowed with this positive definite form is a Euclidean space.
This Euclidean space contains all vectors h′� for �∈�.
We recall from Lemma 4.16 that we have an isomorphism h→h∗ from H

to H∗ given by h∗�x�=�h�x�. We define H∗� to be the image of H� under
this isomorphism. H∗� is the real subspace of H∗ spanned by �. We may also
define a symmetric positive definite bilinear form on H∗� by

�h∗1� h∗2�=�h1� h2�∈��
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Thus H∗� becomes a Euclidean space containing all the roots �∈�. We shall
investigate the configuration formed by the roots in the Euclidean space H∗�.
We shall, for the time being, write V =H∗�.
A total ordering on V is a relation< on V satisfying the following axioms.

(i) �<� and �<� implies �<�.
(ii) For each pair of elements ���∈V just one of the conditions �<��

�=���<� holds.
(iii) If �<� then �+�<�+�.
(iv) If �<� and �∈� with �>0 then ��<��, and if �<0 then ��<��.

Every real vector space has such total orderings. If v1� � � � � vl are a basis of V
and �=∑�ivi��=

∑
�ivi with � 	=� then we may define �<� if the first

non-zero coefficient �i−�i is positive. This gives us a total ordering on V .
A positive system �+⊂� is the set of all roots �∈� satisfying 0<�

for some total ordering on V . Given such a positive system �+ we define
the fundamental system �⊂�+ as follows: �∈� if and only if �∈�+
and � cannot be expressed as the sum of two elements of �+. �− is the
corresponding set of negative roots.

Proposition 5.3 Every root in �+ is a sum of roots in �.

Proof. Let �∈�+. Then either �∈� or �=�+� where ���∈�+ and
�<���<�. We continue this process, which must eventually terminate since
�+ is finite. Thus � is a sum of elements of �.

Proposition 5.4 Let ���∈� with � 	=�. Then �����≤0.

Proof. We first observe that �−���. For if �−�∈� we would have either
�−�∈�+ or �−�∈�+. If �−�∈�+ then �= ��−��+� which contra-
dicts�∈�. If�−�∈�+ then�= ��−��+�which contradicts�∈�. Hence
�−� 	∈�. We now consider the �-chain of roots through �. This has form

���+�� � � � � q�+�
since −�+���. By Proposition 4.22 we deduce

2

〈
h′��h

′
�

〉
�h′��h′��

=−q�

However, �h′��h′��>0, hence
〈
h′��h

′
�

〉≤0. It follows that �����≤0.

Thus any two distinct roots in the fundamental system � are inclined at an
obtuse angle.



5.2 The Weyl group 59

Our next result shows the importance of the concept of a fundamental
system of roots.

Theorem 5.5 A fundamental system � forms a basis of V =H∗�.

Proof. We first show that � spans V . We know by Proposition 4.17 that
� spans V . Since �∈� if and only if −�∈� we see that �+ spans V . By
Proposition 5.3 we deduce that � spans V .
We show now that the set � is linearly independent. Suppose this were

false. Then there would exist a non-trivial linear combination of the roots
�i ∈� equal to zero. We take all the terms with positive coefficient to one
side of this relation. Thus we have

�i1
�i1
+· · ·+�ir

�ir
=�j1

�j1
+· · ·+�js

�js

where �i1
� � � � ��ir

��j1
� � � � ��js

>0 and �i1
� � � � ��ir

��j1
� � � � ��js

are distinct
elements of �. We write

v=�i1
�i1
+· · ·+�ir

�ir
=�j1

�j1
+· · ·+�js

�js
�

Then we have�v� v�= 〈�i1
�i1
+· · ·+�ir

�ir
��j1

�j1
+· · ·+�js

�js

〉
. We deduce

�v� v�≤0 by Proposition 5.4. Since the form is positive definite this implies
that v=0. However, 0<v since we have 0<�i for all �i ∈� and �i >0.
This gives a contradiction. Thus � is linearly independent.

We see in particular that ���= l=dimH . Thus the number of roots in a
fundamental system is equal to the rank of the Lie algebra L.

Corollary 5.6 Let � be a fundamental system of roots. Then each �∈� can
be expressed in the form �=∑ni�i where �i ∈��ni ∈� and either ni≥0
for all i or ni≤0 for all i.

Proof. The roots �∈�+ have all ni≥0 and the roots �∈�− have all ni≤0.

5.2 The Weyl group

Inside the root system� a positive system�+ can be chosen in many different
ways. However, we shall show that any two positive systems in � can be
transformed into one another by an element of a certain finite group W which
acts on �.
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For each �∈� we define a linear map s� � V→V by

s��x�=x−2
���x�
������ for all x∈V�

As before, V =H∗�. This map s� satisfies

s����=−�
s��x�= x if ���x�=0�

There is a unique linear map satisfying these conditions – the reflection in
the hyperplane of V orthogonal to �. Thus s� is this reflection.

The group W of all non-singular linear maps on V generated by the s� for
all �∈� is called the Weyl group. This group plays an important role in the
Lie theory. It is a group of isometries of V , that is we have

�wx�wy�=�x� y� for all x� y∈V�

Proposition 5.7 W permutes the roots. Thus if �∈� and w∈W then w���∈
�.

Proof. It is sufficient to show that s����∈� for all ���∈� since the
elements s� generate W . If �=� or −� this is clear. Thus suppose � 	=±�.
Let the �-chain of roots through � be

−p�+�� � � � ��� � � � � q�+��
Then we have

s����=�−2
�����
������=�−�p−q��

by Proposition 4.22. Now �−�p−q�� is one of the roots in the �-chain
through �. Thus s����∈�.

In fact we observe that s� inverts the above �-chain of roots. In particular
we have

s��q�+��=−p�+�� s��−p�+��=q�+��

Proposition 5.8 The Weyl group W is finite.

Proof. W permutes � and � is finite. If two elements of W induce the same
permutation of � they must be equal, since � spans V . Since there are only
finitely many permutations of �, W must be finite.
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Now suppose that �+ is a positive system in � and that � is the corre-
sponding fundamental system.

Lemma 5.9 Let �∈�. If �∈�+ and � 	=� then s����∈�+.

Proof. We can express � in the form

�=∑
i

ni�i �i ∈�� ni ∈�� ni≥0

by Corollary 5.6. Since � 	=� there must be some ni 	=0 with �i 	=�. We
then consider

s����=�−2
�����
������

and express this as a linear combination of the elements of �. The coefficient
of �i in s���� remains ni. Since ni >0 we deduce from Corollary 5.6 that
s����∈�+.

Theorem 5.10 Let �+1 , �
+
2 be two positive systems in �. Then there exists

w∈W such that w
(
�+1

)=�+2 .
Proof. Let m=��+1 ∩�−2 �. We shall use induction on m. If m=0 we have
�+1 =�+2 and so w=1 has the required property. Thus we may assume m>0.

Let �1 be the fundamental system in �+1 . We cannot have �1⊂�+2 as this
would imply �+1 ⊂�+2 , contrary to m>0. Thus there exists �∈�1∩�−2 .

We consider s�
(
�+1

)
. This is also a positive system in �. By Lemma 5.9

s�
(
�+1

)
contains all roots in �+1 except �, together with −�. Thus we have∣∣s� (�+1 )∩�−2 ∣∣=m−1�

By induction there exists w′ ∈W such that w′s�
(
�+1

)=�+2 . Let w=w′s�.
Then w

(
�+1

)=�+2 as required.

Corollary 5.11 Let �1��2 be two fundamental systems in �. Then there
exists w∈W such that w��1�=�2.

Proof. Let �+1 ��
+
2 be positive systems containing �1��2 respectively. Let

�+2 =w
(
�+1

)
. Then w��1� is a fundamental system contained in �+2 , so

w��1�=�2.

Proposition 5.12 Let � be a fundamental system in �. Then for each �∈�
there exist �i ∈� and w∈W with �=w��i�.
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Proof. Let �+ be the positive system with fundamental system �. First
suppose �∈�+. Then we have

�=∑
i

ni�i �i ∈�� ni ∈�� ni≥0

by Corollary 5.6. We define the height of � by

ht�=∑
i

ni�

We shall argue by induction on ht�. If ht�=1 then �=�i for some i and
�∈�. The result is obvious in this case. Thus suppose ht�>1. Then we
have ni >0 for at least two values of i by Proposition 4.21. Now

�����=∑
i

ni����i��

Since �����>0 and each ni≥0 there exist �i ∈� with ����i�>0. Let
si���=�. Then �∈� and

�=�−2
��i���
��i��i�

�i�

Since ��i���>0 we see that ht�<ht�. On the other hand �∈�+ since
only one coefficient ni is changed in passing from � to �, thus at least one
coefficient remains positive in �. By Corollary 5.6 this is sufficient to show
that �∈�+. By induction there exist �j ∈� and w′ ∈W such that �=w′ (�j

)
.

Then

�= si���= siw′
(
�j

)
as required.
Finally we suppose that �∈�−. Then �= s��−�� and −�∈�+. Thus
−�=w′ ��i� for some w′ ∈W , �i ∈�. Hence �= s�w′ ��i� as required.

Thus each root is the image of some fundamental root under an element of
the Weyl group.
We show next that W is generated by the reflections corresponding to roots

in a given fundamental system.

Theorem 5.13 Let �= 
�1� � � � ��l� be a fundamental system in �. Then the
corresponding fundamental reflections s�1

� � � � � s�l generate W .

Proof. Let W0 be the subgroup of W generated by s�1
� � � � � s�l . Since the

s� generate W for all �∈� it is sufficient to show that each s� lies in W0.
We may assume �∈�+ since s�= s−�. Now the proof of Proposition 5.12
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shows that �=w��i� for some �i ∈� and some w∈W0. We consider the
element ws�iw

−1 ∈W0. We have

ws�iw
−1���=ws�i ��i�=w�−�i�=−��

We shall also show ws�iw
−1�x�=x if ���x�=0. For ���x�=0 implies

�w−1����w−1�x��=0, that is ��i�w
−1�x��=0. This gives s�iw

−1�x�=
w−1�x�, i.e. ws�iw

−1�x�=x. Thus ws�iw
−1 is the reflection in the hyper-

plane orthogonal to �, that is ws�iw
−1= s�. This shows that s� ∈W0. Hence

W0=W .

We now wish to obtain further information about the way in which the
Weyl group W is generated by a set of its fundamental reflections. As before
we let �= 
�1� � � � ��l� be a fundamental system of roots and consider the
corresponding set of fundamental reflections. For simplicity we write

s1= s�1
� s2= s�2

� � � � � sl= s�l �

Then each element of W can be expressed as a product of elements si. (We
do not need to introduce inverses since s−1i = si.) For each w∈W we define
l�w� to be the minimal value of m such that w can be expressed as a product
of m fundamental reflections si. l�w� is called the length of w. It is clear
that l�1�=0 and l �si�=1. An expression of w as a product of fundamental
reflections si with l�w� terms is called a reduced expression for w.
We shall relate l�w� to another integer n�w�. We recall that each element

w∈W permutes the elements of �. We define n�w� to be the number of
roots �∈�+ for which w���∈�−. Thus n�w� is the number of positive roots
made negative by w. We aim to show that l�w�=n�w�.

Proposition 5.14 n�w�≤ l�w� for all w∈W .

Proof. We shall first compare n�w� with n�wsi�. We recall from Lemma 5.9
that si transforms �i to −�i and all positive roots other than �i to positive
roots. It follows that

n�wsi�=n�w�±1�

In order to determine the sign we consider the effect of w and wsi on �i. If
w��i�∈�+ then w transforms �i to a positive root and wsi transforms �i to
a negative root. Hence n�wsi�=n�w�+1. On the other hand if w��i�∈�−
then we get the reverse situation and n�wsi�=n�w�−1.
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Now let us take a reduced expression

w= si1si2 � � � sir r= l�w��
Then we have

n�w�≤n (si1 � � � sir−1)+1≤n (si1 � � � sir−2)+2≤· · ·≤ r�
Thus n�w�≤ l�w� as required.
In order to prove the converse result l�w�≤n�w� we shall first prove a

result called the deletion condition which is important in its own right.

Theorem 5.15 Let w= si1 � � � sir be any expression of w∈W as a product of
fundamental reflections. Suppose n�w�<r . Then there exist integers j, k with
1≤ j<k≤ r such that

w= si1 � � � ŝij � � � ŝik � � � sir
where ˆ denotes omission.

Proof. We recall from the proof of Proposition 5.14 that, for all w∈W�

n�wsi�=n�w�±1. Consider the given expression

w= si1 � � � sir �
Since n�w�<r there exists k with 1<k≤ r such that

n
(
si1 � � � sik

)=n (si1 � � � sik−1)−1�

This implies si1 � � � sik−1
(
�ik

)∈�− as in the proof of Proposition 5.14. Since
�ik
∈�+ there exists j with 1≤ j<k such that

sij+1 � � � sik−1
(
�ik

)∈�+
sij sij+1 � � � sik−1

(
�ik

)∈�−�
By Lemma 5.9 sij transforms only one positive root into a negative root,
namely �ij

. Thus we have

sij+1 � � � sik−1
(
�ik

)=�ij
�

It follows that the reflections sik , sij associated with the roots �ik
, �ij

are
related by

sij = sij+1 � � � sik−1sik sik−1 � � � sij+1 �
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This implies

sij sij+1 � � � sik−1 = sij+1 � � � sik−1sik �
Thus we have

si1 � � � sir = si1 � � � sij−1sij+1 � � � sik−1sik+1 � � � sir
and so w= si1 � � � ŝij � � � ŝik � � � sir as required.

Corollary 5.16 n�w�= l�w�.

Proof. We know from Proposition 5.14 that n�w�≤ l�w�. Suppose if possible
that n�w�<l�w�. Let w= si1 � � � sir be a reduced expression, thus r= l�w�.
Since n�w�<r we may apply Theorem 5.15 to show that w is a product of
r−2 fundamental reflections. This contradicts the definition of l�w�.

Thus the length of w is equal to the number of positive roots made nega-
tive by w.

Proposition 5.17 (a) The maximal length of any element of W is ��+�.
(b) W has a unique element w0 with l �w0�=��+�.
(c) w0 ��

+�=�−
(d) w2

0=1.

Proof. Since l�w�=n�w� we have l�w�≤��+�. For each fundamental system
�⊂��−� is also a fundamental system, coming from the opposite total
ordering. Thus by Corollary 5.11 there exists w0 ∈W with w0���=−�.
Hence w0 ��

+�=�− and n�w0�=��+�. Thus l �w0�=��+� also and w0 is
an element of W of maximal length.
Now let w′0 ∈W also have l �w′0�=��+�. Then n�w′0�=��+� and so

w′0 ��
+�=�−. Let w= �w′0�−1w0. Then w��+�=�+ and so n�w�=0.

Hence l�w�=0 and so w=1. Thus w′0=w0 and the element w0 of maximal
length is unique.
Finally we have w2

0 ��
+�=�+ and so n

(
w2

0

)=0. Hence l
(
w2

0

)=0 and
w2

0=1.

5.3 Generators and relations for the Weyl group

In this section we shall give a description of the Weyl group W by means of
generators and relations. Let the order of the element sisj ∈W be mij when
i 	= j.
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Theorem 5.18 W is isomorphic to the abstract group given by generators
and relations: 〈

s1� � � � � sl  s
2
i =1�

(
sisj

)mij =1 for i 	= j〉 �
A group defined by generators and relations of this form is called a Coxeter

group. Thus the theorem asserts that the Weyl group is a Coxeter group.

Proof. Since W is generated by s1� � � � � sl and the relations s2i =1 and(
sisj

)mij =1 hold in W it is sufficient to show that every relation

si1 � � � sir =1

in W is a consequence of the defining relations. Now each si is a reflection,
thus det si=−1. Hence det

(
si1 � � � sir

)= �−1�r . If si1 � � � sir =1 we deduce that
r must be even. Let r=2q. We shall show that

si1 � � � si2q =1

is a consequence of the defining relations, by induction on q. If q=1 the
relation is si1si2 =1, hence si2 = s−1i1

= si1 . Our relation is thus s2i1 =1, which is
one of the defining relations.
We may therefore assume inductively that all relations in W of length less

than 2q are consequences of the defining relations.
Now the given relation can be written

si1 � � � siq siq+1 = si2q � � � siq+2 �

Thus l
(
si1 � � � siq siq+1

)
<q+1. Hence, by the deletion condition Theorem 5.15,

we have

si1 � � � siq+1 = si1 � � � ŝij � � � ŝik � � � siq+1
for certain j� k with 1≤ j<k≤q+1. Now unless j=1 and k=q+1 this is
a consequence of a relation with fewer than 2q terms. It can therefore be
deduced from the defining relations. The relation

si1 � � � ŝij � � � ŝik � � � siq+1 = si2q � � � siq+2
has 2q−2 terms, so is also a consequence of the defining relations. Thus the
given relation

si1 � � � siq+1 = si2q � � � siq+2
will be a consequence of the defining relations, unless we have j=1 and
k=q+1.
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We may therefore assume that j=1 and k=q+1. Thus we have

si1 � � � siq+1 = si2 � � � siq �
that is

si1 � � � siq = si2 � � � siq+1 �
We now write the original relation

si1 � � � si2q =1

in the alternative form

si2 � � � si2q si1 =1�

In exactly the same way this relation will be a consequence of the defining
relations unless

si2 � � � siq+1 = si3 � � � siq+2 �
If this relation is a consequence of the defining relations then the relation

si2 � � � si2q si1 =1

will also be a consequence of the defining relations, by the above argument,
and we are done.
Now si2 � � � siq+1 = si3 � � � siq+2 is equivalent to

si3si2si3 � � � siq siq+1siq+2siq+1 � � � si4 =1

and this will be a consequence of the defining relations unless

si3si2si3 � � � siq = si2si3 � � � siq siq+1 �
We may therefore assume this to be true. But we also have

si1si2si3 � � � siq = si2si3 � � � siq siq+1
and so si1 = si3 . Hence the given relation

si1 � � � si2q =1

will be a consequence of the defining relations unless si1 = si3 .
However, the given relation can be written in the equivalent forms

si2 � � � si2q si1 =1

si3 � � � si2q si1si2 =1
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and so on. Thus this relation will be a consequence of the defining relations
unless we have

si1 = si3 = si5 = � � �= si2q−1
si2 = si4 = si6 = � � �= si2q �

Thus we may assume that the given relation has form

si1si2si1si2 � � � si1si2 =1

that is
(
si1si2

)q=1. Now the order of si1si2 is mi1i2
, hence mi1i2

divides q.
Thus the relation

(
si1si2

)q=1 is a consequence of the defining relation(
si1si2

)mi1 i2 =1. This completes the proof.

This remarkable proof, due to R. Steinberg, shows that the Weyl group W

is a finite Coxeter group.



6
The Cartan matrix and the Dynkin diagram

6.1 The Cartan matrix

We shall now investigate in more detail the geometry of the system of roots
� in the vector space V =H∗�. We recall from Proposition 5.2 that V is a
Euclidean space with respect to the scalar product �� �. The roots � span V

but are not linearly independent. Any fundamental system �⊂� forms a
basis of V .
We first consider the possible angles between pairs of roots ���∈� and

the relative lengths of the roots ���. The angles will be taken to satisfy
0≤�≤�.

Proposition 6.1 Let ���∈� be such that � 	=±�. Then:
(i) the angle between ��� is one of �/6��/4��/3��/2�2�/3�3�/4�5�/6
(ii) if ��� are inclined at �/3 or 2�/3 then ��� have the same length

(iii) if ��� are inclined at �/4 or 3�/4 then the ratio of their lengths is
√
2

(iv) if ��� are inclined at �/6 or 5�/6 then the ratio of their lengths is
√
3.

Proof. Let � be the angle between ���. Then we have

�����= ��� ��� cos�
where ���=√�����. Hence

cos2�= �����2
���������� =

�����
����� ·

�����
�����

and so

4 cos2�=2
�����
����� ·2

�����
����� �

69
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Now we recall from Proposition 4.22 that 2 ���������� and 2
�����
����� are integers. Hence

4 cos2 �∈�. Since 0≤4cos2 �≤4 and � 	=±� we have 4 cos2 �∈ 
0�1�2�3�.
We consider in each case the possible factorisations of 4 cos2 � into the product
of two integers.
First suppose 4 cos2 �=0. Then �=�/2.
Next suppose 4 cos2 �=1. Then cos�= 1

2
or −1

2
, hence �=�/3 or 2�/3.

The possible factorisations of 4 cos2 � are

1=1 ·1 or 1=−1 ·−1�
In either case we have

2
�����
����� =2

�����
�����

and so �����=����� and ��� have the same length.
Next suppose 4 cos2�=2. Then cos�=1/

√
2 or −1/√2, thus �=�/4 or

3�/4. The possible factorisations of 4 cos2 � are

2=1 ·2 or 2=−1 ·−2�
In either case, by choosing ��� in a suitable order, we have

2
�����
����� =2 ·2���������� �

that is �����=2����� and ���=√2���. Thus the ratio of the lengths of ���
is
√
2.

Finally suppose that 4 cos2 �=3. Then cos�=√3/2 or −√3/2, so �=�/6
or 5�/6. The possible factorisations of 4 cos2 � are

3=1 ·3 or 3=−1 ·−3
In either case, by choosing ��� in a suitable order, we have

2
�����
����� =3 ·2���������� �

that is �����=3����� and ���=√3���. Thus the ratio of the lengths of ���
is
√
3.

This completes the proof. We do not obtain any information about the
relative lengths of ��� in the case when �=�/2.

Corollary 6.2 Let � be a fundamental system of roots and let ���∈� with
� 	=�. Then the angle between ��� is one of �/2�2�/3�3�/4�5�/6.
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Proof. This follows from Proposition 6.1 together with the fact, proved
in Proposition 5.4, that the angle � between two distinct fundamental roots
satisfies �/2≤�<�.

Let �= 
�1� � � � ��l� be a fundamental system. We incorporate the infor-
mation about the angles between the �i and their relative lengths in the form
of a matrix. We define Aij by

Aij=2
��i��j�
��i��i�

i� j=1� � � � � l�

Thus Aij ∈�. The l× l matrix A= (Aij

)
is called the Cartan matrix.

Proposition 6.3 The Cartan matrix A has the following properties.

(i) Aii=2 for all i.

(ii) Aij ∈ 
0�−1�−2�−3� if i 	= j.
(iii) If Aij=−2 or −3 then Aji=−1.
(iv) Aij=0 if and only if Aji=0.

Proof. Properties (i), (iv) are obvious and (ii), (iii) follow from the proof of
Proposition 6.1.

If we number the fundamental roots in � in a different way we may
well get a different Cartan matrix A. However, apart from this ambiguity of
numbering, the Cartan matrix A is uniquely determined by the semisimple
Lie algebra L.

Proposition 6.4 The Cartan matrix of L depends only on the numbering of
the fundamental roots. It is independent of the choice of Cartan subalgebra
H and fundamental system �.

Proof. The independence of the choice of Cartan subalgebra follows from
the conjugacy of Cartan subalgebras, proved in Theorem 3.13.

Let �′ be a second fundamental system. By Corollary 5.11 there exists
w∈W with w���=�′. Let w��i�=�′i. Since w is an isometry of V we have

2

〈
�i��j

〉
��i��i�

=2

〈
�′i� �

′
j

〉
��′i� �′i�

Thus the Cartan matrices defined by � and �′ with respect to these labellings
are the same.
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The only possible 1×1 Cartan matrix is (2). We also see that any 2×2
Cartan matrix must be one of the following:(

2 0
0 2

) (
2 −1
−1 2

) (
2 −1
−2 2

) (
2 −2
−1 2

) (
2 −1
−3 2

) (
2 −3
−1 2

)

The pair (
2 −1
−2 2

) (
2 −2
−1 2

)
are obtained from one another by reversing the labelling 1, 2, and so are the
pair (

2 −1
−3 2

) (
2 −3
−1 2

)

6.2 The Dynkin diagram

In order to determine the possible l× l Cartan matrices for larger values of
l it is useful to introduce a graph called the Dynkin diagram. The Dynkin
diagram is determined by the Cartan matrix. It is a graph with vertices labelled
1� � � � � l. If i 	= j the vertices i� j are joined by nij edges, where

nij=AijAji�

We see from Proposition 6.4 that the Dynkin diagram is uniquely determined
by the semisimple Lie algebra L.
The Dynkin diagrams of the Cartan matrices of degrees 1 and 2 are as

follows.

Cartan matrix Dynkin diagram

(2) �(
2 0

0 2

)
� �(

2 −1
−1 2

)
� �(

2 −1
−2 2

)(
2 −2
−1 2

)
� �(

2 −1
−3 2

)(
2 −3
−1 2

)
� �
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Proposition 6.5 nij ∈ 
0�1�2�3� for all i 	= j.

Proof. This follows from Proposition 6.3 and the fact that nij=AijAji.

Thus the number of edges joining any two distinct vertices of the Dynkin
diagram is either 0, 1, 2 or 3.
Now the Dynkin diagram need not be a connected graph. However, if it is

disconnected it will split into connected components. If we number the vertices
so that those in each connected component are numbered consecutively, the
Cartan matrix will split into blocks of the form

A=

⎛⎜⎜⎜⎝
∗ O O O

O ∗ O O

O O ∗ O

O O O ∗

⎞⎟⎟⎟⎠�

with one diagonal block for each connected component. This diagonal block
will be the Cartan matrix for the given connected component. The set �=

�1� � � � ��l� will be partitioned into subsets in a corresponding way, such
that roots in different subsets are mutually orthogonal.
Now the set of graphs which can occur as Dynkin diagrams of semisimple

Lie algebras turns out to be quite restricted. In order to determine the possible
Dynkin diagrams it is useful to introduce a quadratic form Q �x1� � � � � xl�

which is defined in terms of the Dynkin diagram. We define

Q �x1� � � � � xl�=2
l∑

i=1
x2i −

l∑
i�j=1
i 	=j

√
nij xixj�

We illustrate this definition in the cases l=1�2.

Dynkin diagram Quadratic form

� 2x21
� � 2x21+2x22
� � 2x21−2x1x2+2x22
� � 2x21−2

√
2x1x2+2x22

� � 2x21−2
√
3x1x2+2x22
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Proposition 6.6 The quadratic form Q �x1� � � � � xl� is positive definite.

Proof. We have, for i 	= j,

nij=AijAji=2

〈
�i��j

〉
��i��i�

·2
〈
�j��i

〉〈
�j��j

〉
hence −√nij=2

〈
�i��j

〉
��i���j�

since
〈
�i��j

〉≤0. For i= j we have
2
〈
�i��j

〉
��i���j�

=2.

Thus the quadratic form may be written

Q �x1� � � � � xl�=
l∑

i�j=1

2
〈
�i��j

〉
��i���j�

xixj=2

〈
l∑

i=1

xi�i

��i�
�

l∑
j=1

xj�j

��j�

〉

= 2�y� y� where y=
l∑

i=1

xi�i

��i�
�

Thus Q �x1� � � � � xl�≥0. Moreover if Q �x1� � � � � xl�=0 then y=0. Since
�1� � � � ��l are linearly independent this implies that xi=0 for all i. Thus the
quadratic form is positive definite.

Now the connected components of the Dynkin diagram of any semisimple
Lie algebra satisfy the following conditions:

(A) The graph is connected.

(B) Any pair of distinct vertices are joined by 0, 1, 2 or 3 edges.

(C) The corresponding quadratic form Q �x1� � � � � xl� is positive definite.

We shall approach the problem of finding the possible Dynkin diagrams by
determining all graphs satisfying conditions (A), (B), (C). Having determined
all such graphs we shall consider subsequently which ones occur as Dynkin
diagrams.

6.3 Classification of Dynkin diagrams

The main result which we shall obtain in this section is as follows.

Theorem 6.7 The graphs satisfying conditions (A), (B), (C) shown in Section
6.2 are just those in the following list.
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D4 D5 D6

E8

F4

G2

E6 E7

A2A1 A3 A4

B2 B3 B4

A5

B5

Proof. We shall show first that the graphs on this list satisfy conditions
(A), (B), (C). It is obvious that they satisfy (A) and (B). We shall therefore
concentrate on condition (C).
We recall from linear algebra that a quadratic form

∑
aijxixj is positive

definite if and only if all the leading minors of its symmetric matrix
(
aij
)

have positive determinant. This condition is

�a11�>0�

∣∣∣∣a11 a12

a21 a22

∣∣∣∣>0� � � � � det
(
aij
)
>0�

Given a graph � with l vertices on the list in Theorem 6.7 we shall show
that Q �x1� � � � � xl� is positive definite by induction on l. If l=1 then � =A1

and Q �x1�=2x21 is positive definite. If l=2 then � is A2�B2 or G2. The
symmetric matrix representing Q �x1� x2� is then(

2 −1
−1 2

) (
2 −√2
−√2 2

) (
2 −√3
−√3 2

)
A2 B2 G2

In these cases the leading minors have positive determinant.
Now assume l≥3. Then inspection of the list of graphs in Theorem 6.7

shows that � contains at least one vertex which is joined to just one other
vertex of � , and joined to it by a single edge. Let such a vertex be labelled l,
and let the vertex it is joined to be labelled l−1. We write � =�l, and the graph
obtained from �l by removing the vertex l by �l−1, and the graph obtained from
�l−1 by removing the vertex l−1 by �l−2. Let det �l be the determinant of the
symmetric matrix representing the quadratic form Q �x1� � � � � xl� associated
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to �l. We observe from the list of graphs that �l−1 and �l−2 also lie in the list.
Moreover we have

det �l=

∣∣∣∣∣∣∣∣∣∣∣

0
���

0
2 −1

0 � � � 0 −1 2

∣∣∣∣∣∣∣∣∣∣∣
=2det �l−1−det �l−2

by expanding the determinant by its last row. This gives us an inductive way
of calculating det �l. In particular we have

detA1=2� detA2=3� detAl=2detAl−1−detAl−2�

Thus detAl= l+1.

detA1=2� detB2=2� detB3=2� detBl=2detBl−1−detBl−2�

Thus detBl=2.

detA3=4� detD4=4� detD5=4� detDl=2detDl−1−detDl−2�

Thus detDl=4.

detE6 = 2detD5−detA4=3

detE7 = 2detD6−detA5=2

detE8 = 2detD7−detA6=1

detF4 = 2detB3−detA2=1�

Thus we have shown that det �l >0 for all �l
Now the leading minors of the symmetric matrix associated to �l are the

symmetric matrices associated to certain subgraphs of �l. The numbering
can be chosen so that all these subgraphs are connected. However, the list
of graphs has the property that any connected subgraph of a graph on the
list is also on the list. Thus the determinant of every leading minor of the
given symmetric matrix is positive. Hence the quadratic form Q �x1� � � � � xl�

associated to �l is positive definite.

Thus we have shown that the graphs on our list satisfy conditions (A),
(B), (C). We wish to prove the converse, i.e. that any graph satisfying con-
ditions (A), (B), (C) is on our list. Before being able to prove this we shall
need some lemmas.
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Lemma 6.8 For each of the graphs on the following list the corresponding
quadratic form Q �x1� � � � � xl� has determinant 0.

A2

C2

A3

B3

C3

B4

D4 D5 D6

E8E6

F4 G2

E7

B5

C4

A5A4

Proof. First consider the graphs � = Ãl. Each row of the symmetric matrix of
the given quadratic form contains one entry 2, two entries −1, and remaining
entries 0. Thus the sum of the columns is zero and det Ãl=0.
In all the other graphs � on the list we can find a vertex l joined to just one

other vertex l−1. Moreover l is joined to l−1 by a single edge or a double
edge. If there is a single edge we may use the formula

det �l=2det �l−1−det �l−2

as before. If there is a double edge we obtain instead

det �l=2det �l−1−2det �l−2�

We may use these formulae to calculate all the determinants inductively.

det B̃3=2detA3−2 �detA1�
2=0

det B̃l=2detDl−2detDl−1=0 for l≥4

det C̃2=2detB2−2detA1=0

det C̃l=2detBl−2detBl−1=0 for l≥3

det D̃4=2detD4−�detA1�
3=0
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det D̃l=2detDl−detDl−2 ·detA1=0 for l≥5

det Ẽ6=2detE6−detA5=0

det Ẽ7=2detE7−detD6=0

det Ẽ8=2detE8−detE7=0

det F̃4=2detF4−detB3=0

det G̃2=2detG2−detA1=0�

Lemma 6.9 Let � be a graph satisfying conditions (A), (B), (C) and � ′ be
a connected graph obtained from � by omitting vertices or decreasing the
number of edges between vertices or both. Then � ′ satisfies conditions (A),
(B), (C) also.

Proof. � ′ clearly satisfies (A) and (B). We must show it satisfies (C). Let
Q �x1� � � � � xl� be the quadratic form of � and Q′ �x1� � � � � xm� be the quadratic
form of � ′, where m≤ l. We have

Q �x1� � � � � xl�=2
l∑

i=1
x2i −

l∑
i�j=1
i 	=j

√
nijxixj

Q′ �x1� � � � � xm�=2
m∑
i=1

x2i −
m∑

i�j=1
i 	=j

√
n′ijxixj

where n′ij≤nij for i� j∈ 
1� � � � �m�. Suppose if possible that Q′ is not positive
definite. Then there exist y1� � � � � ym ∈�, not all zero, with Q′ �y1� � � � � ym�≤0.
Consider Q ��y1�� � � � � �ym��0� � � � �0�. We have

Q ��y1�� � � � � �ym��0� � � � �0�= 2
m∑
i=1
�yi�2−

m∑
i�j=1
i 	=j

√
nij�yi��yj�

≤ 2
m∑
i=1

y2i −
m∑

i�j=1
i 	=j

√
n′ij�yi��yj�

≤ 2
m∑
i=1

y2i −
m∑

i�j=1
i 	=j

√
n′ijyiyj

= Q′ �y1� � � � � ym�≤0�
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Hence Q ��y1�� � � � � �ym��0� � � � �0�≤0 but ��y1�� � � � � �ym��0� � � � �0� is not the
zero vector. This contradicts the fact that Q �x1� � � � � xl� is positive definite.
Hence Q′ �x1� � � � � xm� must be positive definite also.

Having Lemmas 6.8 and 6.9 at our disposal we are now able to complete
the proof of Theorem 6.7.
Let � be a graph satisfying conditions (A), (B), (C). Then, by Lemmas 6.8

and 6.9, � can have no subgraph of type Ãl� B̃l� C̃l� D̃l� Ẽ6� Ẽ7� Ẽ8� F̃4 or G̃2.
(By a subgraph of � we mean a graph obtainable from � by removing vertices,
or removing edges, or both.) We shall use this information to show that �
must be one of the graphs on the list in Theorem 6.7.
In the first place we see that � contains no cycles, otherwise it would

contain a subgraph of type Ãl for some l≥2.
Suppose that � contains a triple edge. Then � must be the graph G2,

otherwise � would contain a subgraph G̃2.
Thus we may assume that � contains no triple edge. Suppose � contains

a double edge. Then � cannot have more than one double edge, otherwise
it would contain a subgraph C̃l for some l≥2. Now � cannot contain a
branch point in addition to a double edge, as otherwise it would contain a
subgraph B̃l for some l≥3. Thus � is a chain containing just one double
edge. If the double edge occurs at one end of the chain then � =Bl for some
l≥2. If not then we must have � =F4, since otherwise � would contain a
subgraph F̃4.
Thus we may assume that � contains no double or triple edges. If � contains

no branch point then � =Al for some l≥1. Thus we suppose that � contains
at least one branch point. Now � cannot contain more than one branch point,
as otherwise it would contain a subgraph D̃l for some l≥5. Thus � contains
exactly one branch point. There must be exactly three branches emerging
from this branch point, since otherwise � would contain a subgraph D̃4. Let
the number of vertices on the three branches be l1� l2� l3 with l1≥ l2≥ l3. Then
the total number of vertices of � is l= l1+ l2+ l3+1.
Now we must have l3=1, as otherwise we have li≥2 for i=1�2�3 and

� contains a subgraph Ẽ6. If l2=1 then � =Dl for some l≥4. Thus we may
assume l2≥2. In fact we must have l2=2, as otherwise we have l1≥3� l2≥3
and � contains a subgraph Ẽ7. Thus we may assume l3=1� l2=2. We must
have l1≤4 since otherwise � contains a subgraph Ẽ8. Thus � has type E6�E7

or E8.
Thus we have now determined all possibilities for � , and seen that � must

be one of the graphs which appear on the list in Theorem 6.7. This completes
the proof.
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Corollary 6.10 Let � be the Dynkin diagram of a semisimple Lie algebra.
Then each connected component of � must be one of the graphs

Al� l≥1  Bl� l≥2  Dl� l≥ 4  E6  E7  E8  F4  G2�

We shall consider later whether all these graphs actually occur as Dynkin
diagrams.

6.4 Classification of Cartan matrices

We recall that the Dynkin diagram is determined by the Cartan matrix by the
property

nij=AijAji i 	= j�
However, the Cartan matrix is not always uniquely determined by the Dynkin
diagram. If we know the integers nij ∈ 
0�1�2�3� for all i� j with i 	= j we
consider to what extent the Aij are determined. If nij=0 then we must have
Aij=0 and Aji=0 since Aij=0 if and only if Aji=0. If nij=1 then we must
have Aij=−1 and Aji=−1 since Aij ∈��Aji ∈��Aij≤0�Aji≤0. However,
if nij=2 there are two possibilities for the factorisation nij=AijAji. Either
we have 2=−1 ·−2 or 2=−2 ·−1. Thus we have either Aij=−1�Aji=−2
or Aij=−2�Aji=−1. Similarly if nij=3 we have either Aij=−1�Aji=−3
or Aij=−3�Aji=−1.
In the connected graphs in Corollary 6.10 the only ones which give rise

to such an ambiguity are Bl� l≥2  F4 and G2. In these graphs we shall
place an arrow on the double or triple edges. The direction of the arrow is
determined as follows. The arrow points from vertex i to vertex j if and only
if ��i�> ��j�, that is �Aji�> �Aij�.

Thus in the situation

i j

we have ��i�=
√
2��j�� Aij=−1� Aji=−2. In the situation

i j

we have ��i�=
√
3��j�� Aij=−1� Aji=−3. The arrow may thus be

regarded as an inequality sign on the lengths of the fundamental roots at the
vertices.
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The set of possible connected Dynkin diagrams, including arrows, is shown
on the following standard list.

6.11 Standard list of connected Dynkin diagrams

F4

E8E7E6

A1 A2 A3 A4 A5

B2 B4B3 B5

C4C3 C5

D4 D5 D6

G2

We note that, since the diagrams of types B2�F4�G2 are symmetric, it does
not matter in which direction the arrow is drawn in these cases.
The connected components of the Dynkin diagram of any semisimple Lie

algebra must appear on this standard list.
We next obtain a standard list of corresponding Cartan matrices. We say

that two Cartan matrices
(
Aij

)
�
(
A′ij

)
are equivalent if they have the same

degree l and there is a permutation � of 1� � � � � l such that

A′ij=A��i���j��

Equivalent Cartan matrices come from different labellings of the same Dynkin
diagram. For each Dynkin diagram on the standard list 6.11 we choose a
labelling and obtain a corresponding Cartan matrix which is uniquely deter-
mined. These Cartan matrices appear on the following list.
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6.12 Standard list of indecomposable Cartan matrices

Al =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 · ·

· · ·
· · −1
−1 2 −1
−1 2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
l≥1�

Bl =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 · ·
· · ·
· · −1
−1 2 −1
−1 2 −1
−2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
l≥2�

Cl =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 · ·
· · ·
· · −1
−1 2 −1
−1 2 −2
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
l≥3�

Dl =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 · ·
· · ·
· · −1
−1 2 −1
−1 2 −1−1
−1 2 0
−1 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
l≥4�
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E6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1−1
−1 2
−1 2 −1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

E7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 2 −1−1
−1 2
−1 2 −1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

E8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1
−1 2 −1
−1 2 −1
−1 2 −1−1
−1 2
−1 2 −1

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

F4 =

⎛⎜⎜⎝
2 −1
−1 2 −1
−2 2 −1
−1 2

⎞⎟⎟⎠�
G2 =

(
2 −1
−3 2

)
�

A Cartan matrix is called indecomposable if its Dynkin diagram is con-
nected. Any Cartan matrix will determine a set of indecomposable Cartan
matrices, unique up to equivalence, whose Dynkin diagrams are the connected
components of the Dynkin diagram of the given Cartan matrix.
If A is the Cartan matrix of any semisimple Lie algebra, each indecom-

posable component of A will be equivalent to some Cartan matrix from the
above standard list.

Proposition 6.13 If a semisimple Lie algebra L has a connected Dynkin
diagram then L is simple.
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Proof. Let L=H⊕∑�∈� L� be a Cartan decomposition giving rise to the
Dynkin diagram �. Let I be a non-zero ideal of L. We shall show that I=L,
thus proving that L is simple.
We first aim to prove that I∩H 	=O. Suppose if possible that I∩H=O.

Let e� be a non-zero element of L� and choose a non-zero element x∈ I with
x=h+∑

�∈�
��e� h∈H��� ∈�

such that the number of non-zero �� is as small as possible. Since I∩H=O
there exists some �� 	=0. Then we have[

h′�x
]=∑

�∈�
��

[
h′�e�

]=∑
�∈�

���
(
h′�
)
e��

Now by Proposition 4.18 we can choose e� ∈L� and e−� ∈L−� such
that

[
e�e−�

]=h′�. Thus [[h′�x] e−�]=∑�∈� ���
(
h′�
) [
e�e−�

]=���
(
h′�
)
h′�+∑

�∈�
�	=�

���
(
h′�
)
N��−�e�−� where

[
e�e−�

] = N��−�e�−�. Now we have[[
h′�x

]
e−�

]∈ I since x∈ I and
[[
h′�x

]
e−�

] 	=0 since �� 	=0 and �
(
h′�
)=〈

h′��h
′
�

〉 	=0. Moreover the number of non-zero terms coming from the root
spaces L� is less for

[[
h′�x

]
e−�

]
than it was for x. This contradicts the choice

of x. We can therefore deduce that I∩H 	=O.
The next step is to show that I⊃H . Suppose if possible this is not so. Then

O 	= I∩H 	=H�
This implies that there exist �i ∈� and x∈ I∩H such that

〈
h′�i � x

〉 	=0. For if
I∩H were orthogonal to each h′�i it would be orthogonal to the whole of H
and would therefore be O. Then we have[

xe�i
]=�i�x�e�i =

〈
h′�i � x

〉
e�i ∈ I�

Since
〈
h′�i � x

〉 	=0 we deduce that e�i ∈ I . Thus
[
e�ie−�i

]=h′�i ∈ I .
We can therefore divide the �i ∈� into two classes, those with h′�i ∈ I and

those with h′�i 	∈ I . Both classes are non-empty. Furthermore if h′�i ∈ I and

h′�j 	∈ I then
〈
h′�j � h

′
�i

〉
=0. This means that vertices i� j are not joined in the

Dynkin diagram �, so � is disconnected. This is a contradiction, thus we
deduce that I⊃H .
Finally we show that I=L. Let �∈�. Then we have

�h′�e��=��h′�� e�=�h′��h′�� e��
Since h′� ∈ I we have �h′�e��∈ I , and since �h′��h′�� 	=0 we deduce that e� ∈ I .
This is true for all �∈� and so I=L. Thus L is simple.
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We next consider what happens when the Dynkin diagram of L is discon-
nected.
We first define an action of the Weyl group on H . The Weyl group was

introduced in Section 5.2 as a group of non-singular linear transformations
on the real vector space H∗�. This action can be extended by linearity to give
an action of W on H∗ by �-linear transformations. We also define an action
of W on H by h→wh where

��wh�= (w−1�)h for all h∈H��∈H∗�w∈W�

There is a unique element wh∈H satisfying this condition, and

w1 �w2h�= �w1w2�h for all w1�w2 ∈W�

The actions of W on H∗ and H are compatible with the isomorphism H∗→H

given by �→h′� where ��x�=�h′�� x� for all x∈H . For suppose w���=�
for ���∈H∗. Then

�w�h′�� � x� =
〈
h′��w

−1�x�
〉=� (w−1�x�)= �w��x

= ��x�= 〈h′�� x〉 for all x∈H�
Hence w���=� implies w�h′��=h′�.
Since we know that

s����=�−2
�����
������ for �∈���∈H∗

it follows that

s��x�=x−2
�h′�� x�
�h′��h′��

h′� for x∈H�

Proposition 6.14 Let L be a semisimple Lie algebra whose Dynkin diagram
� splits into connected components �1� � � � ��r . Then we have

L=L1⊕· · ·⊕Lr

a direct sum of Lie algebras, where Li is a simple Lie algebra with Dynkin
diagram �i.

Proof. We have �=�1∪̇�2 ∪̇ · · · ∪̇�r . Let �i be the subset of � correspond-
ing to the vertices in �i. Then we have

�=�1∪̇�2∪̇ · · · ∪̇�r�
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Moreover we have �����=0 if �∈�i��∈�j and i 	= j. Let Hi be the sub-
space of H spanned by the elements h′� with �∈�i. Then we have

H=H1⊕H2⊕· · ·⊕Hr

where �h�h′�=0 if h∈Hi�h
′ ∈Hj and i 	= j.

Now let �∈�i and consider the fundamental reflection s� ∈W . It is clear
that s� transforms Hi into itself and fixes each vector in Hj for all j 	= i. Thus
we have

s�
(
Hj

)=Hj j=1� � � � � r�

Since the elements s� generate the Weyl group W we deduce that

w
(
Hj

)=Hj j=1� � � � � r w∈W�

Now for all �∈� we have h′�=w
(
h′�i

)
for some �i ∈� and some w∈W ,

by Proposition 5.12 and the definition of the W -action on H . It follows that
each h′���∈�, lies in Hi for some i. Let �i be the set of all �∈� such that
h′� ∈Hi. Then we have

�=�1∪̇�2 ∪̇ · · · ∪̇�r�

We define Li to be the subspace of L spanned by Hi and the e� for all
�∈�i. We deduce from the Cartan decomposition of L that

L=L1⊕L2⊕· · ·⊕Lr

a direct sum of vector spaces. In fact we can see that each Li is a subalgebra
of L. It is sufficient to verify that

[
e�e�

]∈Li if ���∈�i. If �+�∈� then
we have �+�∈�i since h′�+�=h′�+h′� ∈Hi. If �+�=0 then

[
e�e�

]
is a

multiple of h′� and so lies in Hi, thus in Li. If �+� is non-zero but not a root
then

[
e�e�

]=0. In either case we have
[
e�e�

]∈Li. Thus Li is a subalgebra
of L.
We show next that

[
LiLj

]=O if i 	= j. Let �∈�i and �∈�j . Then we
have [

h′�e�
]=��h′�� e�= 〈h′��h′�〉 e�=0

and similarly
[
e�h

′
�

]=0. We also have
[
e�e�

]=0. For �+� 	∈� since
h′�+h′� does not lie in any subspace Hk of H . It follows that

[
LiLj

]=O.
We now know that each Li is an ideal of L, since

�LiL�⊂
∑
j

[
LiLj

]⊂ �LiLi�⊂Li�
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This implies that

�x1+· · ·+xr� y1+· · ·+yr�= �x1y1�+· · ·+ �xryr�
where xi� yi ∈Li. Hence

L=L1⊕L2⊕· · ·⊕Lr

is a direct sum of Lie algebras.
Now each Li is a semisimple Lie algebra. For let I be a soluble ideal of Li.

Since
[
ILj

]=O for all j 	= i the ideal I is an ideal of L. Since L is semisimple
we have I=O. Hence Li is semisimple.
We next observe that Hi is a Cartan subalgebra of Li. The subalgebra Hi is

abelian, hence nilpotent. Let x∈Li satisfy x∈N �Hi�. Then �xh�∈Hi for all
h∈Hi. We also have �xh�=0 for all h∈Hj with j 	= i. It follows that �xh�∈H
for all h∈H . Since H is a Cartan subalgebra of L we have N�H�=H . Hence
x∈H . Thus x∈H∩Li=Hi. Thus Hi is a Cartan subalgebra of Li.

We now consider the Cartan decomposition

Li=Hi⊕
∑
�∈�i

�e�

of Li with respect to Hi. We see that �i is the root system of Li with respect
to Hi, that �i is a fundamental system of roots in �i, and that �i is the
Dynkin diagram of Li. Now �i is connected. Thus the Lie algebra Li must
be simple, by Proposition 6.13. Thus we have obtained a decomposition of
L as a direct sum of simple Lie algebras Li, whose Dynkin diagrams are the
connected components �i of �.

Corollary 6.15 A semisimple Lie algebra L has a connected Dynkin diagram
if and only if L is simple.

Proof. This follows from Propositions 6.13 and 6.14



7
The existence and uniqueness theorems

We have seen that each non-trivial simple Lie algebra L has a Dynkin diagram
� which appears on the standard list 6.11 of connected Dynkin diagrams. In
the present chapter we shall consider the converse question. Given a Dynkin
diagram � on the standard list, is there a simple Lie algebra L with Dynkin
diagram �? If so, is L uniquely determined up to isomorphism? We shall
show that both the existence and uniqueness properties hold. The proof of
the uniqueness property is somewhat easier, and we shall prove this first. In
order to do so we shall need some properties of the structure constants of the
Lie algebra L.

7.1 Some properties of structure constants

Let L be a simple Lie algebra with Dynkin diagram �. Let H be a Cartan
subalgebra of L and

L=H⊕∑
�∈�

L�

be the Cartan decomposition of L with respect to H . We know from The-
orem 4.20 that dimL�=1 for each �∈�. Let e� be a non-zero element of
L�. Let � be a fundamental system of roots in �. Then the elements h′�i for
�i ∈� form a basis for H . It will be convenient to choose a slightly different
basis consisting of scalar multiples of the h′�i . We define hi ∈H by

hi=
2h′�i〈

h′�i � h
′
�i

〉 �
We note that �i �hi�=2. Then 
hi� i=1� � � � � l  e�� �∈�� is a basis
of L. By Proposition 4.18 we know that h′� ∈ �L�L−�� for all �∈�. Thus,

88
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if we have already chosen the e� for all �∈�+, we may choose the e−�
uniquely for �∈�+ to satisfy the condition

�e�e−��=
2h′�
�h′��h′��

�

(This relation will then be satisfied for �∈�− also.)
We define h� ∈H for each �∈� by

h�=
2h′�
�h′��h′��

�

The element h� is called the coroot corresponding to the root �. In particular
we have hi=h�i . We then have

�e�e−��=h� for all �∈��
We next consider the product

[
e�e�

]
when �+� 	=0. We have

[
L�L�

]=O
if �+� 	=0 and �+���. If �+�∈� we have

[
L�L�

]⊂L�+�. We define
N��� ∈� by the condition [

e�e�
]=N���e�+��

The numbers N��� for �����+�∈� will be called the structure constants
of L. They clearly depend upon the choice of the elements e� ∈L�.

We now consider the multiplication of the basis vectors 
hi� e�� of L. We
have [

hihj
]=0

�hie��=��hi� e�
�e�e−��=h�[
e�e�

]=N���e�+� if �����+�∈�[
e�e�

]=0 if �+� 	=0 and �+����
In order to express �e�e−�� as a linear combination of basis elements we may
express h′� as a linear combination of the h′�i ��i ∈�, and so also express h�
as a linear combination of the hi.
We shall now derive some relations between the structure constants N���.

Proposition 7.1 The structure constants N��� satisfy the following relations.
(i) N���=−N���.

(ii) If �����∈� satisfy �+�+�=0 then
N���

����� =
N���

����� =
N���

����� .
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(iii) N���N−��−�=−�p+1�2 where the �-chain of roots through � is
−p�+�� � � � ��� � � � � q�+�.

(iv) If �������∈� satisfy �+�+�+�=0 and no pair are negatives of
one another, then

N���N���

��+���+�� +
N���N���

��+���+�� +
N���N���

��+���+�� =0�

Proof. (i) This relation is clear.
(ii) Suppose �+�+�=0. We consider the Jacobi identity[[

e�e�
]
e�
]+[[e�e�] e�]+[[e�e�] e�]=0�

This gives

N���

[
e�+�e−��+��

]+N��� �e−�e��+N���

[
e−�e�

]=0

that is

2N���

h′�+�〈
h′�+��h

′
�+�

〉 =2N���

h′�
�h′��h′��

+2N���

h′�〈
h′��h

′
�

〉 �
Now the roots ��� are linearly independent since, if they were not,
�+� could not be a root. Thus h′��h

′
� are linearly independent and

h′�+�=h′�+h′�. We deduce that

N���〈
h′�+��h

′
�+�

〉 = N���

�h′��h′��
= N���〈

h′��h
′
�

〉
that is

N���

����� =
N���

����� =
N���

����� �

(iii) Now suppose ���∈� are linearly independent. We consider the Jacobi
identity [

�e�e−�� e�
]+[[e−�e�] e�]+[[e�e�] e−�]=0�

This gives

2

[
h′�e�

]
�h′��h′��

+N−���N−�+���e�+N���N�+��−�e�=0�

We deduce that

2

〈
h′��h

′
�

〉
�h′��h′��

+N−���N−�+���+N���N�+��−�=0�
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Using relations (i) and (ii) this may be written

N���N−��−�
�����

��+���+�� −N��−�+�N−���−�
�−�+��−�+��

�����

=2
�����
����� �

(If −�+� is not a root N−��� is interpreted as 0 so the middle term
disappears.) We now consider the �-chain of roots through �. Let it be

−p�+�� � � � ��� � � � � q�+��
Weapply thesameformula to thepairs��������−�+�� � � � ���−p�+��
and obtain

N���N−��−�
�����

��+���+�� −N��−�+�N−���−�
�−�+��−�+��

����� =2
�����
�����

N��−�+�N−���−�
�−�+��−�+��

����� −N��−2�+�N−��2�−�
�−2�+��−2�+��
�−�+��−�+��

=2
���−�+��
�����

���

N��−p�+�N−��p�−�
�−p�+��−p�+��

�−�p−1��+��−�p−1��+�� =
2���−p�+��
����� �

(The last equation has only one term on the left since −�p+1��+� is
not a root.) Adding these equations we obtain

N���N−��−�
�����

��+���+�� =2�p+1�
�����
����� −2

p�p+1�
2

�

However, we know from Proposition 4.22 that 2 ���������� =p−q. Thus we
have

N���N−��−�
�����

��+���+�� =−�p+1�q�

In order to obtain the required result N���N−��−�=−�p+1�2 we must
show

��+���+��
����� = p+1

q
�
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We recall from the proof of Proposition 6.1 that

2
�����
����� · 2

�����
����� =4cos2 �

where � is the angle between ��� and hence that 2 ���������� ∈ 
0�−1�−2�−3�.
Also from Proposition 4.22 we know that 2 ���������� =p−q. If we choose
� to be the initial root in its �-chain we have p=0 and hence q≤3.
This shows that each �-chain has at most four roots. Thus the possible
positions of � in its �-chain are

� �+� p=0 q=1� �
� �+� 2�+� p=0 q=2� � �
−�+� � �+� p=1 q=1� � �
� �+� 2�+� 3�+� p=0 q=3� � � �
−�+� � �+� 2�+� p=1 q=2� � � �
−2�+� −�+� � �+� p=2 q=1� � � �

In the first case we have ��+���+��=����� since s����=�+�. In
the remaining cases the first and last roots in the �-chain are long roots
and the remainder are short roots. The relative lengths are given in the
proof of Proposition 6.1. We have

��+���+��
����� =1� 1

2 �2�
1
3 �1�3

in the above six cases respectively. Thus in each case we have

��+���+��
����� = p+1

q

and so N���N−��−�=−�p+1�2

(iv) Now suppose that �������∈� satisfy �+�+�+�=0 with no pair
equal and opposite. Consider the Jacobi identity[[

e�e�
]
e�
]+[[e�e�] e�]+[[e�e�] e�]=0�



7.2 The uniqueness theorem 93

This gives

N���N�+���+N���N�+���+N���N�+���=0�

Using relations (ii) this gives

N���N���

��+���+�� +
N���N���

��+���+�� +
N���N���

��+���+�� =0�

(As usual we interpret N��� as 0 if �+� is not a root.)

Proposition 7.1 (iii) has a very useful corollary.

Corollary 7.2 If �����+�∈� then N��� 	=0. Thus
[
L�L�

]=L�+�.

7.2 The uniqueness theorem

We shall now use the above relations between the structure constants to show
that the Lie algebra L is uniquely determined up to isomorphism. A Dynkin
diagram on the standard list 6.11 is given, and this determines uniquely a
Cartan matrix A= (Aij

)
on the standard list 6.12. Now the Cartan matrix

determines the set � of roots as linear combinations of the fundamental roots
�= 
�1� � � � ��l�. For each root �∈� has form �=w��i� for some �i ∈�
and some w∈W , by Proposition 5.12. Moreover each element w∈W is a
product of elements s1� � � � � sl by Theorem 5.13. The actions of s1� � � � � sl on
the fundamental roots �1� � � � ��l are given in terms of the Cartan matrix by

si
(
�j

)=�j−Aij�i�

Thus by applying the fundamental reflections successively to the fundamental
roots we obtain all roots as linear combinations of the fundamental roots.
We next observe that all scalar products

〈
h′��h

′
�

〉
for ���∈� are determined

by the Cartan matrix. By Proposition 4.22 2�h′��h′���h′��h′�� is determined by the
root system, hence by the Cartan matrix as shown above. Then �h′��h′�� is
determined by the formula

1

�h′��h′��
=∑

�∈�

( 〈
h′��h

′
�

〉
�h′��h′��

)2



94 The existence and uniqueness theorems

of Proposition 4.24. Thus
〈
h′��h

′
�

〉
is also determined by the Cartan matrix.

Thus we see that if the structure constants N��� are known the multiplication
of basis elements [

hihj
]=0

�hie��=��hi� e�
�e�e−��=h�[
e�e�

]=N���e�+� if �����+�∈�[
e�e�

]=0 if �+� 	=0 and �+� 	∈�
will be completely determined.
We shall show that for certain pairs ����� of roots the structure constants

N��� can be chosen arbitrarily, and that the remaining structure constants are
uniquely determined in terms of these by the relations of Proposition 7.1.
We choose a total ordering on the vector space V =H∗� as in Section 5.1

giving rise to the positive system �+ and fundamental system � of roots. An
ordered pair ����� of roots will be called special if �+�∈� and 0<�<�.
The pair ����� will be called extraspecial if ����� is special and if, in
addition, for all special pairs ����� such that �+�=�+� we have �≤�.
Lemma 7.3 The structure constants N��� for extraspecial pairs ����� can
be chosen as arbitrary non-zero elements of �, by appropriate choice of the
elements e�.

Proof. We choose the e� for �∈�+ in the order given by <. Suppose �����
is an extraspecial pair. Then we have[

e�e�
]=N���e�+�

and e�� e� have already been chosen. Moreover there is only one extraspecial
pair with given sum �+�. Thus e�+� can be chosen to give any non-zero
value of N���.

Proposition 7.4 All the structure constants N��� are determined by the struc-
ture constants for extraspecial pairs.

Proof.We consider the set of all pairs of roots ����� such that �+� is a root.
Let ����� be such a pair and let �=−�−�. Then the following 12 pairs of
roots are of the given type.

����� ����� ����� ����� ����� �����

�−��−�� �−��−�� �−��−�� �−��−�� �−��−�� �−��−���
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Since �+�+�=0 either two or one of ����� are positive. Thus either
two of ����� are positive or two of −��−��−� are positive. By choosing
two positive roots from ����� or from −��−��−� and by writing them
in the appropriate order we obtain a special pair. Thus just one of the above
12 pairs of roots is a special pair.
Now the relations in Proposition 7.1 (i), (ii), (iii) enable us to express

N����N����N��� and N−��−� in terms of N���. Thus these relations enable us to
express N��� for all the 12 pairs ����� above in terms of N��� for the special
pair �����.
The next stage is to show that the N��� for all special pairs ����� are

determined in terms of the N��� for extraspecial pairs. Suppose ����� is
special but not extraspecial. Then there exists an extraspecial pair ����� such
that �+�=�+�. Thus �+�+�−��+�−��=0 and no pair of ����−��−�
are equal and opposite. By Proposition 7.1 (iv) we have

N���N−��−�
��+���+�� +

N��−�N��−�
��−���−�� +

N−���N��−�
�−�+��−�+�� =0�

Now the roots ������� are ordered by

0<�<�<�<��

Thus we may use relations (i), (ii), (iii) of Proposition 7.1 to express N−��−� in
terms ofN���;N��−� in terms ofN���−�;N��−� in terms ofN���−�;N−��� in terms
ofN���−�; andN��−� in terms ofN���−�. ThusN��� is expressed in terms of

N����N���−��N���−��N���−��N���−��

Now ����� is an extraspecial pair and ����−��� ����−��� ����−�� and
����−�� are all pairs of positive roots whose sums are roots less than
�+�=�+� in the given ordering. We may therefore argue by induction on
�+�, using the given order, that N��� can be expressed in terms of N��� for
extraspecial pairs �����.

We can now state our uniqueness theorem.

Theorem 7.5 Any two simple Lie algebras with the same Cartan matrix are
isomorphic.

Proof. We choose the basis elements 
hi� e�� of such a Lie algebra L such
that N���=1 for all extraspecial pairs of roots �����. We may do this by
Lemma 7.3. The remaining structure constants N��� are all then uniquely
determined by Proposition 7.4. Thus the formulae expressing a Lie product of
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basis elements as a linear combination of basis elements are completely deter-
mined by the Cartan matrix. Thus the Lie algebra L is uniquely determined
up to isomorphism.

7.3 Some generators and relations in a simple
Lie algebra

We now turn to the question of the existence of a simple Lie algebra with
Cartan matrix on the standard list 6.12. A proof of the existence theorem has
been given by J. Tits (IHES Publ. Math. 31 (1966)) along the lines of the
arguments used so far. The details are technically quite complicated, however,
and so we prefer to give a different proof of the existence theorem.
Let L be a simple Lie algebra with Cartan matrix A. Let H be a Cartan

subalgebra of L and

L=H⊕∑
�∈�

L�

be the Cartan decomposition. As before we consider the elements hi ∈H
given by

hi=
2h′�i〈

h′�i � h
′
�i

〉
where �= 
�1� � � � ��l� is a fundamental system in �. As in Section 7.1 we
can choose elements ei ∈L�i

� fi ∈L−�i such that �eifi�=hi.
We shall show that the elements e1� � � � � el� h1� � � � � hl� f1� � � � � fl generate L.

(Of course this is equivalent to saying that e1� � � � � el� f1� � � � � fl generate L,
but it will be useful to include h1� � � � � hl in the generating set.)

Lemma 7.6 If �∈�+ and � 	∈� there exists �i ∈� such that �−�i ∈�+.
Thus every positive non-fundamental root is the sum of a fundamental root
with a positive root.

Proof. Suppose if possible that the result is false. Then �−�i is not a root
and is non-zero for each i. (We can use Corollary 5.6 to see that �−�i cannot
be a negative root.) Consider the �i-chain of roots through �. This has form

���i+�� � � � � q�i+��
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By Proposition 4.22 we have

2
��i���
��i��i�

=−q�

This implies that ��i���≤0. Now �∈�+ has form �=∑i ni�i with all
ni≥0. Thus

�����=∑
i

ni ��i���≤0�

This gives a contradiction, since we know �����>0.

Proposition 7.7 The elements e1� � � � � el� h1� � � � � hl� f1� � � � � fl generate L.

Proof. Since h1� � � � � hl span H it will be sufficient to show that each L� for
�∈�+ lies in the subalgebra generated by e1� � � � � el and each L� for �∈�−
lies in the subalgebra generated by f1� � � � � fl.

Let �∈�+. If �=�i for some i we have L�=�ei. If � 	∈� we can write
�=�i+� for some �i ∈� and some �∈�+ by Lemma 7.6. We then have[
L�i

L�

]=L� by Corollary 7.2. Thus we may choose e�=
[
ei� e�

]
for some

e� 	=0 in L�. By repeating this process we obtain

e�=
[[
ei1ei2

]
� � � eik

]
for some sequence i1� � � � � ik. Thus each L� for �∈�+ lies in the subalge-
bra generated by e1� � � � � el. Similarly each L� for �∈�− lies in the sub-
algebra generated by f1� � � � � fl.

Proposition 7.8 The generators e1� � � � � el� h1� � � � � hl� f1� � � � � fl of L satisfy
the following relations.

(a)
[
hihj

]=0
(b)

[
hiej

]=Aijej
(c)

[
hifj

]=−Aijfj
(d) �eifi�=hi
(e)

[
eifj

]=0 if i 	= j
(f)

[
ei
[
ei � � �

[
eiej

]]]=0 if i 	= j
←1−Aij→

(g)
[
fi
[
fi � � �

[
fifj

]]]=0 if i 	= j.
←1−Aij→

Note that in relations (f), (g) there are 1−Aij occurrences of ei� fi respec-
tively. Since Aij≤0 for i 	= j this number 1−Aij is a positive integer.
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Proof. Relation (a) follows from �HH�=0. For relation (b), we have

[
hiej

]= 2

[
h′�iej

]〈
h′�i � h

′
�i

〉 =2
�j

(
h′�i

)〈
h′�i � h

′
�i

〉ej
= 2

〈
h′�j � h

′
�i

〉
〈
h′�i � h

′
�i

〉 ej=2

〈
�i��j

〉
��i��i�

ej=Aijej�

Relation (c) is obtained similarly. Relation (d) holds by definition of fi.
Relation (e) holds because

[
eifj

]∈L�i−�j and �i−�j is not a root when i 	= j,
as follows from Corollary 5.6. In order to prove relation (f) we consider the
�i-chain of roots through �j . Since −�i+�j is not a root this chain has form

�j��i+�j� � � � � q�i+�j�

By Proposition 4.22 we have Aij=−q. Thus
(
1−Aij

)
�i+�j is not a root.

Since the element
[
ei
[
ei � � �

[
eiej

]]]
lies in L�1−Aij��i+�j this element must

be 0. Relation (g) is obtained similarly.

7.4 The Lie algebras L�A� and L̃�A�

Let A be a Cartan matrix on the standard list 6.12. Motivated by Proposi-
tions 7.7 and 7.8 we shall construct a Lie algebra L�A� which will be shown
to be a finite dimensional simple Lie algebra with Cartan matrix A.
Suppose A is an l× lmatrix. Let 	 be the free associative algebra over � on

the 3l generators e1� � � � � el� h1� � � � � hl� f1� � � � � fl. The set of all monomials
in these generators form a basis for 	. Let �	� be the Lie algebra obtained
from 	 by redefining the multiplication in the usual way and let 
 be the
subalgebra of �	� generated by the elements e1� � � � , el� h1� � � � � hl� f1� � � � � fl.
Let J be the ideal of 
 generated by the elements[

hihj
]

[
hiej

]−Aijej[
hifj

]+Aijfj

�eifi�−hi[
eifj

]
for i 	= j[

ei
[
ei � � �

[
eiej

]]]
for i 	= j[

fi
[
fi � � �

[
fifj

]]]
for i 	= j
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where the number of occurrences of ei� fi respectively in the last two elements
is 1−Aij .
We define L�A�=
/J . We shall eventually be able to show that L�A� is

the Lie algebra we require to prove the existence theorem. This description
of L�A� by generators and relations is due to J. P. Serre.
In order to investigate theLie algebraL�A� it is convenient to define a second,

larger, Lie algebra L̃�A�. Let J̃ be the ideal of 
 generated by the elements[
hihj

]
[
hiej

]−Aijej[
hifj

]+Aijfj

�eifi�−hi[
eifj

]
for i 	= j�

Let L̃�A�=
/J̃ . Since J̃ ⊂ J we have surjective Lie algebra homomorphisms


→ L̃�A�→L�A�

We shall investigate the properties of the Lie algebra L̃�A�. This is generated
by the images of the generators of 
 under the above homomorphism. These
images will continue to be written e1� � � � � el� h1� � � � � hl, f1� � � � � fl. These
elements satisfy the relations[

hihj
]=0[

hiej
]=Aijej[

hifj
]=−Aijfj

�eifi�=hi[
eifj

]=0 for i 	= j
Proposition 7.9 Let 	− be the free associative algebra over � with gen-
erators f1� � � � � fl. Then 	− may be made into an L̃�A�-module giving a
representation 	 � L̃�A�→ �End 	−� defined by:

	�fi� fi1 � � � fir = fifi1 � � � fir

	 �hi� fi1 � � � fir = −
(

r∑
k=1

Aiik

)
fi1 � � � fir

	 �ei� fi1 � � � fir = −
r∑

k=1
�iik

(
r∑

h=k+1
Aiih

)
fi1 � � � f̂ik � � � fir

where as usual the symbol f̂ik means that fik is omitted from the product.



100 The existence and uniqueness theorems

Proof. Since the monomials fi1 � � � fir form a basis for 	− the endomor-
phisms 	�fi� � 	 �hi� � 	 �ei� are uniquely determined by the above formulae.
Thus there is a unique homomorphism 	→End 	− mapping ei� hi� fi to
	�ei� � 	 �hi� � 	 �fi� respectively. This induces a Lie algebra homomorphism
�	�→ �End 	−� and so, by restriction, a Lie algebra homomorphism 
→
�End 	−�. In order to obtain a homomorphism L̃�A�→ �End 	−� we must
verify the following relations.

(a)
[
	�hi�	

(
hj
)]=0

(b)
[
	�hi�	

(
ej
)]=Aij	

(
ej
)

(c)
[
	�hi�	

(
fj
)]=−Aij	

(
fj
)

(d) �	 �ei� 	 �fi��=	�hi�
(e)

[
	�ei� 	

(
fj
)]=0 for i 	= j

Relation (a) is trivial since 	�hi� multiplies each basis element of 	− by a
scalar.
To prove relation (b) we have

	�hi�	
(
ej
)
fi1 � � � fir =−

r∑
k=1

�jik

(
r∑

h=k+1
Ajih

)(
−∑

g 	=k
Aiig

)
fi1 � � � f̂ik � � � fir

	
(
ej
)
	�hi� fi1 � � � fir =−

r∑
k=1

�jik

(
r∑

h=k+1
Ajih

)(
−

r∑
g=1

Aiig

)
fil � � � f̂ik � � � fir

Thus(
	�hi�	

(
ej
)−	 (ej)	�hi�)fi1 � � � fir

= Aij

(
−

r∑
k=1

�jik

(
r∑

h=k+1
Ajih

))
fi1 � � � f̂ik � � � fir

= Aij	
(
ej
)
fi1 � � � fir �

To prove relation (c) we have

	�hi�	
(
fj
)
fi1 � � � fir =−

(
Aij+

r∑
k=1

Aiik

)
fjfi1 � � � fir

	
(
fj
)
	�hi� fi1 � � � fir =−

(
r∑

k=1
Aiik

)
fjfi1 � � � fir �

Thus(
	�hi�	

(
fj
)−	 (fj)	�hi�)fi1 � � � fir =−Aijfjfi1 � � � fir =−Aij	

(
fj
)
fi1 � � � fir �
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We next consider relation (d). We have

	�ei� 	 �fi� fi1 � � � fir =−
(

r∑
h=1

Aiih

)
fi1 � � � fir

−
r∑

k=1
�iik

(
r∑

h=k+1
Aiih

)
fifi1 � � � f̂ik � � � fir

	 �fi� 	 �ei� fi1 � � � fir =−
r∑

k=1
�iik

(
r∑

h=k+1
Aiih

)
fifi1 � � � f̂ik � � � fir �

Thus

�	 �ei� 	 �fi�−	�fi� 	 �ei�� fi1 � � � fir =−
(

r∑
h=1

Aiih

)
fi1 � � � fir =	�hi� fi1 � � � fir �

Finally we consider relation (e). Suppose i 	= j. Then

	�ei� 	
(
fj
)
fi1 � � � fir =−

r∑
k=1

�iik

(
r∑

h=k+1
Aiih

)
fjfi1 � � � f̂ik � � � fir

= 	
(
fj
)
	�ei� fi1 � � � fir �

Thus all the relations are preserved and we have a homomorphism L̃�A�→
�End	−�.

We can deduce useful information about L̃�A� from the existence of this
homomorphism.

Proposition 7.10 The elements h1� � � � � hl of L̃�A� are linearly independent.

Proof. We show that the elements 	�h1� � � � � � 	 �hl� of End 	− are linearly
independent. We have

	�hi� fj=−Aijfj�

Thus if
∑

�i	 �hi�=0 we would have
∑

i �iAij=0 for all j=1� � � � � l. Since
the Cartan matrix A= (Aij

)
is non-singular this implies that �i=0 for each i.

Hence 	�h1� � � � � � 	 �hl� are linearly independent, and so h1� � � � � hl must be
linearly independent also.

Let H̃ be the subspace of L̃�A� spanned by h1� � � � � hl. Then we have
dim H̃= l. Moreover �H̃H̃�=O, thus H̃ is an abelian subalgebra of L̃�A�.
We consider the weight spaces of L̃�A� with respect to H̃ . We are no longer
dealing with a finite dimensional H̃-module as in Theorem 2.9, but analogous
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ideas apply in our situation. Elements of Hom�H̃��� will be called weights.
For each weight �� H̃→� we define the corresponding weight space
L̃�A�� by

L̃�A��= 
x∈ L̃�A�  �hx�=��h�x for all h∈ H̃��

Proposition 7.11 L̃�A�=⊕� L̃�A��. Thus L̃�A� is the direct sum of its
weight spaces.

Proof. We first show that L̃�A�=∑� L̃�A��. A vector which lies in a weight
space will be called a weight vector. We observe that, if x� y∈ L̃�A� are
weight vectors of weights ��� respectively, then �xy� is a weight vector of
weight �+�. For we have

�h�xy��= ��hx�y�+ �x�hy��=��h��xy�+��h��xy�
= ��+���h��xy� for h∈ H̃�

Now L̃�A� is generated by elements ei, hi, fi. Let �i ∈ Hom�H̃ , �) be
defined by

�i

(
hj
)=Aji�

Then ei is a weight vector of weight �i, fi is a weight vector of weight −�i

and hi is a weight vector of weight 0. Thus all Lie products of generators ei,
hi, fi are weight vectors. Since every element of L̃�A� is a linear combination
of such products we deduce that

L̃�A�=∑
�

L̃�A���

We next show that this sum is direct. If this is not so we can find a non-zero
vector x∈ L̃�A�� such that x=∑� x� where x� ∈ L̃�A�� and � runs over a
finite set of weights all distinct from �. Since x∈ L̃�A�� we have

�adh−��h�1�x=0�

Since x=∑� x� with x� ∈ L̃�A�� we have∏
�

�adh−��h�1� x=0�

Now we can find an element h∈ H̃ such that ��h� 	=��h� for all such �. For
the elements satisfying ��h�=��h� for some fixed � lie in a proper subspace
of H̃ , and the finite dimensional vector space H̃ over � cannot be expressed
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as the union of a finite number of proper subspaces. Thus we choose h∈ H̃
such that ��h� 	=��h� for all such �. Then the polynomials

t−��h�� ∏
�

�t−��h��

in ��t� are coprime. Thus there exist polynomials a�t�, b�t�∈��t� with
a�t��t−��h��+b�t�∏

�

�t−��h��=1�

If follows that

a�adh��adh−��h�1�x+b�adh�∏
�

�adh−��h�1�x=x�

We deduce that x=0, a contradiction. Thus the sum
∑

� L̃�A�� is direct.

We next obtain information about the kind of weights � which can occur,
that is for which L̃�A�� 	=0. The weights �1� � � � ��l ∈Hom�H̃��� are linearly
independent since the Cartan matrix A is non-singular. Thus any weight has
form n1�1+· · ·+nl�l for ni ∈�. We shall show that all weights � which
occur in L̃�A� have this form with ni ∈� and with either ni≥0 for all i or
ni≤0 for all i.
Let

Q= 
n1�1+· · ·+nl�l  ni ∈�� �
Q+= 
n1�1+· · ·+nl�l 	=0  ni≥0 for all i�

Q−= 
n1�1+· · ·+nl�l 	=0  ni≤0 for all i� �

Let

L̃�A�+ = ∑
�∈Q+

L̃�A��

L̃�A�− = ∑
�∈Q−

L̃�A���

It follows from Proposition 7.11 that the sum L̃�A�−+H̃+ L̃�A�+ is direct.
We shall show that in fact

L̃�A�= L̃�A�−⊕H̃⊕ L̃�A�+�
Let Ñ be the subalgebra of L̃�A� generated by e1� � � � � el and Ñ− the

subalgebra generated by f1� � � � � fl. Since ei has weight �i and fi has weight
−�i we have Ñ ⊂ L̃�A�+ and Ñ−⊂ L̃�A�−. Thus the sum Ñ−+H̃+ Ñ is
direct.
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Proposition 7.12 (i) L̃�A�= Ñ−⊕H̃⊕ Ñ
(ii) Ñ = L̃�A�+� Ñ−= L̃�A�−� H̃= L̃�A�0
(iii) Every non-zero weight of L̃�A� lies in Q+ or in Q−.

Proof. The relations
[
hiej

]=Aijej show that
[
hi� Ñ

]⊂ Ñ since the ej generate
Ñ . Thus we have �H̃� Ñ �⊂ Ñ . It follows that H̃+ Ñ is a subalgebra of L̃�A�,
since

�H̃+ Ñ � H̃+ Ñ �⊂ �H̃H̃�+ �H̃Ñ �+ �Ñ Ñ �⊂ H̃+ Ñ �

Similarly Ñ−+H̃ is a subalgebra of L̃�A�. We now consider the subspace
Ñ−+H̃+ Ñ . The relations �eifi�=hi and

[
eifj

]=0 if i 	= j show that[
ei� Ñ

−]⊂ Ñ−+H̃�

For this is true for the generators of Ñ−, and the relation

�ei�xy��= ��eix� y�+ �x �eiy��
then shows it is true for all elements of Ñ− since Ñ−+H̃ is a subalgebra. It
follows that [

ei� Ñ
−+H̃+ Ñ ]⊂ Ñ−+H̃+ Ñ

since H̃+ Ñ is a subalgebra. Similarly we have[
fi� Ñ

−+H̃+ Ñ ]⊂ Ñ−+H̃+ Ñ
and the relation [

hi� Ñ
−+H̃+ Ñ ]⊂ Ñ−+H̃+ Ñ

is clear. It follows that the set of all x∈ L̃�A� such that[
x� Ñ−+H̃+ Ñ ]⊂ Ñ−+H̃+ Ñ

contains ei� hi� fi. However, the relation

��xy�z�= ��xz�y�+ �x�yz��
for z∈ Ñ−+H̃+ Ñ shows that the set of such x is a subalgebra. This sub-
algebra must be the whole of L̃�A�. Thus Ñ−+H̃+ Ñ is an ideal of L̃�A�.
Since L̃�A� is generated by ei� hi� fi it follows that Ñ

−+H̃+ Ñ = L̃�A�. We
know that this sum is direct, so we have

L̃�A�= Ñ−⊕H̃⊕ Ñ �
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Since Ñ−⊂ L̃�A�−� Ñ ⊂ L̃�A�+ and the sum L̃�A�−+H̃+ L̃�A�+ is direct
we deduce that Ñ−= L̃�A�− and Ñ = L̃�A�+. Since L̃�A�= L̃�A�−⊕H̃⊕
L̃�A�+� H̃⊂ L̃�A�0, and the weights occurring in L̃�A�− and L̃�A�+ are all
non-zero, we deduce from Proposition 7.11 that H̃= L̃�A�0. Thus all parts of
the proposition have been proved.

Proposition 7.13 dim L̃�A��i =1 and dim L̃�A�−�i =1

Proof. We know that ei ∈ L̃�A��i . Also the element ei ∈ L̃�A� is non-zero,
since it induces a non-zero endomorphism 	�ei� on the L̃�A�-module 	−

considered in Proposition 7.9. Hence dim L̃�A��i ≥1. On the other hand we
have

L̃�A��i ⊂ L̃�A�+= Ñ �

Now Ñ is generated by e1� � � � � el so is spanned by monomials in these
elements. All such monomials are weight vectors. The only monomial which
has weight �i is ei, since the �i are linearly independent. Thus we have
dim L̃�A��i =1. The relation dim L̃�A�−�i =1 is obtained similarly.

7.5 The existence theorem

We now turn to a study of the Lie algebra L�A�, in order to show that it
is a finite dimensional simple Lie algebra with Cartan matrix A. From the
definitions of L�A�� L̃�A� we see that L�A� is isomorphic to L̃�A�/I where I
is the ideal of L̃�A� generated by the elements[

ei
[
ei � � �

[
eiej

]]]
[
fi
[
fi � � �

[
fifj

]]]
for all i 	= j. As usual we have 1−Aij factors ei or fi.

Proposition 7.14 (i) Let I+ be the ideal of Ñ generated by the elements[
ei
[
ei � � �

[
eiej

]]]
for all i 	= j. Then I+ is an ideal of L̃�A�.

(ii) Let I− be the ideal of Ñ− generated by the elements
[
fi
[
fi � � �

[
fifj

]]]
for all i 	= j. Then I− is an ideal of L̃�A�.

(iii) I= I+⊕ I−.
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Proof. We write Xij=
[
ei
[
ei � � �

[
eiej

]]]
and Yij=

[
fi
[
fi � � �

[
fifj

]]]
. Then I+

is the set of all linear combinations of elements[[
Xijek1

]
� � � ekr

]
for all i 	= j and all k1� � � � � kr in 
1� � � � � l�. For such linear combinations
certainly lie in I+, and form an ideal of Ñ .
Now Xij is a weight vector, being a Lie product of weight vectors ei� ej .

Similarly
[[
Xijek1

]
� � � ekr

]
is a weight vector. It is therefore transformed by

each of h1� � � � � hl into a scalar multiple of itself. In order to show that I+ is
an ideal of L̃�A� it will therefore be sufficient to show[

fk�
[[
Xijek1

]
� � � ekr

]]∈ I+
for all i� j� k1� � � � � kr� k. We shall prove this by induction on r, beginning
with r=0. In the following lemma we shall show that

[
fk�Xij

]=0, thus
beginning the induction. So let r≥1 and write

[[
Xijek1

]
� � � ekr−1

]=y. We
assume �fky�∈ I+ by induction. Then[

fk
[
yekr

]]= [�fky� ekr ]+[y [fkekr ]] �
If kr 	=k then

[
fkekr

]=0 and so[
fk
[
yekr

]]= [�fky� ekr ]∈ I+�
If kr =k then [

fk
[
yekr

]]= [�fky� ekr ]+ �hky�∈ I+�
This completes the induction. Thus I+ is an ideal of L̃�A�. Similarly I− is an
ideal of L̃�A�. Hence I+⊕ I− is an ideal of L̃�A� containing the elements Xij

and Yij . Moreover any ideal of L̃�A� containing the Xij and Yij must contain
I+ and I−. Hence I+⊕ I−= I .
In order to complete the proof of Proposition 7.14 we need the following

lemma.

Lemma 7.15
[
fk�Xij

]=0 for all i� j� k with i 	= j.

Proof. If k 	∈ 
i� j� this relation is obvious since �fkei�=0 and
[
fkej

]=0.
So suppose k= j. Then we have[

fj
[
eiej

]]= [ei [fjej]]= [hjei]=Ajiei[
fj
[
ei
[
eiej

]]]= [ei [fj [eiej]]]=0[
fj
[
ei
[
ei � � �

[
eiej

]]]]
←−r−→

=0 for r≥2
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by induction on r. Hence
[
fj�Xij

]=0 if 1−Aij≥2, that is Aij≤−1. If Aij=0
then Aji=0 and

[
fj�Xij

]=0 in this case also.
Finally suppose that k= i. In this case we shall show that, for r≥1,[

fi
[
ei
[
ei � � �

[
eiej

]]]]
←−r−→

=−r (Aij+r−1
) [
ei
[
ei � � �

[
eiej

]]]
←−r−1−→

�

For r=1 we have[
fi
[
eiej

]]= [�fiei� ej]=− [hiej]=−Aijej�

For r>1 we use induction. We have[
fi
[
ei
[
ei � � �

[
eiej

]]]]
←−r−→
= −[hi [ei [ei � � � [eiej]]]]

←−r−1−→
−�r−1�

(
Aij+r−2

) [
ei
[
ei � � �

[
eiej

]]]
←−r−1−→

= (− (2r−2+Aij

)−�r−1�
(
Aij+r−2

)) [
ei
[
ei � � �

[
eiej

]]]
←−r−1−→

= −r (Aij+r−1
) [
ei
[
ei � � �

[
eiej

]]]
←−r−1−→

as required. We now put r=1−Aij and obtain
[
fi�Xij

]=0.

Corollary 7.16 L�A�=N−⊕H⊕N where H is isomorphic to H̃ , N− is
isomorphic to Ñ−/I− and N is isomorphic to Ñ /I+.

Proof. This follows from the facts that L�A� is isomorphic to L̃�A�/I� L̃�A�=
Ñ−⊕H̃⊕ Ñ , and I= I+⊕ I−.
We shall continue to denote the generators of L�A� by ei� hi� fi. These are

the images of the generators of 
 under the natural homomorphism 
→L�A�.

Proposition 7.17 The maps ad ei �L�A�→L�A� and ad fi �L�A�→L�A� are
locally nilpotent.

Proof. To show that ad ei is locally nilpotent we must show that, for all
x∈L�A�, there exists n�x� such that �ad ei�

n�x� x=0. Now if ad ei acts locally
nilpotently on x and y it also acts locally nilpotently on �xy�. For

�ad ei�
n �xy�=

n∑
r=0

(
n

r

)
��ad ei�

r x� �ad ei�
n−r y�

�ad ei�
r x will be 0 if r is sufficiently large and �ad ei�

n−r y will be 0 if n−r
is sufficiently large. Thus �ad ei�

n �xy� will be 0 if n is sufficiently large.
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It follows that the set of elements of L�A� on which ad ei acts locally
nilpotently is a subalgebra. However, we have

ad ei ·ei=0

�ad ei�
1−Aij ej=0 if i 	= j

�ad ei�
2 hj=0 for all j

�ad ei�
3 fi=0

ad ei ·fj=0 if i 	= j�

Thus this subalgebra contains all the generators ej� hj� fj of L�A�, so is the
whole of L�A�.

We see similarly that ad fi is locally nilpotent on L�A�.

Now the proof of Proposition 3.4 shows that if � � L→L is a locally
nilpotent derivation of a Lie algebra L then exp� is an automorphism of L.
Thus expad ei and expad fi are automorphisms of L�A�. We define �i ∈
Aut L�A� by

�i= expad ei ·expad �−fi� ·expad ei�
Proposition 7.18 (i) �i�H�=H
(ii) �i�h�= si�h� for all h∈H where si � H→H is the linear map given by

si
(
hj
)=hj−Ajihi.

Proof. We have

expad ei ·hj= �1+ad ei� hj=hj−Ajiei

expad �−fi� ·expad ei ·hj= expad �−fi� ·
(
hj−Ajiei

)
=
(
1−ad fi+

�ad fi�
2

2

)(
hj−Ajiei

)
=hj−Ajiei−Ajifi−Ajihi+Ajifi=hj−Ajihi−Ajiei

expad ei ·expad �−fi� ·expad ei ·hj= expad ei
(
hj−Ajihi−Ajiei

)
= �1+ad ei�

(
hj−Ajihi−Ajiei

)=hj−Ajihi−Ajiei−Ajiei+2Ajiei

=hj−Ajihi�
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Now the action of si on H is precisely that of the fundamental reflection
si= s�i defined in Section 6.4. We recall that

si�h�= h−2

〈
h′�i � h

〉〈
h′�i � h

′
�i

〉h′�i for h∈H

= h− 〈h′�i � h〉hi�
In particular

si
(
hj
)=hj− 〈h′�i � hj 〉hi=hj−2

〈
h′�i � h

′
�j

〉
〈
h′�j � h

′
�j

〉hi=hj−Ajihi�

Thus Proposition 7.18 shows that the automorphism �i of L�A� induces the
fundamental reflection si on H .

We now consider the decomposition of L�A� into weight spaces with
respect to H . This time the weights are elements of Hom�H���. For each
weight ��H→� we define the weight space L�A�� by

L�A��= 
x∈L�A�  �hx�=��h�x for all h∈H��

Proposition 7.19 L�A�=⊕� L�A��.

Proof. The algebra L�A� is the sum of its weight spaces, since its generators
ei� hi� fi are weight vectors. Moreover the sum of weight spaces is direct, just
as in the proof of Proposition 7.11.

It also follows from Proposition 7.12 and Corollary 7.16 that L�A�=
N−⊕H⊕N where all weights coming from N are in Q+ and all weights
coming from N− are in Q−. We also have H=L�A�0.

Proposition 7.20 dimL�A��i =1 and dimL�A�−�i =1.

Proof. By Proposition 7.13 we certainly have dimL�A��i ≤1. However, the
ideal I+ of Ñ such that Ñ /I+�N has the property that I+ is a sum of weight
spaces, and all weights occurring in I+ are sums of �1� � � � ��l involving at
least two terms. This is clear from the proof of Proposition 7.14. Thus �i is
not a weight of I+. Hence

dimL�A��i =dim L̃�A��i =1�

One shows similarly that dim L̃�A�−�i =1.

Proposition 7.21 The automorphism �i of L�A� transforms L�A�� to L�A�si�.
Hence dimL�A��=dimL�A�si�.
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Proof. Let x∈L�A��. Then �hx�=��h�x for all h∈H . We apply the auto-
morphism �i. This fixes H by Proposition 7.18. We have

��ih� �ix�=��h��ix�
Hence

�h� �ix�=�
(
�−1i h

)
�ix=�

(
s−1i h

)
�ix= �si��h�� �ix�

again by Proposition 7.18. Thus we have �ix∈L�A�si�. Hence
�i
(
L�A��

)⊂L�A�si��
Replacing �i by �−1i �� by si� and recalling that s2i =1 we also obtain

�−1i

(
L�A�si�

)⊂L�A���
Hence �i

(
L�A��

)⊃L�A�si� and we have �i
(
L�A��

)=L�A�si�.
We now define W to be the group of non-singular linear transformations

of H∗ =Hom�H��� generated by s1� � � � � sl and define � to be the set of
elements w��i� for w∈W and i∈ 
1� � � � � l�. Then � is the root system
determined by the given Cartan matrix A and W is its Weyl group.

Proposition 7.22 dimL�A��=1 for all �∈�.

Proof. We have �=w��i� for some i and some w∈W . Since W is gen-
erated by s1� � � � � sl�w is a product of such elements. Thus it follows from
Proposition 7.21 that

dimL�A��=dimL�A��i =1�

We aim to show that the Lie algebra L�A� is finite dimensional. As a step
in this direction we shall show that the Weyl group W is finite. W is iso-
morphic to the group of non-singular linear transformations of H� generated
by s1� � � � � sl where H�=�h1+· · ·+�hl. We have dimH�= l. We do not
have the scalar product on H� available from the Killing form, so we define
a scalar product directly from the Cartan matrix A.

Proposition 7.23 The Cartan matrix can be factorised as A=DB where
D is diagonal and B is symmetric. D is the diagonal matrix with entries
d1� � � � � dl ∈ 
1�2�3� defined as follows.
If the Dynkin diagram has only single edges then all di=1.
If the Dynkin diagram has a double edge then di=1 if �i is a long root

and di=2 if �i is a short root.
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If the Dynkin diagram has a triple edge then di=1 if �i is a long root and
di=3 if �i is a short root.

Proof. This may be checked from the standard list 6.12 of Cartan matrices.

For example in type G2 we have(
2 −1
−3 2

)
=
(
1 0
0 3

)(
2 −1
−1 2

3

)
�

We now define a bilinear form on H� by
〈
hi�hj

〉=didjBij . This form is
symmetric since B is a symmetric matrix.

Proposition 7.24 This scalar product is positive definite.

Proof. We have nij=AijAji=didjB
2
ij� thus −

√
nij=

√
di

√
djBij . The matrix

of our scalar product is

DBD=

⎛⎜⎜⎜⎜⎜⎝
√
d1

·
·
· √

dl

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
2
· −√nij
·

−√nij ·
2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
√
d1

·
·
· √

dl

⎞⎟⎟⎟⎟⎟⎠ �

This matrix is congruent to the matrix

( 2
· −√nij·

−√nij ·
2

)
of the quadratic

form Q �x1� � � � � xl� of Proposition 6.6, which is positive definite. Thus DBD
is also positive definite.

Proposition 7.25 Our scalar product on H� is invariant under W .

Proof. We first observe that

�hi� x�=di�i�x� for all x∈H��

For
〈
hi�hj

〉=didjBij=diAji=di�i

(
hj
)
. It is sufficient to show that

�six� siy�=�x� y� for all x� y∈H�. We note that si�x�=x−�i�x�hi since
si
(
hj
)=hj−Ajihi. Hence

�six� siy�=�x−�i�x�hi� y−�i�y�hi�
=�x� y�−�i�x� �hi� y�−�i�y� �hi� x�+�i�x��i�y� �hi�hi�
=�x� y�−di�i�x��i�y�−di�i�x��i�y�+2di�i�x��i�y�=�x� y��
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Thus the Weyl group W acts as a group of isometries on the Euclidean
space H�.

We define certain subsets of H� as follows:

Hi= 
x∈H� �hi� x�=0�

H+i = 
x∈H� �hi� x�>0�

H−i = 
x∈H� �hi� x�<0�

C=H+1 ∩· · ·∩H+l �

C is called the fundamental chamber.
Let Wij be the subgroup of W generated by si� sj , where i 	= j. sisj has finite

order mij given in terms of the Cartan matrix by 2 cos��/mij�=
√
nij . Thus

Wij is a finite dihedral group.

Lemma 7.26 Let w∈Wij with i 	= j. Then either w
(
H+i ∩H+j

)⊂H+i or
w
(
H+i ∩H+j

)⊂H−i and l �siw�= l �w�−1.

Proof. Let U be the 2-dimensional subspace of H� spanned by hi�hj and
U⊥ be the orthogonal subspace. Then H�=U⊕U⊥ and the elements of Wij

act trivially on U⊥. It is therefore sufficient to prove the result in U . Let
� =U ∩H+i ∩H+j . We obtain a configuration of chambers in U as shown in
Figure 7.1.

si sj (Γ)

sj si (Γ)

Hi

Hjsi (Γ)

sj (Γ)

Γ

Figure 7.1 Configuration of chambers in U
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The chambers �� sj���� sjsi���� � � � � sjsi � � �
←−mij−1−→

��� lie in H+i and the cham-

bers

si���� sisj���� sisjsi���� � � � � sisj � � �
←−mij−→

���

lie in H−i . The elements si� sisj� � � � � sisj � � �
←−mij−→

of Wij all satisfy l �siw�= l�w�−
1. Thus for each w∈Wij we have either w

(
H+i ∩H+j

)⊂H+i or w
(
H+i ∩H+j

)⊂
H−i and l �siw�= l�w�−1.

Proposition 7.27 (a) Let w∈W . Then either w�C�⊂H+i or w�C�⊂H−i and
l �siw�= l�w�−1.
(b) Let w∈W and i 	= j. Then there exists w′ ∈Wij such that w�C�⊂

w′
(
H+i ∩H+j

)
and l�w�= l�w′�+ l (w′−1w).

Note. Part (a) is the result we shall need. To prove it we must also prove part
(b) at the same time.

Proof. We prove both statements together by induction on l�w�. If l�w�=0
then w=1 and (a), (b) are true. So suppose l�w�>0. Then w= sjw′ with
l �w′�= l�w�−1 for some j. We prove (a).
First suppose j= i. By induction w′�C�⊂H+i or w′�C�⊂H−i and l �siw

′�=
l �w′�−1. But l �siw

′�= l �w′�+1, so w′�C�⊂H+i . Then w�C�⊂H−i and
l �siw�= l�w�−1.
Now suppose j 	= i. By induction there exists w′′ ∈Wij with w′�C�⊂

w′′
(
H+i ∩H+j

)
and l �w′�= l �w′′�+ l (w′′−1w′). Thus w�C�⊂ sjw′′ (H+i ∩H+j ).

By Lemma 7.26 we have either sjw
′′ (H+i ∩H+j )⊂H+i or sjw

′′ (H+i ∩H+j )⊂
H−i and l

(
sisjw

′′)= l (sjw′′)−1. In the first case w�C�⊂H+i . In the second
case w�C�⊂H−i and l �siw�= l

(
sisjw

′)= l (sisjw′′w′′−1w′)≤ l (sisjw′′)+
l
(
w′′−1w′

)= l (sjw′′)−1+ l (w′′−1w′)≤ l �w′′�+ l(w′′−1w′)= l �w′�= l�w�−1.
Thus l �siw�= l�w�−1 and (a) is proved.
We now prove (b). If w�C�⊂H+i ∩H+j then (b) holds with w′ =1. Thus

we may assume without loss of generality that w�C� 	⊂H+i . So by (a), which
is now proved under the assumption of the inductive hypothesis, w�C�⊂H−i
and l �siw�= l�w�−1. By induction there exists w′ ∈Wij such that siw�C�⊂
w′
(
H+i ∩H+j

)
and l �siw�= l �w′�+ l

(
w′−1siw

)
. Thus w�C�⊂ siw′

(
H+i ∩H+j

)
and

l�w�= 1+ l �siw�=1+ l �w′�+ l (w′−1siw)≥ l �siw′�+ l(�siw′�−1w)≥ l�w��
Thus we have equality throughout and l�w�= l �siw′�+ l

(
�siw

′�−1w
)
. Hence

siw
′ ∈Wij is the required element and (b) is proved.
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Proposition 7.28 If w∈W satisfies C∩w�C� is non-empty, then w=1.

Proof. Suppose w 	=1. Then w= siw′ with l �w′�= l�w�−1. By Proposi-
tion 7.27 (a) w′�C�⊂H+i . Thus w�C�⊂H−i . Hence

C∩w�C�⊂H+i ∩H−i =��
So if C∩w�C� is non-empty, w=1.

Now the Euclidean space H� has an orthonormal basis, and the isometries
of H� are represented by orthogonal matrices with respect to this basis. Thus
W ⊂Ol where Ol is the group of l× l orthogonal matrices. Ol⊂Ml, the set
of all l× l matrices over �.
For any matrix M= (mij

)∈Ml we define �M�=
√∑

i�j m
2
ij and for any

column vector v= ��1� � � � � �l�
t ∈�l we define �v�=√∑i �

2
i .

Lemma 7.29 (a) If M ∈Ol� v∈�l then �Mv�=�v�.
(b) If M ∈Ol�N ∈Ml then �MN�=�N�.
(c) If M ∈Ml� v∈�l then �Mv�≤�M��v�.

Proof. Straightforward.

Proposition 7.30 (a) W is finite.
(b) � is finite.

Proof. Since �=W��� where �= 
�1� � � � ��l� it is clear that (a) implies (b).

Thus we show that W is finite. We consider the W -action on the Euclidean
space H�. We give elements of H� coordinates relative to our orthonormal
basis. Let v= ��1� � � � � �l�

t ∈C. By definition of C there exists r>0 such that
Br�v�⊂C where

Br�v�=
{
x∈�l�x−v�<r

}
�

Let w∈W with w 	=1. Then w�C�∩C=� by Proposition 7.28. Thus
w�v� � C so

�w�v�−v�≥ r�
Hence

�w−1��v�≥�w�v�−v�≥ r
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so �w−1�≥ r
�v� . Put  = r

�v� . Then �w−1�≥ for all w 	=1 in W . Now let
w�w′ ∈W have w 	=w′. Then

�w−w′�=�w′ (w′−1w−1
)�=�w′−1w−1�≥ 

since w′ ∈Ol. Thus distinct elements of W are separated by a distance of at
least  . Since Ol, and hence W , is bounded it follows that W is finite.

We now return to our Lie algebra L�A�. We know that dimL�A�0= l and
dimL�A��=1 for all �∈�.
If we can prove that L�A��=O for all �∈H∗ with � 	∈�∪
0� we shall

be able to deduce that L�A� is finite dimensional.

Proposition 7.31 Suppose �∈H∗ satisfies � 	=0 and � 	∈�. Then
L�A��=O.

Proof. We assume that � 	=0 and L�A�� 	=O. Since dimL�A��≤dim L̃�A��
we see by Proposition 7.12 (iii) that �∈Q+ or �∈Q−. In particular � lies in
the vector space H∗� of real linear combinations of �1� � � � ��l.

Suppose first that � is a multiple of some root �∈�. Then �=n� or −n�
with n>0 and �∈�+. Now �=w��i� for some w∈W and some �i ∈� and
we have dimL�A�n�=dimL�A�n�i by Proposition 7.21. Hence L�A�n�i 	=O.
Now N is generated by elements e1� � � � � el and no non-zero Lie product of
these can have weight n�i unless n=1. Thus �=� or −�, that is �∈�.

Secondly suppose � is not a multiple of a root. Let

H�= 
h∈H�  ��h�=0�

H�= 
h∈H�  ��h�=0� �

Then H� is distinct from all the H���∈�. Since � is finite we can find
h∈H� such that h 	∈H� for all �∈�. It follows that w�h� 	∈H� for all �∈�,
since W permutes the H�.

We claim there exists w∈W such that �i�w�h��>0 for all i=1� � � � � l. To
see this we define the height of an element of H� by

ht
(∑

nihi
)=∑ni�

We choose an element w∈W such that ht w�h� is maximum. This is certainly
possible as W is finite. Then

si�w�h��=w�h�−�i�w�h��hi�
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Since ht si�w�h��≤htw�h� we have �i�w�h��≥0. However, �i�w�h��=0
would imply w�h�∈H�i

which is impossible. Thus �i�w�h��>0 for each i

and so w�h�∈C.
Now we have �w�����w�h��=��h�=0. We write w���=∑l

i=1mi�i. Then
we have

l∑
i=1

mi�i�w�h��=0�

Since �i�w�h��>0 for each i we must have some mi >0 and some mj <0 in
the sum. Thus w��� 	∈Q+ and w��� 	∈Q−. Hence L̃�A�w���=O. By Proposi-
tion 7.21 we deduce L̃�A��=O, and so L�A��=O. This gives the required
contradiction.

Corollary 7.32 (i) L�A�=H⊕∑�∈� L�A��.
(ii) dimL�A�= l+���.

Proof. This is evident since L�A� is the direct sum of its weight spaces. The
0-weight space is H and this has dimension l. The only non-zero weights are
the elements of � and the corresponding weight spaces are 1-dimensional.
Thus we have the required formula for the dimension of L�A�.

We now know that L�A� is a finite dimensional Lie algebra – indeed it has
the dimension required for a simple Lie algebra with Cartan matrix A. We
shall now be readily able to show that L�A� has the required properties.

Proposition 7.33 The Lie algebra L�A� is semisimple.

Proof. Let R be the soluble radical of L�A� and consider the series

R=R�0�⊃R�1�⊃· · ·⊃R�n−1�⊃R�n�=O

where R�i+1�= [R�i�R�i�
]
. We write I=R�n−1�. We suppose if possible that

R 	=O. Then I is a non-zero abelian ideal of L. Moreover I is invariant under
all automorphisms of L.

Since �HI�⊂ I we may regard I as an H-module. We decompose it into its
weight spaces. This weight space decomposition is

I= �H∩ I�⊕∑
�∈�

�L�∩ I� �
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For let x∈ I have x=x0+
∑

�∈� x� where x0 ∈H and x� ∈L�. We show x0 ∈ I
and each x� ∈ I . There exists h∈H such that ��h� 	=0 and ��h� 	=��h� for
all �∈� with � 	=�. Then

ad h
∏
�∈�
�	=�

�ad h−��h�1� x=��h� ∏
�∈�
�	=�

���h�−��h��x�

and this is an element of I . Hence x� ∈ I . Since this is true for each �∈� we
also have x0 ∈ I . Hence

I= �H∩ I�⊕∑
�∈�

�L�∩ I� �

We claim that L�∩ I=O for each �∈�. Otherwise we would have L�⊂ I .
Now �=w��i� for some w∈W and some i=1� � � � � l. By Proposition 7.21
we can find an automorphism of L�A� which transforms L� to L�i

. Since I is
invariant under all automorphism we would obtain L�i

⊂ I . Hence ei ∈ I . But
then �eifi�=hi ∈ I and we would have �hiei�=2ei ∈ I , contradicting the fact
that I is abelian. Hence L�∩ I=O for all �∈� and so I⊂H . Let x∈ I . Then
�xei�=�i�x�ei ∈ I hence �i�x�=0. Since �1� � � � ��l are linearly independent
we deduce that x=0. Hence I=O, a contradiction.

Proposition 7.34 H is a Cartan subalgebra of L�A�.

Proof. Since H is abelian it is sufficient to show that H=N�H�. Let x∈N�H�.
Then x=h′ +∑�∈� ��e� for h′ ∈H�e� ∈L�. Then for all h∈H we have

�hx�=∑
�∈�

����h�e� ∈H�

However, we can find h∈H such that ��h� 	=0 for all �∈�. We deduce that
��=0 for all �∈�, hence x∈H .

Proposition 7.35 L�A� is a simple Lie algebra with Cartan matrix A.

Proof. L�A�=H⊕∑�∈� L�A�� is the Cartan decomposition of L�A� with
respect to H . Thus � is the root system of L�A�. The Cartan matrix A′ = (A′ij)
of L�A� is determined by the condition

si
(
�j

)=�j−A′ij�i�
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However, we have

si
(
hj
)=hj−Ajihi by Proposition 7�18�

Using the facts that
(
si�j

)
hk=�j �sihk� and �j �hk�=Akj we deduce that

si
(
�j

)=�j−Aij�i�

Hence A′ =A and the Cartan matrix of L�A� is A.
Since the Dynkin diagram of A is assumed connected, L�A� must be a

simple Lie algebra, by Proposition 6.13.

Thus we have constructed, for each Cartan matrix on the standard list 6.12
a finite dimensional simple Lie algebra L�A� with Cartan matrix A.

Theorem 7.36 The finite dimensional non-trivial simple Lie algebras
over � are

Al l≥1

Bl l≥2

Cl l≥3

Dl l≥4

E6�E7�E8

F4

G2

These Lie algebras are pairwise non-isomorphic.

Proof. For each Cartan matrix on the standard list 6.12 there is a corresponding
finite dimensional simple Lie algebra, which by Theorem 7.5 is determined
up to isomorphism. Simple Lie algebras with different Cartan matrices cannot
be isomorphic since, by Proposition 6.4, the Cartan matrix on the standard
list is uniquely determined by the Lie algebra.

The description in Proposition 7.35 of the simple Lie algebras by generators
and relations enables us to choose the root vectors e� in a way which makes
the structure constants N��� very simple.

Theorem 7.37 It is possible to choose the root vectors e� in the simple Lie
algebra L�A� in such a way that N���=±�p+1� where−p�+�� � � � � q�+�
are the �-chain of roots through �.
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Proof. L�A� is the Lie algebra generated by elements e1� � � � � el�

h1� � � � � hl� f1� � � � fl subject to relations[
hihj

]=0[
hiej

]=Aijej[
hifj

]=−Aijfj

�eifi�=hi[
eifj

]=0 if i 	= j[
ei
[
ei � � �

[
eiej

]]]=0 if i 	= j[
fi
[
fi � � �

[
fifj

]]]=0 if i 	= j
with 1−Aij occurrences of ei� fi respectively.

We now define

e′i=−fi� h′i=−hi� f ′i =−ei�
It is straightforward to check that e′i� h

′
i� f
′
i satisfy the above relations. Thus

there is a homomorphism ! � L�A�→L�A� satisfying !�ei� = −fi�
! �hi�=− hi�!�fi�=−ei. Since !2=1�! is an automorphism of L�A�.
Let � be a positive root of L�A�. Then

�hie��=��hi� e�
and so

�−hi� � �e���=��hi� � �e��
that is

�hi� � �e���=−��hi� � �e��
whence � �e��∈L−�. Let � �e��=�e−�. Then � 	=0 and we may choose �∈�
with �2=−�−1. Then

� ��e��=−�−1e−�
and [

�e���
−1e−�

]= �e�e−��= 2h′�
�h′��h′��

�

We now change our choice of the root vectors e� ∈L�. For each positive root
� we take �e� as our root vector and for the corresponding negative root
−� we take �−1e−� as the root vector. Changing the notation to call these
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new root vectors e�� e−� we retain the multiplication formulae of Section 7.1,
except that the structure constants N��� may now be altered. We also now
have !�e��=−e−�. Now [

e�e�
]=N���e�+�

and so [−e−��−e−�]=N���

(−e−�−�) �
This implies N−��−�=−N���. By Proposition 7.1 (iii) we have N���N−��−�=
−�p+1�2, where −p�+�� � � � � q�+� is the �-chain of roots through �.
Hence N 2

���= �p+1�2 and N���=±�p+1�.

This result has important implications in the theory of Chevalley groups
over arbitrary fields. (See, for example, R. W. Carter, Simple Groups of Lie
Type, Wiley Classics Library, 1989.)
The signs in the formula N���=±�p+1� can be chosen in various ways.

By Lemma 7.3 and Proposition 7.4 the signs can be chosen arbitrarily for
extraspecial pairs of roots ����� and are then determined for all other pairs
�����.
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The simple Lie algebras

Having obtained a classification of the finite dimensional simple Lie algebras
over � we shall in the present chapter investigate them individually in order
to obtain their dimensions and a description of their root systems. In the case
of Lie algebras of type Al�Bl�Cl or Dl we shall also give a description in
terms of Lie algebras of matrices.
The strategy for obtaining this information will be as follows. Given a

Cartan matrix A on the standard list 6.12 we shall describe a symmetric scalar
product 
� � on an l-dimensional vector space V over � with basis �1� � � � ��l

such that

2

{
�i��j

}

�i��i�

=Aij i� j=1� � � � � l�

We compare this scalar product with the Killing form
〈
�i��j

〉
obtained when

�1� � � � ��l are interpreted as a fundamental system of roots in the simple Lie
algebra with Cartan matrix A. We claim there exists a constant " such that〈

�i��j

〉="{�i��j

}
for all i� j�

In fact we can define " by the equation

��1��1�="
�1��1� �

Then we have

2

〈
�i��j

〉
��i��i�

=2

{
�i��j

}

�i��i�

for all i� j

and since both scalar products are symmetric we deduce that〈
�j��j

〉
��i��i�

=
{
�j��j

}

�i��i�

for all i� j�

121
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Putting j=1 we deduce

��i��i�="
�i��i� for all i

and it follows that 〈
�i��j

〉="{�i��j

}
for all i� j�

Thus the symmetric scalar product 
� � is the same as the Killing form up
to multiplication by the constant ". In practise it will not be necessary to
determine this constant.
We then consider the fundamental reflections si � V→V defined by

si
(
�j

)=�j−Aij�i�

The maps s1� � � � � sl generate the Weyl group W of transformations of V . The
vectors in V of form w��i� for all w∈W and all i will then give the full root
system �. We shall then be able to obtain the dimension of the simple Lie
algebra L by the formula

dimL= l+����

8.1 Lie algebras of type Al

It will be convenient to describe the vector space V as a subspace of a larger
vector space Ṽ of dimension l+1.
Let Ṽ be a vector space over � with basis �1� � � � ��l+1 and let the sym-

metric scalar product 
� � on Ṽ be defined by{
�i��j

}=�ij i� j=1� � � � � l+1�

We define �1� � � � ��l by

�1=�1−�2� �2=�2−�3� � � � � �l=�l−�l+1�

Let V be the subspace of Ṽ spanned by �1� � � � ��l. Then we have dimV = l.
Our scalar product satisfies


�i��i�=2� 
�i��i+1�=−1�
{
�i��j

}=0 if �i−j�>1�

Hence

2

{
�i��j

}

�i��i�

=Aij i� j=1� � � � � l

where A= (Aij

)
is the Cartan matrix of type Al.
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We now consider the action of the fundamental reflections on V . We define
linear maps si � Ṽ→ Ṽ by

si ��i�=�i+1

si ��i+1�=�i

si
(
�j

)=�j j 	= i� i+1�

Then we have

si
(
�j

)=�j−Aij�i i� j=1� � � � � l

and so si restricted to V is the ith fundamental reflection.
We consider the group of transformations of Ṽ generated by s1� � � � � sl.

Since si acts on Ṽ by permuting �i��i+1 and fixing the remaining �j the
group generated by the si is the group of all permutations of �1� � � � ��l+1.
This group leaves the subspace V invariant and induces on V the Weyl group
W . Thus we have a surjective homomorphism

Sl+1→W

whose kernel is trivial. Hence the Weyl group of type Al is isomorphic to the
symmetric group Sl+1.
The full root system � of type Al is the set of vectors of form w��i� for

all w∈W and all i. This is the set

�={�i−�j  i 	= j i� j=1� � � � � l+1
}
�

Thus we have ���= l�l+1� and dimL= l+���= l�l+2�.
We shall now show that ��l+1��� is a simple Lie algebra of type Al.

We discussed this Lie algebra in Section 4.4. In particular we know from
Proposition 4.26 that the subalgebra H of diagonal matrices in L=��l+1���
is a Cartan subalgebra. Moreover by Proposition 4.27

L=H⊕∑
i 	=j

�Eij

is the Cartan decomposition of L with respect to H . By Theorem 4.25 L is a
simple Lie algebra. By Proposition 4.28 the roots of L are the functions⎛⎜⎜⎜⎜⎜⎝

�1

·
·
·
�l+1

⎞⎟⎟⎟⎟⎟⎠→�i−�j i 	= j
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and a system of fundamental roots is given by

�i

⎛⎜⎜⎜⎜⎜⎝
�1

·
·
·
�l+1

⎞⎟⎟⎟⎟⎟⎠=�i−�i+1�

We can now determine the Cartan matrix A= (Aij

)
of L. We recall from

Proposition 4.22 that the �i-chain of roots through �j when i 	= j has the form
�j��i+�j� � � � � q�i+�j

where q=−Aij . Since we know the roots we can determine the numbers q.
We have q=1 if i= j−1 or j+1 and q=0 otherwise. Thus the Cartan matrix
A is the same as the Cartan matrix of type Al in the standard list 6.12. Thus
we have proved:

Theorem 8.1 (i) The simple Lie algebra of type Al has dimension l�l+2�.
(ii) The Lie algebra ��l+1��� of all �l+1�×�l+1� matrices of trace 0 is

simple of type Al.

8.2 Lie algebras of type Dl

We recall that the Dynkin diagram of type Dl has form

1 2 l – 2
l – 1

l

Let V be a real vector space of dimension l and basis �1� � � � ��l. Let the sym-
metric scalar product 
� � be defined by

{
�i��j

}=�ij . We define �1� � � � ��l by

�1=�1−�2� �2=�2−�3� � � � � �l−1=�l−1−�l� �l=�l−1+�l�

Then we have


�i��i�=2 for all i


�i��i+1�=−1 for 1≤ i≤ l−2{
�i��j

}=0 for i� j∈ 
1� � � � � l−1� with �i−j�>1


�l−2��l�=−1

�i��l�=0 for i 	= l−2� l�
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It follows that

2

{
�i��j

}

�i��i�

=Aij for all i� j

and hence that the scalar product 
� � is a non-zero multiple of the Killing form.
We now consider the fundamental reflections si on V . For 1≤ i≤ l−1 we

have

si ��i�=�i+1

si ��i+1�=�i

si
(
�j

)=�j for j 	= i� i+1�

For i= l we have

sl ��l−1�=−�l

sl ��l�=−�l−1

sl
(
�j

)=�j for j 	= l−1� l�

Thus the Weyl group W generated by s1� � � � � sl has form

w��i�=±���i� w∈W
for some permutation � of 1� � � � � l. Let w��i�= i���i�. Then an even number
of the signs  i are equal to −1. Conversely for any permutation � of 1� � � � � l
and any set of signs  i with

∏
 i=1 there is an element w∈W acting as

above. It follows that the order of the Weyl group of type Dl is given by

�W �=2l−1l!�
We now consider the root system �. The elements of � have form w��i� for
all w∈W and all i. Since w acts on the �i by a permutation combined with
certain sign changes we obtain

�={±�i±�j  i 	= j∈ 
1� � � � � l�
}
�

All combinations of signs are possible. Hence ���=2l�l−1� and so

dimL= l+���= l�2l−1��

We now wish to describe L as a Lie algebra of matrices. We begin with a
lemma which will be useful both for the type being considered and for certain
other types also.
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Lemma 8.2 Let M be an n×n matrix over �. Then the set of all n×n
matrices X over � satisfying

XtM+MX=O
forms a Lie algebra under Lie multiplication of matrices.

Proof. The set of such matrices X is clearly closed under addition and scalar
multiplication. Let X1, X2 be matrices satisfying the given condition. Thus
we have

Xt
1M=−MX1� Xt

2M=−MX2�

It follows that

�X1X2�
tM = �X1X2−X2X1�

tM=Xt
2X

t
1M−Xt

1X
t
2M

=−Xt
2MX1+Xt

1MX2=MX2X1−MX1X2

=−M �X1X2� �

Thus the set of such matrices X forms a Lie algebra.

We now consider the special case when M is the 2l×2l matrix

M=
(
O Il
Il O

)
�

Then a 2l×2l matrix X=
(
X11 X12

X21 X22

)
satisfies XtM+MX=O if and only

if X22=−Xt
11 and X12, X21 are skew-symmetric. Let L be the Lie algebra of

all such matrices X and H be the set of diagonal matrices in L. The elements
of H have form

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Let us number the rows and columns 1� � � � � l�−1� � � � �−l. Then we have

L=H⊕∑
�

�e�
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where

e�=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Eij−E−j�−i
−E−i�−j+Eji for 0<i<j�

Ei�−j−Ej�−i
−E−i�j+E−j�i

that is for each pair i� j with 0<i<j we have four vectors e� as above.
Moreover each of the 1-dimensional spaces �e� is a H-module, and we have:

[
h�Eij−E−j�−i

]= (�i−�j

) (
Eij−E−j�−i

)
[
h�−E−i�−j+Eji

]= (�j−�i

) (−E−i�−j+Eji

)
[
h�Ei�−j−Ej�−i

]= (�i−�j

) (
Ei�−j−Ej�−i

)
[
h�−E−i�j+E−j�i

]= (−�i−�j

) (−E−i�j+E−j�i) �
We write �he��=��h�e� for all such e�.
Now the argument of Proposition 7.34 shows that H is a Cartan subalgebra

of L. The decomposition

L=H⊕∑
�

�e�

is then the Cartan decomposition of L with respect to H .
We next verify that L is semisimple. Suppose not. Then L has a non-zero

abelian ideal I . Since �HI�⊂ I we may regard I as a H-module and consider
the decomposition of I into weight spaces with respect to H . This gives

I= �H∩ I�⊕∑
�

��e�∩ I�

just as in the proof of Proposition 7.33. Suppose if possible that �e�∩ I 	=O
for some �. Then we have e� ∈ I . We then define h� by h�= �e�e−�� and
observe that �h�e��=2e�. Then e��h� ∈ I and we have a contradiction to the
fact that I is abelian. Hence �e�∩ I=O for all � and so I⊂H . Let x∈ I .
Then �xe��=��x�e� ∈ I so ��x�=0. This holds for all � and so x=0. Thus
I=O, which gives a contradiction. Hence L is semisimple.
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We now know that the functions � � H→� given above are the roots of L
with respect to H . A system of fundamental roots is given by

�1�h�=�1−�2

�2�h�=�2−�3

���

�l−1�h�=�l−1−�l

�l�h�=�l−1+�l

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.
We now determine the Cartan matrix of L. Let the �i-chain of roots through

�j for i 	= j be
�j� �i+�j� � � � � q�i+�j�

Then Aij=−q by Proposition 4.22. Since we know the roots we can find
the number q and hence Aij for each i 	= j. This gives us the Cartan matrix
A= (Aij

)
of type Dl on the standard list 6.12.

Finally we note that since this Cartan matrix is indecomposable the Lie
algebra L must be simple by Corollary 6.15. Thus we have proved the
following result:

Theorem 8.3 (i) The simple Lie algebra of type Dl has dimension l�2l−1�.
(ii) The Lie algebra of all 2l×2l matrices X satisfying XtM+MX=0

where

M=
(
O Il
Il O

)

is simple of type Dl when l≥4.

8.3 Lie algebras of type Bl

We recall that the Dynkin diagram of type Bl has form

l – 1 l1 2



8.3 Lie algebras of type Bl 129

Let V be a real vector space of dimension lwith basis �1� � � � ��l. Let the scalar
product 
� � on V be defined by

{
�i��j

}=�ij . We define �1� � � � ��l ∈V by

�1=�1−�2� �2=�2−�3� � � � � �l−1=�l−1−�l� �l=�l�

Then we have


�i��i�=2 for 1≤ i≤ l−1


�l��l�=1


�i��i+1�=−1 for 1≤ i≤ l−1{
�i��j

}=0 if �i−j�>1�

It follows that

2

{
�i��j

}

�i��i�

=Aij for all i� j

where A= (Aij

)
is the Cartan matrix of type Bl on the standard list 6.12.

Thus the scalar product 
� � is a non-zero multiple of the Killing form.
We now consider the fundamental reflections si on V . We have, for 1≤

i≤ l−1,

si ��i�=�i+1

si ��i+1�=�i

si
(
�j

)=�j j 	= i� i+1�

For i= l we have

sl ��l�=−�l

sl ��i�= �i i 	= l�
Thus the Weyl group W generated by s1� � � � � sl consists of elements w of
the form

w��i�=±���i�

for some permutation � of 1� � � � � l. Let w��i�= i���i�. Then, given any
permutation � of 1� � � � � l and any set of signs  i ∈ 
1�−1� there is an element
w∈W such that w��i�= i���i� for all i. Thus the order of the Weyl group
W of type Bl is

�W �=2ll!�
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We now consider the root system �. The elements of � have form w��i�

for all w∈W and all i. Since w acts on the �i by means of a permutation
combined with sign changes we obtain

�={±�i±�j i 	= j ±�i

}
�

All combinations of signs are possible. Thus we have ���=2l2 and so

dimL= l+���= l�2l+1��

We shall now describe L as a Lie algebra of matrices. We use Lemma 8.2
and this time we take the �2l+1�×�2l+1� matrix M given by

M=

⎛⎜⎜⎜⎝
2 0 � � � 0
0 O Il
���

0 Il O

⎞⎟⎟⎟⎠ �

Let L be the Lie algebra of all �2l+1�×�2l+1� matrices X satisfying the
condition

XtM+MX=O
We consider X as a block matrix⎛⎝X00 X01 X02

X10 X11 X12

X20 X21 X22

⎞⎠1
l

l

1 l l

Then X satisfies XtM+MX=O if and only if X22=−Xt
11, X12 and X21 are

skew-symmetric, X10=−2Xt
02, X20=−2Xt

01 and X00=0.
Let H be the set of diagonal matrices in L. The elements of H have form

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

We number the rows and columns 0�1� � � � � l�−1� � � � �−l. Then we have

L=H⊕∑
�

�e�
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where

e�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eij−E−j� −i
−E−i� −j+Eji

Ei� −j−Ej� −i for 0<i<j

−E−i� j+E−j� i

2Ei0−E0� −i for 0<i

−2E−i0+E0i �

Each of the 1-dimensional spaces �e�
is an H-module and we have[

h�Eij−E−j� −i
]= (�i−�j

) (
Eij−E−j� −i

)
[
h�−E−i� −j+Eji

]= (�j−�i

) (−E−i� −j+Eji

)
[
h�Ei� −j−Ej� −i

]= (�i+�j

) (
Ei� −j−Ej� −i

)
[
h�−E−i� j+E−j� i

]= (−�i−�j

) (−E−i� j+E−j� i

)
[
h�2Ei0−E0�−i

]=�i

(
2Ei0−E0�−i

)
[
h�−2E−i� 0+E0i

]=−�i

(−2E−i� 0+E0i

)
�

We write �he��=��h�e� for all such �.
We now show that H is a Cartan subalgebra of LL=H⊕∑��e� is the

Cartan decomposition of L with respect to H , and L is semisimple. These
facts can be proved in exactly the same way as that used in Section 8.2 for
type Dl.

We now know that the functions � �H→� given above are the roots of L
with respect to H . A system of fundamental roots is given by

�1�h�=�1−�2

�2�h�=�2−�3

���

�l−1�h�=�l−1−�l

�l�h�=�l

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.
We can now determine the Cartan integersAij . Let �j��i+�j� � � � � q�i+�j

be the �i-chain of roots through �j for i 	= j. By Proposition 4.22 we have
Aij=−q and so the Cartan matrix A= (Aij

)
can be determined. This turns



132 The simple Lie algebras

out to be the Cartan matrix of type Bl on the standard list 6.12. Finally we
observe that L must be a simple Lie algebra by Corollary 6.15, since its
Cartan matrix is indecomposable. Thus we have

Theorem 8.4 (i) The simple Lie algebra of type Bl has dimension l�2l+1�.
(ii) The Lie algebra of all �2l+1�×�2l+1� matrices X satisfying XtM+

MX=O where

M=

⎛⎜⎜⎜⎝
2 0 · · · 0
0 O Il
���

0 Il O

⎞⎟⎟⎟⎠
is simple of type Bl when l≥2.

8.4 Lie algebras of type Cl

We recall that the Dynkin diagram of type Cl has form

l – 1 l1 2

Let V be a real vector space of dimension lwith basis �1� � � � ��l. Let the scalar
product 
� � on V be defined by 
�i��j�=�ij . We define �1� � � � ��l ∈V by

�1=�1−�2� �2=�2−�3� � � � � �l−1=�l−1−�l� �l=2�l�

Then we have


�i��i�=2 for 1≤ i≤ l−1


�l��l�=4


�i��i+1�=−1 for 1≤ i≤ l−2


�l−1��l�=−2{
�i��j

}=0 for �i−j�>1�

It follows that

2

{
�i��j

}

�i��i�

=Aij for all i� j

where A= (Aij

)
is the Cartan matrix of type Cl on the standard list 6.12.

Thus the scalar product 
� � is a non-zero multiple of the Killing form.
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The fundamental reflections s1� � � � � sl act on �1� � � � ��l in exactly the same
manner as in type Bl, considered in Section 8.3. Thus we have

�W �=2ll!

as in Section 8.3 and each w∈W acts on the �i by means of a permutation
combined with sign changes. Both the permutation and the sign changes can
be chosen arbitrarily. Thus we obtain the root system � as the set of all
vectors of form w��i� for all w∈W and all i. Thus

�={±�i±�j i 	= j ±2�i

}
�

All combinations of signs are possible. Thus we have ���=2l2 and

dimL= l+���= l�2l+1��

We next describe L as a Lie algebra of matrices. Again we use Lemma 8.2.
This time we take the 2l×2l matrix M given by

M=
(
O Il
−Il O

)
�

Let L be the Lie algebra of all 2l×2l matrices satisfying the condition

XtM+MX=O�

Let X=
(
X11 X12

X21 X22

)
. Then X lies in L if and only if X22=−Xt

11 and X12�X21

are symmetric.
Let H be the set of diagonal matrices in L. The elements of H have form

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

We number the rows and columns 1� � � � � l�−1� � � � �−l. Then we have

L=H⊕∑
�

�e�
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where

e�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eij−E−j� −i
−E−i� −j+Eji 0<i<j
Ei� −j+Ej� −i
E−i� j+E−j� i

Ei� −i 0<i�
E−i� i

Each of the 1-dimensional spaces �e� is a H-module. We have[
h�Eij−E−j� −i

]= (�i−�j

) (
Eij−E−j� −i

)
[
h�−E−i� −j+Eji

]= (�j−�i

) (−E−i� −j+Eji

)
[
h�Ei� −j+Ej� −i

]= (�i+�j

) (
Ei� −j+Ej� −i

)
[
h�E−i� j+E−j� i

]= (−�i−�j

) (
E−i� j+E−j� i

)
[
h�Ei� −i

]=2�iEi� −i[
h�E−i� i

]=−2�iE−i� i�

We write �he��=��h�e� for all such �.
We observe that H is a Cartan subalgebra of L, that L=H⊕∑��e� is

the Cartan decomposition of L with respect to H , and that the Lie algebra L
is semisimple, using the same arguments as given in Section 8.2 for type Dl.
The functions � � H→� given above are the roots of L with respect to

H . A system of fundamental roots is given by

�1�h�=�1−�2

�2�h�=�2−�3

���

�l−1�h�=�l−1−�l

�l�h�=2�l

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.
We can now determine the Cartan integersAij . Let �j��i+�j� � � � � q�i+�j

be the �i-chain of roots through �j , for i 	= j. Then Aij=−q. The Cartan
matrix A= (Aij

)
determined in this way turns out to be the Cartan matrix of
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type Cl on the standard list 6.12. Finally L is a simple Lie algebra, since its
Cartan matrix is indecomposable. Thus we have

Theorem 8.5 (i) The simple Lie algebra of type Cl has dimension l�2l+1�.
(ii) The Lie algebra of all 2l×2l matrices X satisfying XtM+MX=O where

M=
(
O Il
−Il O

)
is simple of type Cl when l≥3.

The Lie algebras of type Al, Bl, Cl or Dl are called the simple Lie alge-
bras of classical type. The remaining simple Lie algebras E6, E7, E8, F4,
G2 are called the exceptional simple Lie algebras. We now determine the
dimensions and root systems of the exceptional Lie algebras.

8.5 Lie algebras of type G2

The Dynkin diagram of type G2 is

1 2

and the corresponding Cartan matrix is(
2 −1
−3 2

)
�

Let �1��2 be the fundamental roots in a root system of type G2. Then we
have

s1 ��1�=−�1 s2 ��1�=�1+3�2

s1 ��2�=�1+�2 s2 ��2�=−�2

and W =�s1� s2�. Thus each root in � is obtained from �1 or �2 by applying
s1� s2 alternately. Now we have

�1→
s1
−�1→

s2
−�1−3�2→

s1
−2�1−3�2

�1→
s2
�1+3�2→

s1
2�1+3�2

�2→
s1
�1+�2→

s2
�1+2�2

�2→
s2
−�2→

s1
−�1−�2→

s2
−�1−2�2
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and

s2 �−2�1−3�2�=−2�1−3�2

s2 �2�1+3�2�=2�1+3�2

s1 ��1+2�2�=�1+2�2

s1 �−�1−2�2�=−�1−2�2�

Thus all the vectors in the above sequences are roots, and we do not obtain
new vectors by continuing the sequences further. Hence

�= 
�1� �2� �1+�2� �1+2�2� �1+3�2� 2�1+3�2� −�1�

−�2�−�1−�2� −�1−2�2� −�1−3�2� −2�1−3�2� �

Thus we have ���=12 and dimL=14. Hence we have proved

Theorem 8.6 The simple Lie algebra of type G2 has dimension 14.

Figures 8.1, 8.2 and 8.3 compare the simple root systems of types A2�B2

and G2.

α2

α1

–α1

– α 2

α1 + α2

–α 1 – α 2

Figure 8.1 Simple root system of type A2
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α2–α2

α1

–α1

α1 + 2α2α1 + α2

–α1 – 2α2 –α1 – α2

Figure 8.2 Simple root system of type B2

α 2–α2

α1 α1 + 3α2

–2α1 – 3α2

–α1

2α1 + 3α2

α1 + 2α2α1 + α2

–α1 – 2α2–α1 – 3α2 –α1 – α2

Figure 8.3 Simple root system of type G2
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8.6 Lie algebras of type F4

The Dynkin diagram of type F4 is

1 2 3 4

and the corresponding Cartan matrix is⎛⎜⎜⎝
2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

⎞⎟⎟⎠
Let V be a real vector space with dimV =4 and �1��2��3��4 be a basis
of V . Let the scalar product 
� � on V be defined by

{
�i��j

}=�ij . We define
�1��2��3��4 ∈V by

�1=�1−�2 �2=�2−�3 �3=�3 �4= 1
2 �−�1−�2−�3+�4� �

Then we have


�1��1�= 
�2��2�=2


�3��3�= 
�4��4�=1


�1��2�= 
�2��3�=−1

�3��4�=− 1

2{
�i��j

}= 0 if �i−j�>1�

It follows that

2

{
�i��j

}

�i��i�

=Aij for all i� j�

Thus the scalar product 
� � is a non-zero multiple of the Killing form. We
consider the action of the corresponding fundamental reflections s1, s2, s3, s4.
We have

s1 ��1�=�2� s1 ��2�=�1� s1 ��3�=�3� s1 ��4�=�4

s2 ��1�=�1� s2 ��2�=�3� s2 ��3�=�2� s2 ��4�=�4

s3 ��1�=�1� s3 ��2�=�2� s3 ��3�=−�3� s3 ��4�=�4�

We consider the subgroup �s1� s2� s3� of the Weyl group W generated by s1,
s2, s3. Elements in this subgroup all fix �4 but act on �1, �2, �3 by means of a
permutation combined with sign changes. Thus w��i�= i���i� for i=1�2�3.
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Moreover each permutation � and each choice of signs  i arise in this way.
Applying the elements of this subgroup of W to �1, �2, �3, �4 we see that
the vectors

±�i 1≤ i≤3

±�i±�j i 	= j 1≤ i� j≤3

1
2 �±�1±�2±�3±�4�

all lie in �. We next consider the action of s4. We have

s4 ��1�= 1
2 ��1−�2−�3+�4�

s4 ��2�= 1
2 �−�1+�2−�3+�4�

s4 ��3�= 1
2 �−�1−�2+�3+�4�

s4 ��4�= 1
2 ��1+�2+�3+�4� �

Since s24=1 we have s4
(
1
2 ��1+�2+�3+�4�

)=�4. Hence �4 ∈�. We also
have s4 ��1+�2�=−�3+�4. Hence −�3+�4 ∈�. Thus, applying further
elements of the subgroup �s1� s2� s3� we see that the vectors

±�i 1≤ i≤4

±�i±�j i 	= j 1≤ i� j≤4

1
2 �±�1±�2±�3±�4�

all lie in �, where the choice of signs is arbitrary.
We show this set of vectors is the whole of �. To do so it is sufficient to

show that the set is invariant under s1, s2, s3, s4. The set is clearly invariant
under s1, s2, s3 because of the simple action of these reflections on �1, �2, �3,
�4 described above. Thus it is sufficient to show the set is invariant under s4.
Now the action of s4 given above shows that

s4 �±�i�= 1
2 � 1�1+ 2�2+ 3�3+ 4�4�

where  i ∈ 
1�−1� and
∏
 i=1. Thus s4 transforms vectors ±�i into the

given set, giving as images vectors 1
2

∑
 i�i with

∏
 i=1. Since there are

eight such vectors they all appear as vectors s4 �±�i�. Since s
2
4=1 we deduce

that all vectors 1
2

∑
 i�i with

∏
 i=1 are transformed by s4 into the given set.
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The formulae for s4 ��i� also show that, for all i 	= j, s4
(±�i±�j

)
has form

±�k±�l for certain k 	= l. Thus s4 transforms vectors ±�i±�j , i 	= j, into the
given set.
It remains to show that s4 transforms all vectors 1

2

∑
 i�i with

∏
 i=

−1 into the given set. We may clearly assume  4=1. There are four such
vectors. One of them is �4 and we have s4 ��4�=−�4. The other three are
all orthogonal to �4 and so are transformed into themselves by s4.

Thus the given set of vectors is invariant under s1, s2, s3, s4 so is the whole
of �. Thus we have

�= 
±�i 1≤ i≤4

±�i±�j i 	= j 1≤ i� j≤4

1
2 �±�1±�2±�3±�4���

In particular we have ���=48, hence dimL=52. Thus we have

Theorem 8.7 The simple Lie algebra of type F4 has dimension 52.

We observe that the roots of F4 are of two different lengths. There
are 24 short roots and 24 long roots. The short roots are ±�i and
1
2 �±�1±�2±�3±�4�. The long roots are ±�i±�j .

8.7 Lie algebras of types E6, E7, E8

We now consider the simple Lie algebra of type E8. Its Dynkin diagram is

1 2 3 4 5

6

7 8

Let V be a real vector space with dimV =8 and with basis �i i=1� � � � �8.
Let the scalar product 
� � on V be defined by

{
�i��j

}=�ij . We wish to find
a fundamental system of roots of type E8 in V . We note that if the vertex 8 is
removed from the Dynkin diagram we obtain a Dynkin diagram of type D7.
This indicates how the first seven vectors in the fundamental system should
be chosen. The last one is chosen to be linearly independent of the others and
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to satisfy the appropriate conditions relating to the scalar product. Thus we
define �1� � � � ��8 ∈V by:

�i=�i−�i+1 1≤ i≤6

�7=�6+�7

�8=− 1
2

8∑
i=1

�i�

Then we have


�i��i�= 2 for 1≤ i≤8


�i��i+1�=−1 for 1≤ i≤5


�5��7�=−1

�7��8�=−1{
�i��j

}= 0 for all other pairs i� j�

It follows that

2

{
�i��j

}

�i��i�

=Aij

where A= (Aij

)
is the Cartan matrix of type E8 on the standard list.

In order to obtain the remaining roots we consider the action of the funda-
mental reflections s1� � � � � s8. We have

si ��i�=�i+1

si ��i+1�=�i

si
(
�j

)=�j for j 	= i� i+1

when 1≤ i≤6. Thus the subgroup of the Weyl group W generated by
s1� � � � � s6 will give all permutations of �1� � � � ��7 and will fix �8. The fun-
damental reflection s7 acts by:

s7 ��6�=−�7

s7 ��7�=−�6

s7 ��i�= �i i 	=6�7�

Thus the subgroup of W generated by s1� � � � � s7 will act on �1� � � � ��7 by
permutations and sign changes, and will fix �8. Moreover the number of sign
changes will be even, and any permutation of �1� � � � ��7 combined with any
even number of sign changes will arise in this way.
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It is then clear that the vectors

±�i±�j 1≤ i� j≤7 i 	= j

1
2

(
8∑

i=1
 i�i

)
 i=±1�

∏
 i=1

are all in the root system �. We also have

s8 ��i�=�i−2

�8��i�


�8��8�
�8=�i+ 1

2�8

for 1≤ i≤8. Thus

s8 ��7+�8�= 1
2 �−�1−�2−�3−�4−�5−�6+�7+�8�∈��

Since s28=1 it follows that �7+�8 ∈�. We then see that ±�i±�8 ∈� for
all i with 1≤ i≤7. Thus the set of vectors

±�i±�j 1≤ i� j≤8 i 	= j

1
2

(
8∑

i=1
 i�i

)
 i=±1� � i=1

lies in �. We shall show this is the full root system �. In order to do so we
must verify that this set is invariant under s1� � � � � s8. It is clearly invariant
under s1� � � � � s7 since these fix �8 and act by permutations together with an
even number of sign changes on �1� � � � ��7. Thus it is sufficient to verify
that this set is invariant under s8. Now we have

s8
(
�i−�j

)=�i−�j for all i 	= j�
Thus the set of vectors of form �i−�j� i 	= j, is invariant under s8. Also

s8
(
�i+�j

)=�i+�j+�8 for all i 	= j�
Thus s8 transforms vectors of form �i+�j� i 	= j, into vectors 1

2 �
∑

 i�i� with
two  i equal to 1 and six equal to −1. Moreover all vectors 1

2 �
∑

 i�i�

with this property arise in this way. Similarly such vectors with six  i equal
to 1 and two equal to −1 have the form s8

(−�i−�j

)
. Thus vectors of form

�i+�j or −�i−�j with i 	= j are transformed by s8 into the given set, and
so are vectors 1

2

∑
 i�i of type (2, 6) or (6, 2). The vectors of this form of

type (0, 8) or (8, 0) are �8 and −�8, which are transformed into one another
by s8. It remains to show that s8 transforms vectors 1

2

∑
 i�i of type (4, 4)

into the given set. However, since such vectors have four positive signs and
four negative signs they are orthogonal to �8, hence s8 transforms each such
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vector into itself. Thus the given set of vectors is invariant under s1� � � � � s8
so is the full root system �.

There are 4 ·
(
8
2

)
=112 vectors of form ±�i±�j with i 	= j and 27=128

vectors of form 1
2

∑
 i�i with  i=±1 and

∏
 i=1. Thus the total number

of roots is

���=112+128=240�

Finally we have dimL=8+���=248. Thus we have proved

Theorem 8.8 The simple Lie algebra of type E8 has dimension 248.

We now turn to the simple Lie algebra of type E7. Its Dynkin diagram is

Thus the vectors �2��3��4��5��6��7��8 considered above form a funda-
mental root system of type E7. In order to obtain the full root system we
must transform these vectors repeatedly by s2� � � � � s8 until no new vectors
are obtained. Now the vectors �2� � � � ��8 are all orthogonal to �1−�8. Thus
all their transforms by s2� � � � � s8 will also be orthogonal to �1−�8. These
transforms are contained in the set of roots of E8 obtained above.

Now the roots of E8 orthogonal to �1−�8 are:

±�i±�j� 2≤ i� j≤7� i 	= j
± ��1+�8�

1
2

∑
 i�i�  i=±1�

∏
 i=1�  1= 8�

Thus the required root system of E7 is contained in this set. We shall show it
is the whole of this set.
We first consider the action of the subgroup of the Weyl group of E7

generated by s2� s3� s4� s5� s6� s7. Elements of this subgroup fix �1 and �8 and
act on �2��3��4��5��6��7 by permutations combined with sign changes
with an even number of negative signs. By applying elements of this subgroup
to �2� � � � ��8 we see that the vectors

±�i±�j� 2≤ i� j≤7� i 	= j
1
2

∑
 i�i�  i=±1�

∏
 i=1�  1= 8
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are all roots of E7. It remains to show that ± ��1+�8� are also roots of E7.
However,

s8 ��1+�8�=�1+�8+�8= 1
2 ��1−�2−�3−�4−�5−�6−�7+�8�

is a root of E7, thus so is �1+�8 and −�1−�8.

There are 4
(
6
2

)
=60 roots of form ±�i±�j� 2≤ i� j≤7� i 	= j and 26=

64 roots of form 1
2

∑
 i�i with  i=±1�

∏
 i=1 and  1= 8. Thus the number

of roots of E7 is given by

���=60+2+64=126�

Also we have

dimL=7+���=133�

Thus we have shown:

Theorem 8.9 The simple Lie algebra of type E7 has dimension 133.

Finally we consider the simple Lie algebra of type E6. Its Dynkin diagram is

Thus the vectors �3��4��5��6��7��8 considered above form a fundamental
root system of type E6. In order to obtain the full root system of E6 we
must transform these vectors successively by the fundamental reflections
s3� s4� s5� s6� s7� s8.
Now the vectors �3� � � � ��8 are all orthogonal to both �1−�8 and �2−�8.

Thus the full root system of E6 is orthogonal to �1−�8 and �2−�8.
Now the roots of E8 orthogonal to both �1−�8 and �2−�8 are:

±�i±�j 3≤ i� j≤7� i 	= j

1
2

(
8∑

i=1
 i�i

)
 i=±1�

∏
 i=1�  1= 2= 8�

Thus the required root system of E6 is contained in this set. We shall show it
is equal to this set of vectors.
Consider the action of the subgroup of the Weyl group of type E6 gen-

erated by s3� s4� s5� s6� s7. Elements of this subgroup fix �1��2��8 and act
on �3��4��5��6��7 by permutations combined with sign changes with an
even number of negative signs. By applying elements of this subgroup
to �3��4��5��6��7��8 we can obtain all vectors of form ±�i±�j with
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Table 8.11 The simple Lie algebras

L dimH ��� dimL

Al l≥1 l l�l+1� l�l+2�
Bl l≥2 l 2l2 l�2l+1�
Cl l≥3 l 2l2 l�2l+1�
Dl l≥4 l 2l�l−1� l�2l−1�
E6 6 72 78
E7 7 126 133
E8 8 240 248
F4 4 48 52
G2 2 12 14

3≤ i� j≤7, i 	= j, and (up to sign) all vectors of form 1
2

∑
 iei with  i=±1,∏

 i=1,  1= 2= 8. Hence the vectors in the above set are all roots of E6.

There are
(
5
2

)
·4=40 vectors of type ±�i±�j with 3≤ i� j≤7� i 	= j, and

25=32 vectors of type 1
2

∑
 iei with  i=±1,

∏
 i=1 and  1= i= 8. Thus

the total number of roots is

���=40+32=72

and we have

dimL=6+���=78�

Thus:

Theorem 8.10 The simple Lie algebra of type E6 has dimension 78.

We have now determined the dimensions of all the simple Lie algebras.
We summarise the information we have obtained in Table 8.11. In this table
L is a simple Lie algebra, H is a Cartan subalgebra and � the system of roots
of L with respect to H .

8.8 Properties of long and short roots

Proposition 8.12 In the simple Lie algebras of types Al�Dl�E6�E7�E8 all
the roots have the same length. In the Lie algebras of types Bl�Cl�F4�G2

there are two possible lengths of roots. These are called the long roots and
short roots.

Proof. This is clear from the preceding results.
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Proposition 8.13 (i) Let � be a root system of type Bl with fundamental
system

α2α1 α l – 1 α l

Then the long roots form a subsystem of type Dl with fundamental system

α2α1

α l–1

α l–2 α l–1 + 2α l

and the short roots form a subsystem of type �A1�
l with fundamental system

αl–1 + αl αlα1 + + αl α2 + + αl

(ii) Let � be a root system of type Cl with fundamental system

α lα l–1α2α1

Then the long roots form a subsystem of type �A1�
l with fundamental

system

2αl –1 + αl αl2α2 + + 2αl–1 + αl2α1 + + 2αl–1 + αl

and the short roots form a subsystem of type Dl with fundamental system

α2α1

αl–1

αl–2 αl–1 + αl

(iii) Let � be a root system of type F4 with fundamental system

α2 α3 α4α1

Then the long roots form a subsystem of type D4 with fundamental system

α1α2 + 2α3

α2 + 2α3 + 2α4

α2
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and the short roots form a subsystem of type D4 with fundamental system

α4α2 + α3

α1 + α2 + α3

α3

(iv) Let � be a root system of type G2 with fundamental system

α1 α2

Then the long roots form a subsystem of type A2 with fundamental system

α1 + 3α2α1

and the short roots form a subsystem of type A2 with fundamental system

α1 + α2 α2

Proof. (i) We saw in Section 8.3 that the roots of type Bl have form
±�i±�j� i 	= j, and ±�i. The former are the long roots and the latter the
short roots. The long roots form a system of type Dl with fundamental sys-
tem �1−�2��2−�3� � � � ��l−1−�l��l−1+�l. These are �1��2� � � � � �l−1,
�l−1+2�l respectively. The short roots form a system of type �A1�

l with
fundamental system �1� � � � ��l. These are �1+· · ·+�l��2+· · ·+�l� � � � � �l

respectively.
(ii) We saw in Section 8.4 that the roots of type Cl have form±�i±�j� i 	= j,

and ±2�i. The former are the short roots and the latter the long roots.
Thus the short roots form a subsystem of type Dl and the long roots a
subsystem of type �A1�

l.
(iii) We saw in Section 8.6 that the roots of type F4 have form

±�i±�j i 	= j
±�i

1
2 �±�1±�2±�3±�4� �

Roots of the first type are long and those of the second and third types are
short. The long roots form a subsystem of type D4 with fundamental sys-
tem �4−�1��1−�2��2−�3��2+�3. These are �2+2�3+2�4��1��2,
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�2+2�3 respectively. The short roots also form a subsystem of type D4,
with fundamental system �1, �2, �3,

1
2 �−�1−�2−�3+�4�. These are

�1+�2+�3� �2+�3� �3� �4 respectively.
(iv) The long and short roots of type G2 are evident from Section 8.5.

Let �= 
�i� be a fundamental system of roots in a simple Lie algebra whose
Dynkin diagram has a double or triple edge, and let � be the root system
with fundamental system �. Consider the simple Lie algebra whose Dynkin
diagram is obtained from that above by reversing the direction of the arrow.
Let �v= 
�v

i � be the corresponding fundamental system, labelled as before,
and �v be the root system with fundamental system �v.

System �v is called the dual root system of �. The possible types of
���v are as shown.

� �v

Bl Cl

Cl Bl

F4 F4

G2 G2

We note that �i is a short root in � if and only if �v
i is a long root in �v.

We suppose as usual that we have symmetric scalar products 
� � on ��
and ��v such that

2

{
�i��j

}

�i��i�

=Aij� 2

{
�v
i � �

v
j

}

�v

i � �
v
i �
=Av

ij

for all i, j, where A= (Aij

)
, Av= (Av

ij

)
are the Cartan matrices of �, �v

respectively.
We consider the free abelian groups ��, ��v generated by �, �v. We

define a homomorphism

� � ��v→��

by

� ��v
i �=

{
p�i if �i is a short root

�i if �i is a long root

where p is the ratio of the squared lengths of the long and short roots. (Thus
p=2 in types Bl, Cl, F4 and p=3 in type G2.)
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Lemma 8.14 2

{
� ��v

i �� �
(
�v
j

)}

� ��v

i �� � ��
v
i ��
=Av

ij for all i, j.

Proof. We write � ��v
i �=�i�i where �i=p if �i is short and �i=1 if �i is

long. Then

2

{
� ��v

i �� �
(
�v
j

)}

� ��v

i �� � ��
v
i ��
=�−1i �j2

{
�i��j

}

�i��i�

=�−1i �jAij�

However, �−1i �jAij=Av
ij . This follows from the following observations.

If Aij 	=0 and �i��j have the same length then we have �i=�j and Aij=
Av
ij=−1.
If Aij 	=0��i is long, �j is short then �i=1� �j=p�Aij=−1 and Av

ij=−p.
If Aij 	=0��i is short, �j is long then �i=p��j=1�Aij=−p�Av

ij=−1.
Thus in all cases we have �−1i �jAij=Av

ij .

Lemma 8.15 The diagram

svi

��v �→ ��
↓ ↓

��v −→
�
��

si

commutes.

Proof. On the one hand �svi
(
�v
j

)=� (�v
j −Av

ij�
v
i

)=� (�v
j

)−Av
ij� ��

v
i �. On the

other hand

si�
(
�v
j

)= si
(
�j�j

)=�jsi (�j

)=�j (�j−Aij�i

)
= �j�j−�−1i �jAij ��i�i�=�

(
�v
j

)−Av
ij� ��

v
i � �

Thus �svi = si�.
Let W�W v be the Weyl groups of ���v. There is a natural isomorphism
W �W v under which si corresponds to s

v
i , since the root lengths are irrelevant

as far as the structure of the Weyl group is concerned. We shall use this
isomorphism to identify W v with W . Then Lemma 8.15 shows that �w=w�
for all w∈W .

Proposition 8.16 Given �v ∈�v there is a unique �∈� such that

� ��v�=
{
p� if � is short

� if � is long.
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Proof. We have �v=w��v
i � for some w∈W��v

i ∈�v. Thus

� ��v�=�w ��v
i �=w� ��v

i �=
{
pw ��i� if �i is short

w��i� if �i is long.

Let �=w��i�∈�. Then � is uniquely determined since

w��v
i �=w′

(
�v
j

)⇒w′−1w��v
i �=�v

j⇒w′−1w��i�=�j⇒w��i�=w′
(
�j

)
�

Thus � ��v�=
{
p� if � is short

� if � is long.

This proposition determines a bijection �v→� under which �v→�. �v is
called the dual root of �. �v is long if and only if � is short.

Proposition 8.17 Let �∈� satisfy �=∑ni�i. Then � is a long root if and
only if p divides ni for all i for which �i is a short root.

Proof. Suppose � is long. Then � ��v�=� and so

�v= ∑
�i long

ni�
v
i +

∑
�i short

nip
−1�v

i �

Since �v ∈∑i��
v
i we deduce that p divides ni whenever �i is short.

Now suppose conversely that p divides ni for all i for which �i is short.
Let ni=pmi for such i. Suppose if possible that � is short. Then � ��v�=p�.
Thus

�v = ∑
�i long

pni�
v
i +

∑
�i short

ni�
v
i

= p

( ∑
�i long

ni�
v
i +

∑
�i short

mi�
v
i

)
�

This gives �v ∈∑p��v
i which is impossible. Thus � is a long root.

Proposition 8.18 (i) The abelian group generated by the short roots in � is∑l
i=1��i.

(ii) The abelian group generated by the long roots in � is
∑

�i long��i+∑
�i short p��i.
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Proof. By considering the fundamental system of the subsystem of short
roots described in Proposition 8.13 it is clear that the abelian group generated
by the short roots contains �1� � � � ��l so is

∑
��i.

The abelian group generated by the long roots lies in
∑

�i long��i+∑
�i short p��i by Proposition 8.17. However, this group contains �i for �i

long and p�i for �i short, again by Proposition 8.17, so must be
∑

�i long��i+∑
�i short p��i.



9
Some universal constructions

9.1 The universal enveloping algebra

Let L be a Lie algebra over �. We shall show in this section how to construct
an associative algebra ��L�, the universal enveloping algebra of L, such that
the representation theory of ��L� is the same as the representation theory of
the Lie algebra L. Even if L is finite dimensional its enveloping algebra ��L�
will be infinite dimensional.
We begin by forming the tensor powers of L. We define T 0 to be the

1-dimensional vector space �1� T 1=L�T 2=L⊗�L and, in general,

Tn=L⊗�L⊗� · · ·⊗�L �n factors�

Tn is a vector space over � of dimension �dimL�n.
We next form the tensor algebra T =T�L� of L. We define T as the direct

sum of vector spaces

T =T 0⊕T 1⊕T 2⊕· · · �
Thus elements of T are finite sums of elements, each of which lies in some
Tn. We may define a bilinear map

Tm×Tn→Tm+n

satisfying

�x1⊗· · ·⊗xm� ·�y1⊗· · ·⊗yn�=x1⊗· · ·⊗xm⊗y1⊗· · ·⊗yn
for xi� yj ∈L and then extend this map by linearity to give a multiplication
map

T×T→T�

In this way T becomes an associative algebra called the tensor algebra of L.
The element 1∈T 0 is the identity element of T .

152
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Let J be the 2-sided ideal of T generated by all elements of the form

x⊗y−y⊗x− �xy� for x� y∈L�
J is in particular a subspace of T . Let��L�=T/J . Then��L� is an associative
algebra over � called the universal enveloping algebra of L.

Example 9.1 Let L be an n-dimensional abelian Lie algebra over �. Then L
has basis x1� � � � � xn and we have

[
xixj

]=0 for all i� j. Thus J is the 2-sided
ideal of T generated by all elements of the form x⊗y−y⊗x for x� y∈L.
Thus ��L� is a commutative algebra, and is generated as an algebra by the
identity 1 and the elements x1� � � � � xn. In fact ��L� is isomorphic to the
polynomial algebra � �x1� � � � � xn�.

In general we have linear maps

L→T 1→T→��L�

and we denote by � � L→��L� the composite linear map. We now show
that ��L� has a certain universal property which justifies its name.

Proposition 9.2 Let A be any associative algebra with 1 over � and �A�

the corresponding Lie algebra. Then given any Lie algebra homomor-
phism � � L→ �A� there exists a unique associative algebra homomorphism
� � ��L�→A such that ���=�.
Note Associative algebra homomorphisms will be understood to be homo-
morphisms of associative algebras with identity in this chapter. Thus the
homomorphism will map identity to identity.

Proof. We first observe that the linear map � � L→A can be extended to an
associative algebra homomorphism from T to A. If xi� i∈ I , are a basis for L
then the set of all monomials xi1 � � � xir for i1� � � � � ir ∈ I form a basis for T .
The case r=0 gives the identity element. The map

xi1 � � � xir→�
(
xi1
)
� � � �

(
xir
)

can then be extended by linearity to give an associative algebra homomor-
phism from T to A. Let this map be �′ � T→A. Let x� y∈L. Then we have

�′�x⊗y−y⊗x− �xy��
=��x���y�−��y���x�−��xy�
= ���x�� ��y��−��xy�=0
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since � � L→ �A� is a Lie algebra homomorphism. Thus all the generators
of the 2-sided ideal J of T lie in the kernel of �′. Since the kernel is a 2-sided
ideal, J lies in the kernel of �′. This shows there is an induced homomorphism

� � T/J→A

such that the diagram

T T /J

A

θ ′
φ

commutes. When we restrict the domain to T 1 we deduce that ���=�. This
proves the existence of a homomorphism � � ��L�→A of the required type.
We now prove the uniqueness of �. Let �′ � ��L�→A be another such

homomorphism. Now T is generated by T 1 as an associative algebra with 1.
Thus its factor algebra ��L� is generated by ��L�, which is the image of T 1

in ��L�. Let x∈L. Then
�′���x��=��x�=����x���

Thus ���′ agree on ��x� for all x∈L. Since ��L� generates ��L� it follows
that ���′ agree on ��L�, so �′ =�.
Using this universal property we can relate representations of the Lie

algebra L to representations of the associative algebra ��L�. If V is a vector
space over � the set End V of all linear maps of V into itself forms an
associative algebra with 1, and the corresponding Lie algebra is [End V ].
A representation of L is a Lie algebra homomorphism L→ �EndV� and a
representation of ��L� is an associative algebra homomorphism ��L� →
EndV .

Proposition 9.3 There is a bijective correspondence between representations
� � L→ �EndV� and representations � � ��L�→EndV . Corresponding
representations are related by the condition

����x��=��x� for all x∈L�

Proof. Let � � L→ �EndV� be a representation of L. Then by Proposition 9.2
there exists a unique associative algebra homomorphism � � ��L�→End V

such that ���=�.
Conversely, given an associative algebra homomorphism � � ��L�→

EndV we wish to define a corresponding Lie algebra homomorphism
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� � L→ �EndV�. Now we have a linear map � � L→��L�. Since ��L�=
T/J and x⊗y−y⊗x− �xy�∈ J for all x� y∈L we see that

��x���y�−��y���x�−��xy�=0

for x� y∈L. This gives
���x����y��=��xy�

and so� � L→ ���L�� is aLie algebra homomorphism.Wenowdefine� � L→
�EndV� by �=��� . Then � is a Lie homomorphism of the required type.
It is clear from the definitions that the maps �→� and �→� are inverse

to one another.

We shall find this result very useful in the subsequent development, when
we shall obtain information about representations of finite dimensional Lie
algebras by considering the representation theory of the corresponding uni-
versal enveloping algebra.

9.2 The Poincaré–Birkhoff–Witt basis theorem

We shall now describe how to obtain a basis for the universal enveloping
algebra ��L�.

Theorem 9.4 (Poincaré–Birkhoff–Witt). Let L be a Lie algebra with basis

xi  i ∈ I�. Let < be a total order on the index set I . Let � � L→��L�
be the natural linear map from L into its enveloping algebra. Let � �xi�=yi.
Then the elements

y
r1
i1
� � � y

rn
in

for all n≥0, all ri≥0, and all i1� � � � � in ∈ I with i1<i2< · · ·<in form a
basis for ��L�.

Proof. (a) We first show that the above elements yr1i1 � � � y
rn
in

span ��L�. We
know that the elements of form xj1⊗ � � �⊗xjk for all k and all j1� � � � � jk ∈ I
span T . By applying the natural homomorphism T→��L� it follows that the
elements of form yj1 � � � yjk span��L�. It is therefore sufficient to show that every
product yj1 � � � yjk is a linear combination of the given elements of form y

r1
i1
� � � y

rn
in
.

We shall prove this by induction on k. It is obvious if k=1. For arbitrary k it is
clear when j1≤· · ·≤ jk. If this is not so we may use relations of form

yiyj=yjyi+�
[
xixj

]
�
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We note that
[
xixj

]
is a linear combination of elements xt for t∈ I and so

�
[
xixj

]
is a linear combination of yt for t∈ I . Thus we may interchange the

order of two consecutive terms yi� yj in a monomial of degree k provided we
introduce a certain linear combination of monomials of degree less than k.
By performing such interchanges a finite number of times we may express
the terms yi in the monomial with the i in the given order < on I . Thus

yj1 � � � yjk =yr1i1 � � � yrnin+ a linear combination of monomials of degree

less thank

where r1+· · ·+rn=k and i1< · · ·<in. By induction we may assume that all
monomials of degree less than k are expressible as linear combinations of
monomials with terms in the given order <. The required result then follows.
(b) We now show that the given monomials of form y

r1
i1
� � � y

rn
in
are linearly

independent. This is not so easy to see, and we shall prove it by an indirect
argument. We introduce the polynomial ring R=� �zi  i∈ I� and shall make
use of the following lemma.

Lemma 9.5 There exists a linear map � � T→R satisfying the conditions

�
(
xi1⊗· · ·⊗xin

)= zi1 � � � zin if i1≤· · ·≤ in
�
(
xi1⊗· · ·⊗xik⊗xik+1⊗· · ·⊗xin−xi1⊗· · ·⊗xik+1⊗xik⊗· · ·⊗xin

)
=�

(
xi1⊗· · ·⊗

[
xikxik+1

]
⊗· · ·⊗xin

)
for all i1� � � � � in and all k

with 1≤k<n�

Proof. We define the index of the monomial xi1⊗· · ·⊗xin to be the number of
pairs �r� s� with 1≤ r<s≤n satisfying ir > is. Thus the monomials of index 0
are those whose terms appear in their natural order. Let Tn�j be the subspace of
Tn spanned by all monomials xi1⊗· · ·⊗xin of index at most j. Thus

Tn�0⊂Tn�1⊂· · ·⊂Tn�

We define � � T 0→R by ��1�=1. Suppose inductively that � � T 0⊕· · ·⊕
Tn−1→R has already been defined satisfying the required conditions. We
shall show that � can be extended to � � T 0⊕· · ·⊕Tn→R. We define
� � Tn�0→R by

�
(
xi1⊗· · ·⊗xin

)= zi1 � � � zin
if the monomial xi1⊗· · ·⊗xin has index 0. We suppose � � Tn�i→R has
already been defined, thus giving a linear map from T 0⊕· · ·⊕Tn−1⊕Tn�i to
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R satisfying the required conditions. We wish to define � � Tn�i+1→R. Thus
suppose the monomial xi1⊗· · ·⊗xin has index i+1. Then there exists k with
1≤k<n such that xi1⊗· · ·⊗xik−1⊗xik+1⊗xik⊗xik+2⊗· · ·⊗xin has index i.
We then wish to define �

(
xi1⊗· · ·⊗xin

)
by the formula

�
(
xi1⊗· · ·⊗xik⊗xik+1⊗· · ·⊗xin

)
=�

(
xi�⊗· · ·⊗xik+1⊗xik⊗· · ·⊗xin

)
+�

(
xi1⊗· · ·⊗

[
xikxik+1

]
⊗· · ·⊗xin

)
noting that the terms on the right-hand side have already been defined. How-
ever, there may be more than one possible choice of k and we must check
that if we choose a different one the linear map � � Tn�i+1→R will still be
the same. So suppose k′ also satisfies 1≤k′<n. We may without loss of
generality assume that k<k′.
We suppose first that k+1<k′. Let xik =a� xik+1 =b� xik′ = c� xik′+1 =d.

Then the definition using the integer k gives

� �· · ·⊗a⊗b⊗· · ·⊗c⊗d⊗· · · �
=� �· · ·⊗b⊗a⊗· · ·⊗c⊗d⊗· · · �
+� �· · ·⊗ �ab�⊗· · ·⊗c⊗d⊗· · · �
=� �· · ·⊗b⊗a⊗· · ·⊗d⊗c⊗· · · �
+� �· · ·⊗b⊗a⊗· · ·⊗ �cd�⊗· · · �
+� �· · ·⊗ �ab�⊗· · ·⊗d⊗c⊗· · · �
+� �· · ·⊗ �ab�⊗· · ·⊗ �cd�⊗· · · �

using the inductive assumptions.
The second definition using the integer k′ gives

� �· · ·⊗a⊗b⊗· · ·⊗c⊗d⊗· · · �
=� �· · ·⊗a⊗b⊗· · ·⊗d⊗c⊗· · · �
+� �· · ·⊗a⊗b⊗· · ·⊗ �cd�⊗· · · �
=� �· · ·⊗b⊗a⊗· · ·⊗d⊗c⊗· · · �
+� �· · ·⊗ �ab�⊗· · ·⊗d⊗c⊗· · · �
+� �· · ·⊗b⊗a⊗· · ·⊗ �cd�⊗· · · �
+� �· · ·⊗ �ab�⊗· · ·⊗ �cd�⊗· · · �
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using the inductive assumptions. These two expressions using integers k� k′

are the same.
Now suppose that k′ =k+1. Let xik =a� xik+1 =b� xik+2 = c. We compare

the two ways of calculating � �· · ·⊗a⊗b⊗c⊗· · · �. The first method, using
the integer k, gives

��· · ·⊗a⊗b⊗c⊗· · · �
=��· · ·⊗b⊗a⊗c⊗· · · �+��· · ·⊗ �ab�⊗c⊗· · · �
=��· · ·⊗b⊗c⊗a⊗· · · �+��· · ·⊗b⊗ �ac�⊗· · · �
+��· · ·⊗c⊗ �ab�⊗· · · �+��· · ·⊗ ��ab�c�⊗· · · �
=��· · ·⊗c⊗b⊗a⊗· · · �+��· · ·⊗ �bc�⊗a⊗· · · �
+��· · ·⊗b⊗ �ac�⊗· · · �+��· · ·⊗c⊗ �ab�⊗· · · �
+��· · ·⊗ ��ab�c�⊗· · · �
=��· · ·⊗c⊗b⊗a⊗· · · �+��· · ·⊗a⊗ �bc�⊗· · · �
+��· · ·⊗b⊗ �ac�⊗· · · �+��· · ·⊗c⊗ �ab�⊗· · · �
+��· · ·⊗ ��ab�c�⊗· · · �+��· · ·⊗ ��bc�a�⊗· · · �

using the inductive assumptions. The second method, using the integer k′ =
k+1, gives

��· · ·⊗a⊗b⊗c⊗· · · �
=��· · ·⊗a⊗c⊗b⊗· · · �+��· · ·⊗a⊗ �bc�⊗· · · �
=��· · ·⊗c⊗a⊗b⊗· · · �+��· · ·⊗ �ac�⊗b⊗· · · �
+��· · ·⊗a⊗ �bc�⊗· · · �
=��· · ·⊗c⊗b⊗a⊗· · · �+��· · ·⊗c⊗ �ab�⊗· · · �
+��· · ·⊗b⊗ �ac�⊗· · · �+��· · ·⊗ ��ac�b�⊗· · · �
+��· · ·⊗a⊗ �bc�⊗· · · �

again using the inductive assumptions. Comparing the two expressions
obtained we see that they are equal since

��ac�b�= ��ab�c�+ ��bc�a��
Thus � � Tn�i+1→R is now defined and this gives

� � T 0⊕· · ·⊕Tn−1⊕Tn�i+1→R�
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Since Tn=Tn�r for r sufficiently large we have

� � T 0⊕· · ·⊕Tn→R�

Since T =T 0⊕T 1⊕T 2⊕· · · we have defined � � T→R satisfying the
required conditions.

We now return to part (b) of the proof of Theorem 9.4. We have��L�=T/J
and the elements

xi1⊗· · ·⊗xik⊗xik+1⊗· · ·⊗xin−xi1⊗· · ·⊗xik+1⊗xik⊗· · ·⊗xin
−xi1⊗· · ·⊗

[
xikxik+1

]
⊗· · ·⊗xin

=xi1 � � � xik−1
(
xik⊗xik+1−xik+1⊗xik−

[
xikxik+1

])
xik+2 � � � xin

all lie in J . In fact the definition of J shows that each element of J is a linear
combination of such elements. Thus the linear map � � T→R of Lemma 9.5
annihilates all elements of J , and so induces a linear map �̄ � T/J→R,
that is �̄ � ��L�→R. Now the monomial yr1i1 � � � y

rn
in
∈��L� for i1< · · ·<in

is mapped by �̄ to z
r1
i1
� � � z

rn
in
∈R. Since the elements z

r1
i1
� � � z

rn
in

are linearly
independent in the polynomial ring R it follows that the elements yr1i1 � � � y

rn
in

given in the statement of Theorem 9.4 must be linearly independent in ��L�.
This completes the proof.

We now deduce some consequences of the Poincaré–Birkhoff–Witt basis
theorem. (We shall subsequently call it the PBW basis theorem.)

Corollary 9.6 The map � � L→��L� is injective.

Proof. The elements xi� i∈ I , form a basis for L and � �xi�=yi. By the PBW
basis theorem the elements yi� i∈ I , are linearly independent. Thus the kernel
of � is zero.

Corollary 9.7 The subspace ��L� is a Lie subalgebra of ���L�� isomorphic
to L. Thus � identifies L with a Lie subalgebra of ���L��.

Proof. By Corollary 9.6 we know that � � L→��L� is bijective. The
elements yi� i∈ I , form a basis of ��L� and we have

yiyj−yjyi=�
[
xixj

]
�

It follows that
[
yiyj

]∈��L� and so ��L� is a Lie subalgebra of ���L��.
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It is often convenient to consider L as a subspace of ��L� without men-
tioning the map � explicitly.

Corollary 9.8 ��L� has no zero-divisors.

Proof. Let a�b∈��L� have a 	=0� b 	=0. Then we have

a=∑
�i1���� �in�r1���� �rn

y
r1
i1
� � � y

rn
in

b =∑
�i1���� �in�r1���� �rn

y
r1
i1
� � � y

rn
in
�

We write

a=f �yi�+a sum of terms of smaller degree

where f �yi� is the sum of all terms �i1���� �in�r1���� �rn
y
r1
i1
� � � y

rn
in
of maximal total

degree r= r1+· · ·+rn. Similarly we have

b=g �yi�+a sum of terms of smaller degree�

Now we have

yiyj=yjyi+a sum of terms of degree 1

and so

f �yi� g �yi�= �fg� �yi�+a sum of terms of smaller degree�

Hence

ab= �fg� �yi�+a sum of terms of smaller degree�

Now f is not the zero polynomial since a 	=0 and g is not the zero polynomial
since b 	=0. Thus fg is not the zero polynomial. The PBW basis theorem then
implies that ab 	=0.

9.3 Free Lie algebras

It is well known how to define groups by generators and relations. One
first constructs the free group on the given set of generators and then forms
the factor group with respect to the smallest normal subgroup containing
the elements specified by the given relations. We shall show that something
similar can be done in the theory of Lie algebras. We first introduce the idea
of the free Lie algebra FL�X� on a set X.
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Let X= 
xi� i∈ I� be a set of elements parametrised by an index set I . We
first define the free associative algebra F�X� on the set X. F�X� is the set of
all finite sums of the form∑

k≥0

∑
i1���� �ik∈I

�i1���� �ik
xi1 � � � xik

with �i1
� � � � �ik ∈�, summed over all non-negative integers k and all ordered

k-tuples i1� � � � � ik from I (repetitions being allowed). When k=0 the product
xi1 � � � xik is the empty product, and is written as 1. The operations of addition,
multiplication and scalar multiplication are defined in an obvious way and
make F�X� into an associative algebra over � with identity 1.
Let �F�X�� be the Lie algebra obtained from the associative algebra F�X�

in the usual manner. X is a subset of �F�X��. We define FL�X� to be the
intersection of all the Lie subalgebras of �F�X�� containing X, i.e. the Lie
subalgebra of �F�X�� generated by X. FL�X� is called the free Lie algebra
on the set X. It is clear that X is contained in FL�X� so we have an injective
map i � X→FL�X��

In order to justify its name, we show that the free Lie algebra FL�X� has
the following universal property.

Proposition 9.9 Let � � X→L be any map from the set X into a Lie
algebra L. Then there is a unique homomorphism � � FL�X�→L such that
�� i=�.

X
i

FL (X)

L

θ
φ

Proof. Consider the maps X
�→L

�→��L�. Let �′ � X→��L� be given by
�′ =� ��. The map �′ from X into ��L� can be extended uniquely (in an
obvious way) to an associative algebra homomorphism �′ � F�X�→��L�.
The same map gives a Lie algebra homomorphism �′ � �F�X��→ ���L��.
Now we have �′�X�⊂��L� and we know from Corollary 9.7 that ��L� is
a Lie subalgebra of ���L�� isomorphic to L. The set of elements of �F�X��
mapped by �′ into ��L� is therefore a Lie subalgebra of �F�X�� containing
X, and this contains FL�X�. Hence we have �′ � FL�X�→��L�. We define
� � FL�X�→L by �=�−1 ��′. We check that �� i=�. For if x∈X we have

�� i�x�=�−1�′i�x�=�−1�′�x�=�−1�′�x�=��x��
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Thus we have a homomorphism � of the required type. Finally we show that �
is unique. Let �̄ � FL�X�→L be another such homomorphism. Then we have

�i�x�=��x�= �̄i�x� for all x∈X�
Thus � agrees with �̄ on X. Now the set of elements of FL�X� for which �

agrees with �̄ is a Lie subalgebra of FL�X� containing X. Since X generates
FL�X� as a Lie algebra we deduce that � agrees with �̄ on FL�X�.

We next identify the universal enveloping algebra of the free Lie algebra
FL�X�. This turns out to be isomorphic to the free associative algebra F�X�.

Proposition 9.10 The universal enveloping algebra ��FL�X�� is isomorphic
to F�X�.

Proof. We have an inclusion map � � FL�X�→F�X�. We shall show that the
universal property of enveloping algebras given in Proposition 9.2 is satisfied
by F�X�. Thus we shall show that if A is any associative algebra with 1
over � and if � � FL�X�→ �A� is any Lie algebra homomorphism then there
exists a unique associative algebra homomorphism � � F�X�→A such that
���=�.
Now the Lie homomorphism � � FL�X�→ �A� restricts to a map

� � X→A. This map can be extended to a unique associative algebra homo-
morphism � � F�X�→A. This same map gives a Lie algebra homomorphism
� � �F�X��→ �A�. By restriction we obtain a Lie algebra homomorphism
� � FL�X�→ �A�. However, � agrees with � on X and X generates FL�X�
as a Lie algebra. Hence � agrees with � on FL�X�. It follows that ���=�
as required. Thus there exists an algebra homomorphism � of the required
kind. On the other hand � is clearly unique since FL�X� contains X and
therefore generates the associative algebra F�X�.

Thus F�X� satisfies the above universal property. Of course ��FL�X��
satisfies it also. This implies that ��FL�X�� is isomorphic to F�X�. For
suppose we are given a Lie algebra L and two associative algebras ���′ with
maps � � L→��� ′ � L→�′ both satisfying the universal property. Then
we obtain unique algebra homomorphisms � � �→�′ and �′ � �′ →� such
that � ′ =��� and �=�′ �� ′.

L

U

Uσ ′

σ

φ ′φ

′
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It follows that

�′���x�=��x�� ��′� ′�x�=� ′�x�
for all x∈L. Now ��L� generates � and � ′�L� generates �′ as associative
algebras, by the uniqueness of � and �′. It follows that

�′�= Id�� ��′ = Id�′

and so �� �′ are inverse isomorphisms between � and �′.

9.4 Lie algebras defined by generators and relations

Let X= 
xi� i∈ I� be a given set. A Lie monomial in the elements of X is
a finite product of elements of X bracketed by Lie brackets in any manner.
For example

���x3 �x1x2�� x3� �x2 �x1x1���

is a Lie monomial on the set X= 
x1� x2� x3�. A Lie word in the elements
on X is a finite linear combination of Lie monomials on X with coefficients
in �. For example

3 ���x3 �x1x2�� x3� �x2 �x1x1���+2 �x2 ��x1x2� �x3x2���

is a Lie word on the set X= 
x1� x2� x3�.
Let R={wj� j∈ J

}
be a set of Lie words in the elements of X. We shall

define a Lie algebra L�X R� called the Lie algebra generated by X subject
to relations R.
Now the elements of X all lie in the free Lie algebra FL�X� and all the

Lie words wj also lie in FL�X�. Of course different Lie words can give the
same element of FL�X� because of relations such as �xixi�=0 and the Jacobi
identity. Let �R� be the ideal of FL�X� generated by R. Thus �R� is the
intersection of all ideals of FL�X� containing R. We define L�X R� by

L�X R�=FL�X�/�R��

Lemma 9.11 Let R�R′ be sets of Lie words in X such that R′ ⊂R. Then
L�X R� is isomorphic to a factor algebra of L�X R′�.

Proof. Since R′ ⊂R we have

�R′�⊂�R�⊂FL�X��
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It follows that

L�X R�= FL�X�

�R� �
FL�X�

�R′� /
�R�
�R′� =

L�X R′�
I

where I=�R�/ �R′�.

Example 9.12 Let A be a Cartan matrix on the standard list 6.12. In Sec-
tion 7.4 we defined a Lie algebra L�A� associated with A, and L�A� was
subsequently shown in Proposition 7.35 to be a simple Lie algebra. In fact
all the finite dimensional non-trivial simple Lie algebras over � have form
L�A�, as A runs over all Cartan matrices on the standard list. The definition
of L�A� given in Section 7.4 shows that L�A� can conveniently be described
in terms of generators and relations. In fact we have

L�A��L�X  R�

where X= 
e1� � � � � el� h1� � � � � hl� f1� � � � � fl� and R is the set of Lie words
in X given by [

hihj
]

[
hiej

]−Aijej[
hifj

]+Aijfj

�eifi�−hi[
eifj

]
for i 	= j[

ei
[
ei
[
� � �

[
eiej

]]]]
for i 	= j[

fi
[
fi
[
� � �

[
fifj

]]]]
for i 	= j

where the number of occurrences of ei� fi respectively in the last two words
is 1−Aij .

Example 9.13 Again let A be a Cartan matrix on the standard list 6.12. In
Section 7.4 we also defined a certain Lie algebra L̃�A� depending on A which
contains L�A� as a factor algebra. The algebra L̃�A� is infinite dimensional.
It can also conveniently be described by generators and relations. In fact we
have

L̃�A��L�X R′�

where X= 
e1� � � � � el� h1� � � � � hl� f1� � � � � fl� and R′ is the set of Lie words
on X given by
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[
hihj

]
[
hiej

]−Aijej[
hifj

]+Aijfj

�eifi�−hi[
eifj

]
for i 	= j�

We observe that R′ is a proper subset of the set R of relations in Example 9.12.
This explains why L�A� is isomorphic to a factor algebra of L̃�A�, as in
Lemma 9.11.

9.5 Graph automorphisms of simple Lie algebras

Let A be a Cartan matrix on the standard list 6.12 and � be a per-
mutation of 
1� � � � � l� such that A��i ���j �=Aij for all i� j. Let L�A� be
the simple Lie algebra associated with A. L�A� can be generated by
e1� � � � � el� h1� � � � � hl� f1� � � � � fl. We define a permutation of this generating
set by

ei→ e��i� fi→f��i� hi→h��i��

Under this permutation of the generators each of the defining relations of
L�A� in Example 9.12 is transformed into a defining relation. Let

L�A�=L�X  R�= FL�X�

�R� �

The given permutation of X extends to a Lie algebra homomorphism of
FL�X� into itself, and this homomorphism maps the ideal �R� into itself. It
therefore induces a Lie algebra homomorphism of L�X R� into itself. Since
the permutation of X is invertible, so is this Lie algebra homomorphism. It
is thus an isomorphism of L�X R� into itself, that is an automorphism of
L�A�. This automorphism is called a graph automorphism of L�A� and will
also be denoted by � . The possible non-trivial graph automorphisms can be
described in terms of the action of � on the Dynkin diagram of L�A�. These
possibilities are listed below.

Type A2k

1 2 k

k + 12k – 12k

��i�=2k+1− i
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Type A2k−1

1 2

k

k + 12k – 22k – 1

k – 1

��i�=2k− i

Type Dk+1
1 2

k

k + 1

k – 1

��i�= i for 1≤ i≤k−1
��k�=k+1
��k+1�=k

Type D4 1

2

3

4

��1�=1 ��2�=3 ��3�=4 ��4�=2

(The inverse of � is also a graph automorphism, which can be obtained from
� by renumbering the vertices.)

Type E6

1 2

3

6 5

4

��1�=6 ��2�=5 ��3�=3 ��4�=4 ��5�=2 ��6�=1

Our main aim in the present section is to determine the fixed point subalgebra

L�A�� = 
x∈L�A� ��x�=x��
We begin by considering the action of � on V =H∗� given by � ��i�=���i�

and extending by linearity. Let V 1= 
v∈V ��v�=v�. For each orbit J of
� on 
1� � � � � l� we define �J = 1

�J �
∑

j∈J �j . Then �J ∈V 1 and the �J form
a basis of V 1 as J runs over the �-orbits on 
1� � � � � l�. �J is simply the
projection of �j on to the subspace V 1 of the Euclidean space V . We see
from the above diagrams that the orbits J have the following possible types.
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(a) �J �=1 and J = 
j� with ��j�= j.
(b) �J �=2 and J = 
jj̄� where ��j�= j̄� ��j̄�= j and �j+�j̄ 	∈�.

(c) �J �=3 and J =
{
jj̄ ¯̄j

}
where ��j�= j̄� ��j̄�= ¯̄j��

(¯̄j)= j and

�j+�j̄��j+�¯̄j��j̄+�¯̄j do not lie in �.

(d) �J �=2 and J = 
jj̄� where ��j�= j̄� ��j̄�= j and �j+�j̄ ∈�.

These four will be called orbits of types A1� A1×A1� A1×A1×A1 and A2

respectively.
We next consider the possible pairs J�K of distinct orbits.

Lemma 9.14 The vectors �J��K for distinct �-orbits J�K form a fundamen-
tal system of roots of rank 2. The type of this rank 2 system is as follows.

J

(i)

(ii)

(iii)

K Type of {αJ, αk}

(iv)

(v)

(vi) If no node in J is joined to any node in K then
the type of {α j , α k} is A1 × A1.
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Proof. This is straightforward. Suppose for example we have case (v) with
roots numbered

1 2

34

Then

�J =
�1+�4

2
� �K=

�2+�3

2
�

We have

��J��J� = 1
2 ��1��1�

��K��K� = 1
4 ��1��1�

��J��K� = − 1
4 ��1��1� �

Thus ��J��J�=2 ��K��K� and 2 ��J��K�/ ��J��J�=−1.
Hence we have a fundamental system with diagram

αJ αK

Corollary 9.15 Let�1 be the set of vectors �J for all �-orbits J on 
1� � � � � l�.
Then �1 is a fundamental system of roots of the following type:

Type � Order of � Type �1

A2k 2 Bk

A2k−1 2 Ck

Dk+1 2 Bk

D4 3 G2

E6 2 F4

Proof. This follows immediately from Lemma 9.14.

The relationship between � and �1 may be illustrated in the following
diagrams.

1
Π 

2k

k

2k – 1 k + 1

2

Π1
kk – 11 2
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Π

k

k – 1

k + 12k – 1 2k – 2

1 2

Π1

kk – 11 2

Π
1 2

k

k + 1

k – 1

Π1
1 2 kk – 1

Π 1

2

3

4
Π1

1 2

1 2

3

6 5

4Π

1 2 3 4
Π1

Now let �1 be the root system in V 1 with fundamental system �1. Let W 1

be the Weyl group of �1. Then �1=W 1
(
�1

)
. Let A1 be the Cartan matrix

of �1.

Proposition 9.16 Let I� J be distinct �-orbits on 
1� � � � � l�. Then

A1
IJ =

{∑
i∈I Aij for any j∈ J� if I has type A1�A1×A1 or A1×A1×A1

2
∑

i∈I Aij for any j∈ J� if I has type A2�

Proof. This follows from Lemma 9.14.

Proposition 9.17 Let W� = 
w∈W  w�=�w onV�. Then there is an
isomorphism W 1→W� under which the fundamental reflection sJ ∈W 1
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corresponding to �J maps to �w0�J ∈W� , the element of maximal length in
the Weyl subgroup WJ of W generated by the si for i∈ J .

Proof. We first observe that W� acts on V 1. For let w∈W��v∈V 1. Then

��wv�=w�� v�=wv� thuswv∈V 1�

Secondly we note that �w0�J ∈W� for each �-orbit J . For j∈ J we have

�sj�
−1= s��j�

thus �WJ�
−1=WJ . Since � preserves the sign of each root we have

� �w0�J �
−1 (�+J )=�−J

and hence

� �w0�J �
−1= �w0�J

by Proposition 5.17. Thus �w0�J ∈W� .
Thirdly we note that the element �w0�J ∈W� , when restricted to V 1, coinc-

ides with sJ . For

�w0�J ��J�= �w0�J

(
1
�J �

∑
j∈J

�j

)
=− 1
�J �

∑
j∈J

�j=−�J

since �w0�J
(
�+J

)=�−J .
Also if v∈V 1 satisfies ��J� v�=0 then it satisfies

〈
�j� v

〉=0 for all j∈ J . It
follows that �w0�J �v�=v. Thus �w0�J coincides with sJ on restriction to V 1.
We next show that the elements �w0�J for all �-orbits J generate W� .

Let w∈W� satisfy w 	=1. Then there exists a fundamental root �j with
w
(
�j

)∈�−. Let J be the �-orbit containing j. Then

w�
(
�j

)=�w (
�j

)∈�−
since � preserves the sign of each root. Thus w��i�∈�− for all i∈ J . Now
�w0�J changes the signs of all roots in �J but of none in �−�J . Hence

l �w �w0�J �= l�w�− l ��w0�J �< l�w��

We assume by induction on l�w� that w�w0�J lies in the subgroup generated
by the �w0�I for all �-orbits I . It follows that w has the same property. Hence
the �w0�I generate W

� .
We may now define a homomorphism W�→W 1, by restricting the action

of w∈W� from V to V 1. Since W� is generated by the elements �w0�J and
�w0�J restricted to V 1 is sJ , the image of the homomorphism is generated by
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the sJ and so is W 1. Finally we show our map is injective. Suppose w∈W�

and w 	=1. Then there exists a �-orbit J such that w��i�∈�− for all i∈ J .
Thus w��J� 	=�J and so w acts non-trivially on V 1. Thus our map W�→W 1

is an isomorphism under which �w0�J ∈W� corresponds to sJ ∈W 1.

We next consider the relation between the root systems � and �1. For
each �∈� we denote by �1 its projection into V 1.

Proposition 9.18 (a) For each �∈���1 is a positive multiple of a root
in �1.
(b) Let ∼ be the equivalence relation on � given by �∼� if and only if �1

is a positive multiple of �1. Then the equivalence classes are the subsets
of � of form w

(
�+J

)
where J is a �-orbit in 
1� � � � � l� and w∈W� .

(c) There is a bijection between equivalence classes on � and roots in �1

given by w
(
�+J

)↔w1 ��J� where w
1 is the restriction of w to V 1.

Proof. We first show that each �∈� lies in w
(
�+J

)
for some �-orbit J and

some w∈W� . Consider the element w0 ∈W of maximal length. w0 transforms
each positive root to a negative root. Since � does not change the sign of any
root we have

� w0�
−1 (�+)=�−�

Since � w0�
−1 ∈W it follows that � w0�

−1=w0, that is w0 ∈W 1. By Propo-
sition 9.17 the elements �w0�J for all �-orbits J generate W� and so

w0= �w0�J1 � � � �w0�Jr

for some J1� � � � � Jr . Let �∈�+. Then w0���∈�−. Thus there exists i such
that

�w0�Ji+1 � � � �w0�Jr ���∈�+
�w0�Ji �w0�Ji+1 � � � �w0�Jr ���∈�−�

Since the only positive roots made negative by �w0�Ji are those in �+Ji we
have

�w0�Ji+1 � � � �w0�Jr ���∈�+Ji �

that is �∈ �w0�Jr � � � �w0�Ji+1
(
�+Ji

)
and −�∈ �w0�Jr � � � �w0�Jl+1 �w0�Ji

(
�+Ji

)
.

Hence each root in � lies in w
(
�+J

)
for some �-orbit J and some w∈W� .



172 Some universal constructions

Now consider the projection �1 for �∈�+J . If J has type A1�A1×A1 or
A1×A1×A1 then �+J =�J and so �1=�J for �∈�+J . If J has type A2,
however, then �J =

{
�j��j̄

}
and �+J =

{
�j��j̄��j+�j̄

}
. We have

�1=
{
�J when �=�j or �j̄

2�J when �=�j+�j̄�

Thus �1 is a positive multiple of �J when �∈�+J . Hence for �∈w
(
�+J

)
with

w∈W� we see that �1 is a positive multiple of w��J�∈�1.
Now consider the equivalence relation on � defined in (b). The elements

of each set w
(
�+J

)
for w∈W� lie in an equivalence class. Suppose

w
(
�+J

)
�w′

(
�+K

)
lie in the same equivalence class for �-orbits J�K and

w�w∈W� . Then

w��J�=w′ ��K�∈�1�

Hence w′−1w��J�=�K .
Consider the root w′−1w

(
�j

)∈� for j∈ J . This root has the property that(
w′−1w

(
�j

))1=�K�

SinceK is a �-orbit this implies that w′−1w
(
�j

)
is a non-negative combination

of the �k for k∈K. Hence

w′−1w��J�⊂�+K
and so w′−1w

(
�+J

)⊂�+K . By symmetry we also have

w′w−1
(
�+K

)⊂�+J �
Hence we have equality, that is

w
(
�+J

)=w′ (�+K) �
Hence the equivalence classes are the subsets of � of form w

(
�+J

)
.

Now any root in �1 has form w��J� for some w∈W 1 and some �-orbit J .
The set of roots �∈� such that �1 is a positive multiple of w��J� is w

(
�+J

)
,

as shown above. Thus

w
(
�+J

)↔w��J�

is a bijective correspondence between equivalence classes on � and elements
of �1.

Theorem 9.19 Let � be a graph automorphism of the simple Lie algebra
L�A�. Then the subalgebra L�A�� is isomorphic to the simple Lie algebra
L
(
A1
)
.
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Proof. For each �-orbit J on 
1� � � � � l� we define elements eJ �hJ � fJ of
L�A�� by

eJ =
∑
j∈J

ej fJ =
∑
j∈J

fj hJ =
∑
j∈J

hj

if J has type A1�A1×A1 or A1×A1×A1 and

eJ =
√
2
∑
j∈J

ej� fJ =
√
2
∑
j∈J

fj� hJ =2
∑
j∈J

hj

if J has type A2. Then we have

�eIfI �= hI

�eIfJ �= 0 if I 	= J�
�hIhJ �= 0

We consider �hIeJ �. If I� J have type A1�A1×A1 or A1×A1×A1 we have

�hIeJ �=
[∑

i∈I
hi�

∑
j∈J

ej

]
=∑

j

(∑
i

Aijej

)
=A1

IJ eJ �

We also have �hIeJ �=A1
IJ eJ if one or both of I� J has type A2. Similarly

�hIfJ �=−A1
IJ fJ for all I� J�

We also check the relation

�eI �eI �� � � �eIeJ ����=0 for I 	= J
where there are 1−A1

IJ factors eI . This follows from the following observa-
tions, which can be checked from Lemma 9.14.

If A1
IJ =0 then

[
eiej

]=0 for all i∈ I� j∈ J�
If A1

IJ =−1 then
[
ei
[
ei′ej

]]=0 for all i� i′ ∈ I� j∈ J�
If A1

IJ =−2 then
[
ei
[
ei′
[
ei′′ej

]]]=0 for all i� i′� i′′ ∈ I� j∈ J�
If A1

IJ =−3 then
[
ei
[
ei′
[
ei′′

[
ei′′′ej

]]]]=0 for all i� i′� i′′� i′′′ ∈ I� j∈ J�
Similarly we obtain the relation

�fI �fI �� � � �fIfJ ����=0 for I 	= J
with 1−A1

IJ factors fI .
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We now consider the generators and defining relations for the simple Lie
algebra L

(
A1
)
given in Example 9.12. All these relations are satisfied by the

elements eJ � fJ � hJ of L�A�� . Thus there is a homomorphism

L
(
A1
)→L�A��

under which the generators of L
(
A1
)
map to the elements eJ � fJ � hJ of L�A�

� .
Since L

(
A1
)
is simple this homomorphism is injective. We show it is also

surjective and that the map is therefore an isomorphism. It will be sufficient
to show that

dimL�A�� =dimL
(
A1
)
�

We consider the decomposition of � into equivalence classes given in Propo-
sition 9.18. For each equivalence class S let

LS=
⊕
�∈S

L��

Then � �LS�=LS and

L= H⊕∑
S

LS

L� = H�⊕∑
S

�LS�
� �

Now dim �LS�
� ≤1 for each equivalence class S. This is clear if S has type

A1�A1×A1 or A1×A1×A1. Suppose then that S has type A2. Then S=

�����+��. We have

� �e��=�e�� �
(
e�
)=�−1e�

for some �∈�. Hence
�
[
e�e�

]= [e�e�]=− [e�e�] �
Thus �LS�

� consists of all multiples of e�+�e� and dim �LS�
� =1. It follows

that

dimL� ≤ dimH�+no. of equivalence classes S

= dimH1+ ∣∣�1
∣∣

= dimL
(
A1
)
�

Hence dimL� ≤dimL
(
A1
)
.

This shows that the homomorphism L
(
A1
)→L� is surjective and hence is an

isomorphism. We note in particular that dim �LS�
� =1 for each equivalence

class S.
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Thus we have shown that L�A�� is isomorphic to L
(
A1
)
. To be specific

we have:

L�A2k�
� �L�Bk�

L �A2k−1�
� �L�Ck�

L �Dk+1�
� �L�Bk�

L �D4�
� �L�G2�

L �E6�
� �L�F4�

where � is a graph automorphism of order 2, 2, 2, 3, 2 respectively.



10
Irreducible modules for semisimple

Lie algebras

In the present chapter we shall determine the finite dimensional irreducible
modules for a semisimple Lie algebra over �. We begin by investigating
certain important modules for such algebras known as Verma modules.

10.1 Verma modules

We begin with a lemma on universal enveloping algebras. Let L be a finite
dimensional Lie algebra over � and K a subalgebra of L.

Lemma 10.1 There exists a unique algebra homomorphism � ���K�→��L�
such that the diagram

K
�K→ ��K�

i↓ ↓�
L −→

�L
��L�

commutes, where i is the embedding of K in L and �K��L are the embeddings
of K, L in ��K����L� respectively.
Also � is injective.

Proof. Let x∈K. Then we must have

� ��K�x��=�L �i�x�� �

Thus � ��K�x�� is uniquely determined. Since ��K� is generated by �K�K�

as algebra with 1 we see that � is uniquely determined.
We now show that � exists. We recall that

��L�=T�L�/J�L�� ��K�=T�K�/J�K�

176
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where J�L� is the 2-sided ideal of T�L� generated by the elements

x⊗y−y⊗x− �xy� for x� y∈L�
Now the map i � K→L induces an algebra homomorphism i � T�K�→T�L�

and we have

i�x⊗y−y⊗x− �xy��= i�x�⊗ i�y�− i�y�⊗ i�x�− �i�x�i�y��
for all x� y∈K. This shows that

i�J�K��⊂ J�L��
Thus there is an algebra homomorphism � � ��K�→��L� such that the
required diagram commutes.

Finally we show that � is injective. This follows from the PBW basis
theorem 9.4. Let x1� � � � � xr be a basis of K. Suppose if possible there exists
u∈��K� such that u 	=0 and ��u�=0. Then u is a non-zero linear combination
of monomials xe11 � � � xerr . However, since x1� � � � � xr can be chosen as part of
a basis of L, the PBW basis theorem for L shows that such a combination of
monomials cannot be zero in L. Hence ��u� 	=0, a contradiction. Thus � is
injective.

This lemma shows that ��K� may be regarded in a natural way as a
subalgebra of ��L�.
We now suppose that L is a finite dimensional semisimple Lie algebra over

�. Let H be a Cartan subalgebra of L and

L=H⊕∑
�∈�

L�

be the Cartan decomposition of L with respect to H . Let �+ be the positive
system of roots in �. Then we have a triangular decomposition

L=N−⊕H⊕N
where N−=⊕�∈�−L�� N =

⊕
�∈�+L�. We recall that H�N�N− are all sub-

algebras of L.
Let B=H⊕N .

Lemma 10.2 (i) B is a subalgebra of L.
(ii) N is an ideal of B.
(iii) B/N is isomorphic to H .
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Proof. (i) We have

�BB�= �H+N�H+N�⊂H+N =B
since H�N are subalgebras and �HN�⊂N .
(ii) �NB�= �N�N +H�⊂N .
(iii) B/N = �H+N�/N �H/H∩N �H
since H∩N =0, using Proposition 1.7.

Definition 10.3 Let �∈H∗, i.e. � be a linear map from H to �. We recall
that L has a basis


e���∈�  hi� i=1� � � � � l� �

We define

K�=
∑
�∈�+

��L�e�+
l∑

i=1
��L� �hi−��hi�� �

Thus K� is the left ideal of ��L� generated by the elements e���∈�+, and
hi−��hi� for i=1� � � � � l.
(We are as usual here embedding L in ��L�.) We also define

M���=��L�/K��

M��� is a left ��L�-module called the Verma module determined by �. It is
our aim in this section to describe some of the properties of M���.
We note that the elements e���∈�+, and hi−��hi� for i=1� � � � � l all lie

in ��B�. We define

K′�=
∑
�∈�+

��B�e�+
l∑

i=1
��B� �hi−��hi��

to be the left ideal of ��B� generated by these elements. Let

�+= 
�1� � � � ��N � �

Then the set

h1� � � � � hl� e�1
� � � � � e�N

is a basis of B. It follows from the PBW basis theorem that the elements

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

si≥0 ti≥0

form a basis of ��B�.
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Proposition 10.4 (i) dim��B�/K′�=1.
(ii) The elements

�h1−��h1��
s1 � � � �hl−��hl��sl et1�1

� � � e
tN
�N

with si≥0� ti≥0, excluding the element with si= ti=0 for all i, form a
basis for K′�.

Proof. It is not difficult to see that the elements

�h1−��h1��
s1 � � � �hl−��hl��sl et1�1

� � � e
tN
�N

with si≥0� ti≥0 also form a basis for ��B�. This can be seen, for example,
by defining a partial ordering on the basis elements hs11 � � � h

sl
l e

t1
�1
� � � e

tN
�N
. We

say that h
s′1
1 � � � h

s′l
l e

t′1
�1
� � � e

t′N
�N

is lower than h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

if s′1≤ s1� � � � �
s′l≤ sl� t′1= t1� � � � � t′N = tN . Then there are only a finite number of basis
elements lower than a given one, and the element

�h1−��h1��
s1 � � � �hl−��hl��sl et1�1

� � � e
tN
�N

is the sum of hs11 � � � h
sl
l e

t1
�1
� � � e

tN
�N

with a linear combination of strictly lower
basis elements in the partial order. An induction argument on the partial order
will then show that the elements

�h1−��h1��
s1 � � � �hl−��hl��sl et1�1

� � � e
tN
�N

si≥0� ti≥0 span ��B� and are linearly independent. Now all these elements
clearly lie in K′�, with the exception of the element with si=0� ti=0 for all i.
This is the unit element 1. However, 1 does not lie in K′�, as the following
argument shows.
Consider the representation � of H mapping hi to ��hi� for i=1� � � � � l.

Since B/N is isomorphic to H there is a 1-dimensional representation � of
B with N in the kernel agreeing with the above representation on B/N �H .
This in turn gives a 1-dimensional representation 	 of ��B� under which

e�→0 �∈�+
hi →��hi� i=1� � � � � l

1 →1

Now ker 	 is a 2-sided ideal of ��B� containing e���∈�+ and hi−��hi� so
containing K′�. Thus we have

K′�⊂ker 	 1 	∈ker 	
hence 1 	∈K′�.
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It follows that the elements

�h1−��h1��
s1 � � � �hl−��hl��sl et1�1

� � � e
tN
�N

for si≥0� ti≥0, excluding 1, form a basis of K′� and that

dim��B�/K′�=1�

Proposition 10.5 K�∩� �N−�=O.

Proof. We are here regarding � �N−� as a subalgebra of ��L� as in
Lemma 10.1. Now we have

L=N−⊕B�
Regarding ��B� as a subalgebra of ��L� also we assert that

��L�=� �N−���B��

i.e. each element of ��L� is a finite sum
∑

xiyi with xi ∈� �N−� � yi ∈��B�.
This follows from the PBW basis theorem, choosing bases for N− and for B
and combining them to give a basis of L. We then have

K� =
∑
�∈�+

��L�e�+
l∑

i=1
��L� �hi−��hi��

= ∑
�∈�+

� �N−���B�e�+
l∑

i=1
� �N−���B� �hi−��hi��

= � �N−�

( ∑
�∈�+

��B�e�+
l∑

i=1
��B� �hi−��hi��

)
=� �N−�K′��

It follows that each element of K� is a linear combination of terms of form

f
r1
�1
� � � f

rN
�N
�h1−��h1��

s1 � � � �hl−��hl��sl et1�1
� � � e

tN
�N

where f�= e−���∈�+, and ri≥0� si≥0� ti≥0 with �s1� � � � sl� t1� � � � tN � 	=
�0� � � �0�0 � � �0�. No non-zero element of � �N−� can be a linear combination
of such terms by the PBW basis theorem. Hence

K�∩� �N−�=O�
Let m� ∈M��� be defined by m�=1+K�. Thus 1 maps to m� under the

natural homomorphism

��L�→��L�/K�=M����
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Theorem 10.6 (i) Each element of M��� is uniquely expressible in the form
um� for some u∈� �N−�.
(ii) The elements f r1

�1
� � � f

rN
�N
m� for all ri≥0 form a basis for M���.

Proof. Each element of ��L� has form u ·1 for some u∈��L�. Thus each
element of M���=��L�/K� has form um� for some u∈��L�.
Now f�1

� � � � � f�N �h1� � � � � hl� e�1
� � � � � e�N are a basis of L so the ele-

ments

f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

ri≥0� si≥0� ti≥0 form a basis of ��L� by the PBW basis theorem. Thus u
is a linear combination of such elements, and um� is a linear combination of
elements

f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N
m��

Now this element is 0 if any ti is positive. Suppose then that all ti=0. Then

h
s1
1 � � � h

sl
l m�=�m� for some �∈�

since him�=��hi�m�. Thus um� is a linear combination of elements of form

f
r1
�1
� � � f

rN
�N
m��

Thus elements of this form for ri≥0 span M���. They are also linearly
independent. For if we have∑

r1���� �rN

�r1���� �rN f
r1
�1
� � � f

rN
�N
m�=0

with �r1���� �rN ∈� then it follows that∑
r1���� �rN

�r1���� �rN f
r1
�1
� � � f

rN
�N
∈K�∩� �N−� �

Hence this element is 0 by Proposition 10.5. Thus each �r1���� �rN =0 by the
PBW basis theorem for � �N−�.
Thus the elements f

r1
�1
� � � f

rN
�N
m� for r1≥0� � � � � rN ≥0 form a basis for

M���. It follows that each element of M��� is uniquely expressible in the
form um� for u∈� �N−�.

We now regard M��� as an H-module. For each 1-dimensional represen-
tation � of H we define

M����= 
m∈M��� xm=��x�m for all x∈H��
M���� is a subspace of M���.
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Theorem 10.7 (i) M���=⊕�∈H∗M����.
(ii) M���� 	=0 if and only if �−� is a sum of positive roots.
(iii) dim M����=���−��, the number of ways of expressing �−� as a

sum of positive roots.
���−�� is the number of vectors �r1� � � � � rN � with ri ∈�� ri≥0 such

that

�−�= r1�1+· · ·+rN�N �

Proof. We know from Theorem 10.6 that the elements f
r1
�1
� � � f

rN
�N
m� with

ri≥0 form a basis for M���. We show that

xf
r1
�1
� � � f

rN
�N
m�= ��−r1�1−· · ·−rN�N � �x�f

r1
�1
� � � f

rN
�N
m� for all x∈H�

We prove this by induction on r1+· · ·+rN , the result being clear if all ri=0.
So suppose not all ri are 0 and let i be the least integer with ri >0. Then we
have

xf
ri
�i
� � � f

rN
�N
m�=f�ixf ri−1

�i
� � � f

rN
�N
m�−�i�x�f

ri
�i
� � � f

rN
�N
m��

It follows that

xf
ri
�i
� � � f

rN
�N
m�= ��−ri�i−· · ·−rN�N � �x�f

ri
�i
� � � f

rN
�N
m�

as required.
This implies that f r1

�1
� � � f

rN
�N
m� ∈M���� where �=�−r1�1−· · ·−rN�N .

Since these elements form a basis of M��� we see that

M���=∑
�

M�����

We now show this sum is direct. To see this we must show that if a finite
sum

∑
v� is 0 with v� ∈M����, then each v� is 0.

It is sufficient to show that

M����∩
(
M����1

+· · ·+M����k

)=O
where the elements ���1� � � � ��k ∈H∗ are all distinct.
Let v lie in this intersection. Then we have

v=v�1
+· · ·+v�k

where v∈M����� v�i
∈M����i

. Thus

�x−��x��v=0

�x−�i�x�� v�i
=0
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for all x∈H . Hence

�x−�1�x�� � � � �x−�k�x��
(
v�1
+· · ·+v�k

)=0�

that is �x−�1�x�� � � � �x−�k�x�� v=0� Since the vector space H over �
cannot be expressed as the union of finitely many proper subspaces we can
find x∈H such that

��x� 	=�1�x�� ��x� 	=�2�x�� � � � � ��x� 	=�k�x��

Thus the polynomials

t−��x�� �t−�1�x�� �t−�2�x�� � � � �t−�k�x��

in ��t� for this element x are coprime. Thus there exist polynomials
p�t�� q�t�∈��t� such that

p�t��t−��x��+q�t� �t−�1�x�� � � � �t−�k�x��=1�

Thus we have

p�x��x−��x��+q�x� �x−�1�x�� � � � �x−�k�x��=1�

It follows that

p�x��x−��x��v+q�x� �x−�1�x�� � � � �x−�k�x�� v=v�
The above conditions show that the left-hand side is zero, hence we have
v=0. Thus

M���=⊕
�

M�����

Let #= 
�∈H∗  �−� is a sum of positive roots�. For each �∈# let N�

be the subspace of M��� spanned by the basis vectors

f
r1
�1
� � � f

rN
�N
m�

with �−r1�1−· · ·−rN�N =�. Since these vectors for all such � form a
basis of M��� we have

M���=⊕
�∈#

N��

On the other hand we know that

N�⊂M����

and M���=⊕�∈H∗M����. It follows that M����=N� for all �∈#, and that
M����=O for all �∈H∗ with � 	∈#.
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Thus we have dimM����=dimN�= the number of vectors �r1� � � � � rN �
with ri ∈�� ri≥0 such that

�−r1�1−· · ·−rN�N =��
This gives dimM����=���−�� as required.

Definition 10.8 �∈H∗ is called a weight of M��� if M���� 	=O, and M����
is called the weight space of M��� with weight �.

We note that since M���=⊕�M���� an element m of M��� satisfying
the condition that, for all x∈H��x−��x��km=0 for some k>0 can have
no non-zero component in any M���� for � 	=�, and must therefore lie in
M����. Thus we have

M����= 
 m∈M���  for each x∈H there exists k such that

�x−��x��km=0��

This shows that our definitions of weight and weight space here in the context
of H-modules are compatible with the definitions in Chapter 2 in the context
of representations of nilpotent Lie algebras.
Theorem 10.7 asserts that a Verma module is the direct sum of its weight

spaces. There are infinitely many weights, but each weight space is finite
dimensional.
We now proceed to another very important property of Verma modules.

Theorem 10.9 M��� has a unique maximal submodule.

Proof. Let V be a ��L�-submodule of M��� with V 	=M���. Let v∈V . By
Theorem 10.7 we have

v=∑
i

v�i
v�i
∈M����i

summed over a finite set of distinct weights �i. We aim to show that each
v�i

lies in V also. We have

xv�i
=�i�x�v�i

x∈H�
Hence∏

j
j 	=i

(
x−�j�x�

)
v=∏

j
j 	=i

(
x−�j�x�

)
v�i
=∏

j
j 	=i

(
�i�x�−�j�x�

)
v�i

�
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Since H is not the union of finitely many proper subspaces we can find x∈H
with �i�x� 	=�j�x� for all j 	= i. For such an x we have∏

j
j 	=i

(
�i�x�−�j�x�

)
v�i
∈V

and ∏
j

j 	=i

(
�i�x�−�j�x�

) 	=0�

It follows that v�i
∈V .

We now define V�=V ∩M����. We have shown that V =∑� V�. Since
we know that M���=⊕�M���� it follows that the sum in V must be direct,
that is

V =⊕
�

V��

Thus every submodule V of M��� is also the direct sum of its weight spaces.
Now V�=O. For if V� 	=O then V�=M���� since dimM����=1. This would
imply that m� ∈V . But then

M���=��L�m�⊂V
so V =M���, a contradiction. Thus V�=O and we have

V =⊕
�

�	=�

V�⊂
∑
�

�	=�

M�����

Thus every proper submodule V of M��� lies in the subspace
∑

�
�	=� M����

of codimension 1 in M���. Let J��� be the sum of all the proper submodules
of M���. J��� lies in the above subspace of codimension 1, so is a proper
submodule of M���. Thus J��� is the unique maximal submodule of M���,
since it contains all proper submodules of M���.

Definition 10.10 Let ���∈H∗. In view of Theorem 10.7 it is natural to make
the following definition.

We say that �"� if �−� is a sum of positive roots. This is a partial order
on H∗.

Theorem 10.7 shows that the weights ofM��� are precisely the �∈H∗ with
�≺�. Thus � is the highest weight of M��� with respect to this partial order.

M��� is called the Verma module with highest weight �.
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We also define L���=M���/J���. Since J��� is a maximal submodule
of M����L��� is an irreducible ��L�-module. In subsequent sections of this
chapter we shall determine under what circumstances the irreducible module
L��� is finite dimensional. We note that � is a weight of L���, since J����=
O. Thus dimL����=1 and � is the highest weight of L���.

10.2 Finite dimensional irreducible modules

Now let V be any finite dimensional irreducible L-module where, as usual in
this chapter, L is a finite dimensional semisimple Lie algebra over �. Let H
be a Cartan subalgebra of L and{

e���∈�+hi� i=1� � � � � l  f���∈�+
}

be a basis of L adapted to H . We may regard V as an H-module. Now H is
abelian, so in particular nilpotent, thus we may apply the representation theory
of nilpotent Lie algebras developed in Chapter 2. By Theorem 2.9 we have

V =⊕
�

V�

where V�= 
v∈V  for each x∈H there exists k such that �x−��x��kv=0�.
We also know from Chapter 2 that each non-zero V� contains a non-zero
vector v such that

xv=��x�v for all x∈H�
We shall show that in our present situation the weight spaces V� can be

defined more simply.

Proposition 10.11 LetW�= 
v∈V xv=��x�v for all x∈H�. ThenW�=V�.

Proof. It is clear that W�⊂V� and that W� 	=O whenever V� 	=O. Let W =∑
� W�. Since V =⊕�V� and W�⊂V� we see that W =⊕�W�. We shall

show that W is a submodule of V . To see this it is sufficient to show that
hiw� e�w�f�w lie in W for all w∈W�, all i=1� � � � � l and all �∈�+. Now
we have

hiw= ��hi�w∈W
x�e�w�= e��xw�+��x�e�w

=��x�e�w+��x�e�w
= ��+���x�e�w�
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Hence e�w∈W�+�⊂W . Similarly we have f�w∈W�−�⊂W . Thus W is a
��L�-submodule of V . Since W 	=O and V is irreducible we have W =V . It
follows that W�=V� for each �∈H∗.
Thus the irreducible module V is the direct sum of its weight spaces V�

and V� is the set of all v∈V such that xv=��x�v for all x∈H .
We now consider the set of all weights � for V , that is the set of all �∈H∗

for which V� 	=O. This is a finite set, so will contain at least one weight
maximal in the partial order " defined in Definition 10.10. Let � be such a
weight of V . If �"� and � 	=� then � is not a weight of V .
We may choose v� ∈V� with v� 	=0.

Proposition 10.12 (i) xv�=��x�v� for all x∈H .
(ii) e�v�=0 for all �∈�+.
(iii) V =� �N−� v�
(iv) � is the highest weight of V .

Proof. Condition (i) is clear. We have

x �e�v��= e� �xv��+��x�e�v�
for all x∈H . Now if e�v� 	=0 this implies that �+� is a weight of V . But
�+�"� so this cannot be the case. Hence e�v�=0 for �∈�+.

Now V =��L�v� since v� 	=0 and V is an irreducible ��L�-module. Thus
each element of V is a linear combination of elements of the form

f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N
v��

This element is 0 unless all ti are 0. In that case it is a scalar multiple of

f
r1
�1
� � � f

rN
�N
v��

Hence V =� �N−� v�.
Finally we have

x
(
f
r1
�1
� � � f

rN
�N
v�

)
= ��−r1�1−· · ·−rN�N � �x�f

r1
�1
� � � f

rN
�N
v�

as in the proof of Theorem 10.7 ; thus all weights of V have form

�=�−r1�1−· · ·−rN�N �

Thus �"� for all weights � of V .
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It follows from Proposition 10.12 that the set of weights of V has a unique
maximal element � with respect to the partial order ".
We now compare the finite dimensional module V with the Verma module

M���.

Proposition 10.13 There exists a surjective homomorphism � � M���→V

of ��L�-modules such that � �m��=v�.

Proof. We recall from Theorem 10.6 that each element of M��� is uniquely
expressible in the form um� with u∈� �N−�. We define a linear map

� � M���→V

by � �um��=uv� u∈� �N−�. Then � is surjective by Proposi-
tion 10.12 (iii). We must check that � is a homomorphism of ��L�-modules.
Thus we must show

� �yum��=yuv� for ally∈��L��
By the PBW basis theorem we know that the element yu of ��L� can be
written as a finite sum

yu=∑
i

aibici

where ai ∈� �N−� � bi ∈��H�� ci ∈��N�. Thus
yum�=

∑
i

aibicim��

Now bicim�=�im� for some �i ∈�. Hence

yum�=
(∑

i

�iai

)
m��

Since
∑

i �iai ∈� �N−� we have

� �yum��=�
((∑

i

�iai

)
m�

)
=
(∑

i

�iai

)
v��

On the other hand we have

yuv�=
(∑

i

aibici

)
v�=

(∑
i

�iai

)
v�

since biciv�=�iv�. Hence � �yum��=yuv� for all y∈��L�. Thus � is a
homomorphism of ��L�-modules.
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Corollary 10.14 V is isomorphic to L���.

Proof. Since V is irreducible the kernel of � must be a maximal submodule
of M���. But M��� has a unique maximal submodule J���, by Theorem 10.9.
Thus ker �= J���. Hence V is isomorphic to M���/J���=L���.
Thus we have seen that every finite dimensional irreducible L-module is

isomorphic to one of the irreducible modules L��� obtained as irreducible
quotients of Verma modules. However, we shall see that by no means all the
L��� are finite dimensional.

Proposition 10.15 Suppose L��� is finite dimensional. Then ��hi� is a non-
negative integer for each i=1� � � � � l.

Proof. Let v� be a highest weight vector of L���, that is v� ∈L���� and
v� 	=0. As in Section 7.1 we shall choose elements ei ∈L�i

� fi ∈L−�i such
that �eifi�=hi. We consider the sequence of elements

v�� fiv�� f 2
i v�� � � �

of L���. We have

x
(
fk
i v�

)= ��−k�i� �x�
(
fk
i v�

)
for all x∈H . Thus we have

v� ∈L����� fiv� ∈L����−�i � f 2
i v� ∈L����−2�i

and so on. Now L���, being finite dimensional, has only finitely many distinct
weights. Thus there exists p∈�� p≥0 such that

fk
i v� 	=0 for k≤p
f
p+1
i v�=0�

LetM=�v�+�fiv�+· · ·+�fp
i v�.This sum is direct since v�� fiv�� � � � � f

p
i v�

all lie in different weight spaces. We show that M is a submodule with
respect to the subalgebra �ei� hi� fi� of L. It is clear from the definitions that
hiM⊂M and fiM⊂M . We shall show that eiM⊂M also.

We verify that eif
k
i v� ∈M by induction on k. If k=0 we have eiv�=0. If

k>0 we have

eif
k
i v�=fieif k−1

i v�+hif k−1
i v��
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Now eif
k−1
i v� ∈M by induction, hence eif

k
i v� ∈M also. Thus M is an

�ei� hi� fi�-submodule. We consider the trace of hi on M . This can be
calculated in two ways. On the one hand we have

traceMhi= traceM �eifi�= traceM �eifi−fiei�=0�

On the other hand we have

traceMhi = ��hi�+��−�i� �hi�+· · ·+��−p�i� �hi�

= �p+1�� �hi�−p�p+1�

since �i �hi�=2. Hence

traceMhi= �p+1�� �hi�−p�p+1��

It follows that

�p+1� �� �hi�−p�=0�

that is ��hi�=p. Thus ��hi�∈� and ��hi�≥0.

The condition ��hi�∈��� �hi�≥0 for all i=1� � � � � l is therefore necessary
for L��� to be finite dimensional. In the next section we shall show that this
condition is also sufficient.

10.3 The finite dimensionality criterion

We consider the set of �∈H∗ such that ��hi�∈��� �hi�≥0 for i=1� � � � � l.

Definition 10.16 Let !i ∈H∗ be the element satisfying !i �hi�=1�!i

(
hj
)=0

if j 	= i. The elements !1� � � � �!l ∈H∗ are called the fundamental weights.

We note that !1� � � � �!l are linearly independent, since this is true of
h1� � � � � hl ∈H . Thus !1� � � � �!l form a basis of H∗. Let X= 
n1!1+· · ·
+nl!l  n1� � � � � nl ∈��. X is a free abelian subgroup of H∗ with basis
the set of fundamental weights and is called the lattice of integral
weights or, briefly, the weight lattice. It is clear that an element �∈H∗
lies in X if and only if ��hi�∈� for i=1� � � � � l. Let X+= 
n1!1+· · ·
+nl!l  ni ∈�� ni≥0 for i=1� � � � � l�. X+ is called the set of dominant
integral weights.
An element �∈H∗ lies in X+ if and only if ��hi�∈� and ��hi�≥0 for

i=1� � � � � l.
We have seen, therefore, that if L��� is finite dimensional then � is a

dominant integral weight, and wish to prove the converse.
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We shall first explore the connection between the fundamental weights
!1� � � � �!l and the fundamental roots �1� � � � ��l.

Proposition 10.17 �i=
∑

j Aji!j . Thus the matrix expressing the fundamen-
tal roots as linear combinations of the fundamental weights is the transpose
of the Cartan matrix.

Proof. Since !1� � � � �!l are a basis for H∗ there exist cij ∈� such that

�i=
∑
j

cij!j�

Then we have

�i

(
hj
)= cij�

Hence

cij = �i

(
hj
)=�i

(
2h′�j〈

h′�j � h
′
�j

〉)=〈h′�i � 2h′�j〈
h′�j � h

′
�j

〉〉=2

〈
h′�i � h

′
�j

〉〈
h′�j � h

′
�j

〉 =Aji�

Thus we obtain �i=
∑

j Aji!j .

In particular we note that all the fundamental roots are integral combinations
of the fundamental weights, so lie in the weight lattice X. However, it is not
true that the fundamental weights are, in general, integral combinations of the
fundamental roots. We have

!i=
∑
j

(
A−1

)
ji
�j�

For example, when L has type A1 we have

�1=2!1� !1= 1
2�1�

When L has type A2 we have

�1 = 2!1−!2

�2 =−!1+2!2

and so

!1 = 2
3�1+ 1

3�2

!2 = 1
3�1+ 2

3�2�
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We show that in general the coefficients expressing the !i in terms of the
�j are non-negative rational numbers.

Proposition 10.18 (i)
〈
!i�!j

〉≥0 for all i� j.
(ii) !i is a non-negative rational combination of �1� � � � ��l.
(iii) The coefficients of the inverse A−1 of the Cartan matrix are non-negative

rational numbers.

Proof. We shall show that condition (i) implies the others, and prove (i) in
a subsequent lemma. Since the coefficients of A are integers the coefficients
of A−1 are rational numbers. We show they are all non-negative.

We know that !i

(
hj
)=�ij . This condition is equivalent to〈

!i�
2�j〈
�j��j

〉〉=�ij
where �� � is now the Killing form on H∗ as defined in Section 5.1. Thus we
have 〈

!i��j

〉=�ij 〈�j��j

〉
2

�

Now let !i=
∑

j cij�j . Then we have

〈
!i�!j

〉= cij 〈�j�!j

〉= cij 〈�j��j

〉
2

�

Thus

cij=2

〈
!i�!j

〉〈
�j��j

〉 ≥0�

since
〈
!i�!j

〉≥0 and
〈
�j��j

〉
>0.

We must now show that
〈
!i�!j

〉≥0. This will follow from the fact that〈
!i�

2�j〈
�j��j

〉〉=�ij
and the fact that 〈

2�i

��i��i�
�

2�j〈
�j��j

〉〉≤0 if i 	= j

by Proposition 5.4. The following lemma on Euclidean spaces will give us
what we need.
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Lemma 10.19 Let V be an n-dimensional Euclidean space with a basis
v1� � � � � vn satisfying

〈
vi� vj

〉≤0 for all i 	= j. Let w1� � � � �wn be the dual basis
of V uniquely determined by the conditions

〈
vi�wj

〉=�ij . Then 〈wi�wj

〉≥0 for
all i� j.

Proof. We use induction on n. If n=1 there is nothing to prove. So
assume n>1 and let U be the �n−1�-dimensional subspace of V spanned by
v1� � � � � vn−1. Let w′1� � � � �w

′
n−1 be the dual basis of v1� � � � � vn−1 in U . Thus

we have 〈
vi�w

′
j

〉=�ij i� j=1� � � � � n−1�

Let U⊥= 
v∈V  �v�u�=0 for all u∈U�. Then dimU⊥=1 and U⊥ is
the subspace of V spanned by wn. We see also that wi−w′i ∈U⊥ for
i=1� � � � � n−1. Thus we have

wi=w′i+�iwn for some �i ∈��
for i=1� � � � � n−1. Taking the scalar product with vn we have

0=�vn�w′i�+�i

hence �i=−�vn�w′i�. We wish to determine the sign of �i. By induction we
know

〈
w′i�w

′
j

〉≥0 for i� j=1� � � � � n−1. This implies that w′i is a non-negative
combination of v1� � � � � vn−1. Since

�vn� v1�≤0� � � � �vn� vn−1�≤0

we see that �vn�w′i�≤0 and so �i≥0. Hence for i� j=1� � � � � n−1〈
wi�wj

〉= 〈
w′i+�iwn�w

′
j+�jwn

〉
= 〈

w′i�w
′
j

〉+�i�j �wn�wn�≥0

since
〈
w′i� w

′
j

〉≥0� �i≥0� �j≥0� �wn� wn�>0. It remains to show that
�wi�wn�≥0 for i=1� � � � � n−1. We have

�wi�wn�=�w′i�wn�+�i �wn�wn�≥0

since �w′i�wn�=0��i≥0� �wn�wn�>0.

By applying this lemma in the case where vi= 2�i
��i��i� �wi=!i, we deduce

that
〈
!i�!j

〉≥0 and so Proposition 10.18 is proved.

We now turn to the main theorem of the present section.
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Theorem 10.20 Suppose �∈H∗ is dominant and integral, that is �∈X+.
Then the irreducible L-module L��� is finite dimensional.

Proof. We have L���=M���/J���. We know from Theorem 10.7 that M���

is the direct sum of its weight spaces and from Theorem 10.9 that any
submodule of M��� is also the direct sum of its weight spaces. This applies
in particular to J���. It follows that L���=M���/J��� is also the direct sum
of its weight spaces. In fact the same proof as given in Theorem 10.9 shows
that any H-submodule of L��� is the direct sum of its weight spaces.
Let v� be a highest weight vector of L���. Thus v� ∈L���� and v� 	=0. We

consider the sequence of elements

v�� fiv�� f 2
i v�� � � �

We wish to show that terms in this sequence eventually become zero. In fact
we show

f
ki
i v�=0 where ki=��hi�+1�

Let m� be a highest weight vector of the Verma module M��� such that
m�+J���=v�. We consider the submodule ��L�f ki

i m� of M���. As usual
we choose elements ei ∈L�i

� fi ∈L−�i such that �eifi�=hi. We have

eifi=fiei+hi
eif

2
i =fieifi+hifi=f 2

i ei+2fihi−2fi

=f 2
i ei+2fi �hi−1�

and inductively we obtain

eif
n
i =fn

i ei+nfn−1
i �hi−�n−1�� �

Thus we have

eif
ki
i m�=fki

i eim�+kif ki−1
i �hi−�ki−1��m�=0

since eim�=0 and him�=��hi�m�= �ki−1�m�. Also if j 	= i then
ejf

ki
i m�=fki

i ejm�=0�

Thus ejf
ki
i m�=0 for all j=1� � � � � l. It follows that e�f

ki
i m�=0 for all �∈

�+, since e1� � � � � el generate N , by Proposition 7.7. We also know that

hjf
ki
i m�= ��−ki�i�

(
hj
)
f
ki
i m�

since fki
i m� is a weight vector with weight �−ki�i.
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We now consider an arbitrary basis vector of ��L� applied to f
ki
i m�:

f
r1
�1
� � � f

rN
�N
h
s1
1 � � � h

sl
l e

t1
�1
· · · etN�N

(
f
ki
i m�

)
is zero unless all ti=0, in which case it will be a scalar multiple of

f
r1
�1
� � � f

rN
�N
f
ki
i m��

This shows that

��L�f ki
i m�=� �N−� f ki

i m��

Now � �N−� f ki
i is a proper subspace of � �N−� since ki=��hi�+1>0.

It follows from Theorem 10.6 that � �N−� f ki
i m� is a proper subspace of

M���. Hence ��L�f ki
i m� is a proper submodule of M���. It therefore lies in

the unique maximal submodule J��� of M���. Hence f
ki
i m� ∈ J��� and this

implies fki
i v�=0.

Now let K be the finite dimensional subspace of L��� given by

K=�v�+�fiv�+· · ·+�fki−1
i v��

We clearly haveHK⊂K since each fn
i v� is a weight vector. We have fiK⊂K

since fki
i v�=0. We also have eiK⊂K since

eif
n
i v� = fn

i eiv�+nfn−1
i �hi−�n−1�� v�

= n�� �hi�−�n−1�� f n−1
i v��

ThusK is a submodule of L��� for the subalgebra �ei�H�fi� of L of dimension
l+2. We shall consider non-zero finite dimensional �ei�H�fi�-submodules
of L���. K is such a submodule. If U is any finite dimensional �ei�H�fi�-
submodule of L��� we claim that LU is also. For LU is finite dimensional
and we have, for u∈U� z∈L� y∈�ei�H�fi�

y�zu�= z�yu�+ �yz�u∈LU
since yu∈U and �yz�∈L.
Let V be the sum of all finite dimensional �ei�H�fi�-submodules of L���.

Then V 	=O since V contains K. V is an L-submodule of L���, since if U is
a finite dimensional �ei�H�fi�-submodule of L��� so is LU . Since L��� is
an irreducible L-module we see that V =L���. Thus L��� is a sum of finite
dimensional �ei�H�fi�-submodules.

Now each such finite dimensional �ei�H�fi�-submodule of L��� is the
direct sum of its weight spaces, as observed above. Thus we may choose a
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basis for it consisting of weight vectors, that is vectors spanning 1-dimensional
H-modules. Hence we can find a basis of L��� consisting of weight vectors,
each of which lies in some finite dimensional �ei�H�fi�-submodule of L���.
This fact will give useful information about the set of weights of L���.
Let# be the set of all weights of L���. Thus �∈# if and only if L���� 	=O.

Of course all weights of L��� are weights of M��� so have form

�−r1�1−· · ·−rN�N

by Theorem 10.7. In particular #⊂X, since �∈X and each �i ∈X by Theo-
rem 10.7. Let � be any element of #. Then there is a weight vector v� ∈L���
for � such that v� lies in a finite dimensional �ei�H�fi�-submodule U of
L���.

We consider the vectors

� � � � f 2
i v�� fiv�� v�� eiv�� e

2
i v�� � � �

These vectors all lie in U and have weights

� � � ��−2�i��−�i����+�i��+2�i� � � �

Since dimU is finite U has only finitely many weights so there exist p�q≥0
such that

fn
i v� 	=0 for 0≤n≤p� f

p+1
i v�=0

eni v� 	=0 for 0≤n≤q� e
q+1
i v�=0�

Let V =�fp
i v�+· · ·+�fiv�+�v�+�eiv�+· · ·+�eqi v�. Then V is a

�ei�H�fi�-submodule of L���. This follows readily from the relations

eif
n
i = fn

i ei+nfn−1
i �hi−�n−1��

fie
n
i = eni fi−nen−1i �hi+�n−1��

and the fact that fp+1
i v�=0� eq+1i v�=0. We consider the trace of hi on V .

On the one hand we have

traceVhi = ���hi�−p�i �hi��+· · ·+��hi�+· · ·+���hi�+q�i �hi��

= �p+q+1���hi�+
(
q�q+1�

2
− p�p+1�

2

)
�i �hi�

= �p+q+1���hi�+�q−p��p+q+1�
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since �i �hi�=2. On the other hand we have

traceVhi= traceV �eifi�= traceV �eifi−fiei�=0�

Hence ��hi�=p−q.
We may make an important interpretation of this result in terms of the

Weyl group W . We recall from Section 5.2 that W is the group of linear
transformations of H∗� generated by the reflections s� with respect to the roots
�∈�. We write si= s�i and recall from Theorem 5.13 that W is generated
by s1� � � � � sl. We have

si���=�−2
��i���
��i��i�

�i=�−��hi��i

since

��hi�=�
(

2h′�i〈
h′�i � h

′
�i

〉)= 〈�� 2�i

��i��i�
〉
=2
��i���
��i��i�

�

Choosing � as above, where ��hi�=p−q, we have

si���=�−�p−q��i=�+�q−p��i�

Now �+�q−p��i is one of the weights in the list

�−p�i� � � � ��−�i����+�i� � � � ��+q�i

of weights of V . Thus we have shown that if � is any weight of V then si���
is a weight of L��� also. Since s1� � � � � sl generate W it follows that for any
�∈# and any w∈W we have w���∈# also. Thus the set of weights # of
L��� is invariant under the Weyl group. We recall also from Proposition 5.8
that W is finite.
We now claim that for each �∈# there exists w∈W such that w���∈X+.

To see this we consider the finite set of weights 
w���  w∈W� and pick
one maximal in the partial order " on H∗. Let � be such a weight. Then

si���=�−� �hi��i�

We know that �∈X since #⊂X, hence � �hi�∈�. If � �hi�<0 we would
have si���"�, a contradiction to the choice of �. Hence � �hi�≥0. This holds
for all i=1� � � � � l and so �∈X+. Thus each weight in # has a W -transform
which lies in X+.

We shall now concentrate on the set #∩X+. For any weight �∈#∩X+
we have �≺�. We express � and � in terms of the fundamental roots �i.
Since ���∈X+ these weights are non-negative integral combinations of the
fundamental weights !1� � � � �!l. By Proposition 10.18 they are therefore
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non-negative rational combinations of the fundamental roots �1� � � � ��l. Thus
we have

�=
l∑

i=1
qi�i qi ∈� qi≥0

� =
l∑

i=1
q′i�i q′i ∈� q′i≥0�

The condition �"� means simply that qi−q′i is a non-negative integer for
each i=1� � � � � l. Now given qi there are only finitely many q′i such that q

′
i≥0

and qi−q′i is a non-negative integer. Thus given �∈X+ there are only finitely
many �∈X+ such that �≺�. Thus #∩X+ is finite. Since every element of
# can be transformed by an element of W into one of #∩X+ and since W
is finite we see that # is finite. Thus L��� has only finitely many weights.
However, each weight space L���� of L��� is finite dimensional, since

dimL����≤dimM����

and dimM���� is finite by Theorem 10.7. Thus we have

L���=⊕
�

L����

with finitely many summands, each finite dimensional. Hence L��� is finite
dimensional.

We conclude by summarising the main ideas in this somewhat lengthy
proof. In order to show that L��� is finite dimensional it is sufficient to
show that L��� has only finitely many weights, since each weight space is
known to be finite dimensional. This can be proved if the set of weights
is known to be invariant under the Weyl group, since each weight will be
W -equivalent to one in X+, and there are only finitely many elements of
X+ lower than � in the partial ordering. It is therefore necessary to show
that, for any weight � of L���� si��� is a weight also. This can be shown
provided we know that any weight � comes from a weight vector lying in a
finite dimensional �ei�H�fi�-submodule of L���. We therefore have to show
that L��� is the sum of its finite dimensional �ei�H�fi�-submodules. This
comes from the irreducibility of L��� provided L��� has a non-zero finite
dimensional �ei�H�fi�-submodule. The existence of such a submodule K is
proved above.
We have now completed the determination of the finite dimensional irre-

ducible L-modules where L is a finite dimensional semisimple Lie algebra
over �.
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Theorem 10.21 Let L be a finite dimensional semisimple Lie algebra over
�. Then the finite dimensional irreducible L-modules are the modules L���
for �∈X+. These modules are pairwise non-isomorphic.

Proof. The fact that any finite dimensional irreducible L-module is isomor-
phic to L��� for some � is proved in Corollary 10.14. The fact that � must lie
in X+ is proved in Proposition 10.15. The fact that L��� is finite dimensional
when �∈X+ is proved in Theorem 10.20. The fact that the L��� are pairwise
non-isomorphic follows from the fact that � is the highest weight of L���.
Thus if � 	=��L��� and L��� have different highest weights so cannot be
isomorphic.

A property of L��� which will be very useful subsequently is given by the
following proposition.

Proposition 10.22 Let �∈X+ and w∈W . Then

dimL����=dimL���w����

Proof. Since W is generated by the fundamental reflections s1� � � � � sl it is
sufficient to show that

dimL����=dimL���si����

We recall from Section 7.5 that there is an automorphism �i of L such that
�i�H�=H and �i�h�= si�h� for all h∈H . We define an L-module L̄��� which
is the same space L��� as before but with a different L-action. For v̄∈ L̄���
we have

xv̄=�i�x�v
where v is the corresponding element of L���. It is clear that this action
makes L̄��� into an L-module.

Now let v∈L����. For x∈H we have

xv̄= �i�x�v= si�x�v=��si�x�� v

= �si���� �x�v̄�

Thus v̄∈ L̄���si���. A similar argument shows that if v̄∈ L̄���si��� then v∈
L����. Hence

dim L̄���si���=dimL�����
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Now L̄��� is an irreducible L-module, since L��� is irreducible. For if
M̄ were a submodule of L̄��� the corresponding subspace M would be a
submodule of L���. Let # be the set of weights of L���. Then we have
seen that si�#� is the set of weights of L̄���. But we showed in the proof
of Theorem 10.20 that w�#�=# for all w∈W . Hence the set of weights of
L̄��� is also #. In particular the highest weight of L̄��� is �. Thus L̄��� is a
finite dimensional irreducible L-module with highest weight �. Hence L̄���
is isomorphic to L��� by Theorem 10.21. Thus we have

dimL����=dim L̄���si���=dimL���si����

Since each w∈W is a product of elements si we deduce that

dimL����=dimL���w���

as required.
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Further properties of the universal

enveloping algebra

11.1 Relations between the enveloping algebra
and the symmetric algebra

Let L be any finite dimensional Lie algebra over �. Let T be the tensor
algebra of L. We recall that the enveloping algebra ��L� is defined by

��L�=T/J
where J is the 2-sided ideal of T generated by all elements of the form

x⊗y−y⊗x− �xy�
for x� y∈L. The symmetric algebra S�L� is defined by

S�L�=T/I
where I is the 2-sided ideal of T generated by all elements of the form

x⊗y−y⊗x
for x� y∈L.
S�L� is isomorphic, as �-algebra, to the polynomial ring � �z1� � � � � zn�

where n=dimL. We have

S�L�=⊕
k

Sk�L�

where Sk�L�= (Tk+ I)/I .
Sk�L� is the set of homogeneous elements of S�L� of degree k. In particular

we have an isomorphism

L=T 1→S1�L�

thus L can be regarded as a subspace of S�L�.

201
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If x1� � � � � xn are a basis of L then the elements

x
r1
1 � � � xrnn r1� � � � � rn≥0

form a basis of S�L�.
We now explain how S�L� can be regarded as a left L-module. In the first

place L is an L-module under the adjoint action. Then T may be made into
an L-module by means of the action

y
(
xi1⊗· · ·⊗xik

)= [yxi1]⊗xi2⊗· · ·⊗xik+· · ·+xi1⊗· · ·⊗xik−1⊗[yxik] �
The ideal I of T is then a submodule, and so S�L�=T/I can be given the
structure of a left L-module. We have

y
(
xi1 � � � xik

)= [yxi1]xi2 � � � xik+· · ·+xi1 � � � xik−1 [yxik]
where y∈L and the xi� are basis vectors of L. We note that each Sk�L� is an
L-submodule of S�L�.
Similarly ��L�=T/J can be made into a left L-module. For the ideal J of

T is also a submodule since, for a�b∈L, we have

y�a⊗b−b⊗a− �ab��= �ya�⊗b+a⊗ �yb�− �yb�⊗a−b⊗ �ya�− �y�ab��
= �ya�⊗b−b⊗ �ya�− ��ya�b�+a⊗ �yb�
−�yb�⊗a−a�yb�

since

�y�ab��= ��ya�b�+ �a�yb���
We shall find it useful to compare the enveloping algebra ��L� with the

symmetric algebra S�L�. We first compare their �-algebra structures. Of
course they need not be isomorphic as �-algebras since S�L� is commutative
whereas ��L� is in general non-commutative. However, there is a relation
between these two algebras: it is the relation between a filtered algebra and
the corresponding graded algebra.
A filtered algebra is an associative algebra A with a chain of subspaces

A0⊂A1⊂A2⊂· · ·
such that ∪iAi=A and AiAj⊂Ai+j .
A graded algebra is an associative algebra A with a decomposition

A=A0⊕A1⊕A2⊕· · ·
into a direct sum of subspaces such that AiAj⊂Ai+j for all i� j.
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Given any filtered algebra we may obtain a corresponding graded algebra
as follows. Let A=⋃iAi be a filtered algebra. We define vector spaces B0�

B1�B2� � � � by

B0=A0� B1=A1/A0� B2=A2/A1� � � �

and define the vector space B by

B=B0⊕B1⊕B2⊕· · · �

We define a multiplication on B to make it into a graded algebra. It is
sufficient to define xy when x∈Bi� y∈Bj and to extend this multiplication by
linearity. Thus let x∈Ai/Ai−1� y∈Aj/Aj−1. Let x=Ai−1+ai� y=Aj−1+aj .
Then, for any pair of elements u∈Ai−1� v∈Aj−1 we have

�u+ai�
(
v+aj

)=uv+uaj+aiv+aiaj ∈Ai+j−1+aiaj�

Thus the coset in Ai+j/Ai+j−1 containing the product of any element in x

with any element in y is the same. Thus we may without ambiguity define
xy∈Bi+j by

xy=Ai+j−1+aiaj�

It is readily checked that this multiplication when extended by linearity makes
B into a graded algebra. B is called the associated graded algebra of the
filtered algebra A.
We may regard ��L� as a filtered algebra as follows. Let �i�L� be the

subspace of ��L� generated by all products a1a2 � � � aj for j≤ i, where ak ∈L.
We also define �0�L�=�1. Then we have⋃

i

�i�L�=��L�

and

�0�L�⊂�1�L�⊂�2�L�⊂· · · �

Moreover �i�L��j�L�⊂�i+j�L�. Thus ��L� is a filtered algebra. We con-
sider its associated graded algebra.

Proposition 11.1 The associated graded algebra of the filtered algebra ��L�
is isomorphic to S�L�.
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Proof. Let B=B0⊕B1⊕B2⊕· · · be the associated graded algebra of ��L�.
We first observe that B is a commutative algebra. B is generated as an algebra
by 1 and B1, and B1=�1�L�/�0�L�. The natural map

L→�1�L�/�0�L�

is an isomorphism of vector spaces. For elements x� y∈L we have

xy−yx= �xy� in ��L��

Thus

��0�L�+x� ��0�L�+y�≡ ��0�L�+y� ��0�L�+x� mod �1�L��

Hence any two elements of B1=�1�L�/�0�L� commute in B, where their
product lies in �2�L�/�1�L�. It follows that B is a commutative algebra.
We now compare B with the symmetric algebra S�L�. Let x1� � � � � xn be a

basis of L. Then it follows from the PBW basis theorem that the elements

x
r1
1 � � � xrnn r1+· · ·+rn≤ i

form a basis of �i�L�. Moreover the elements �i−1�L�+xr11 � � � xrnn with r1+
· · ·+rn= i form a basis for �i�L�/�i−1�L�=Bi. Now we have

(
�i−1�L�+xr11 � � � xrnn

) (
�j−1�L�+xs11 � � � xsnn

)=�i+j−1�L�+xr11 � � � xrnn x
s1
1 � � � xsnn �

This is equal to

�i+j−1�L�+xr1+s11 � � � xrn+snn

since multiplication in B is commutative. This shows that the linear map
S�L�→B defined by

x
r1
1 � � � xrnn →�i−1�L�+xr11 � � � xrnn

∑
rk= i

extends to an isomorphism of algebras. Thus the associated graded algebra
of ��L� is isomorphic to S�L�.

We now wish to compare the enveloping algebra ��L� and the symmetric
algebra S�L� as left L-modules. We shall show that they are isomorphic as
L-modules. In order to do so we shall first find a complement to �i−1�L� in
�i�L�.
We have T i=L⊗· · ·⊗L (i factors). The symmetric group Si operates

on T i by

� �y1⊗· · ·⊗yi�=y�−1�1�⊗· · ·⊗y�−1�i�
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and extending by linearity. A tensor in T i is called symmetric if it is fixed by
all � ∈Si. The natural map T→��L� induces a map T i→�i�L�. Let �

i�L�

be the image under this map of the space of symmetric tensors in T i.

Proposition 11.2 (i) �i�L�=�i−1�L�⊕�i�L�.
(ii) These spaces are all L-submodules of ��L�.

Proof. We first show that

�i�L�=�i−1�L�+�i�L��

Let xr11 � � � xrnn be a basis element of �i�L� with r1+· · ·+rn= i. For each
� ∈Si we define �

(
x
r1
1 � � � xrnn

)
to be the element obtained from x

r1
1 � � � xrnn by

permuting the factors by the permutation � . Since multiplication in the graded
algebra of ��L� is commutative we have

x
r1
1 � � � xrnn =

1
i!
∑
�∈Si

�
(
x
r1
1 � � � xrnn

)+u
where u∈�i−1�L�. Since the sum lies in �i�L� we have

�i�L�=�i−1�L�+�i�L��

We next show that �i−1�L�∩�i�L�=O. Any element of �i�L� has the
form ∑

r1���� �rn
r1+···+rn=i

�r1���� �rn

∑
�∈Si

�
(
x
r1
1 � � � xrnn

)
�

We express this element as a linear combination of basis elements of ��L�.
We obtain∑

r1���� �rn
r1+···+rn=i

�r1���� �rn

∑
�∈Si

�
(
x
r1
1 � � � xrnn

)= i! ∑
r1���� �rn

r1+···+rn=i

�r1���� �rn
x
r1
1 � � � xrnn +u

where u∈�i−1�L�, since multiplication in the graded algebra of ��L� is
commutative. This element can only lie in �i−1�L� if each �r1

� � � � �rn is 0.
Thus �i−1�L�∩�i�L�=O. Hence we have

�i�L�=�i−1�L�⊕�i�L��

Finally these subspaces are all L-submodules. The subspaces �i�L� and
�i−1�L� are evidently submodules by the definition of the L-action. �i�L� is
an L-submodule since the L-action commutes with the Si-action on T i.

Let T i
sym be the subspace of symmetric tensors in T i.
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Proposition 11.3 There is a commutative diagram of vector space isomor-
phisms

T i
sym�L�

�↗ �i�L�

↘
� Si�L�

�↘
↗
�

�i�L�/�i−1�L�

where � is induced by the map T�L�→��L��� is induced by T�L�→S�L��

� is induced by �i�L�→�i�L�/�i−1�L� and � is the map of Proposition 11.1.

Example

x1⊗x2+x2⊗x1
�↗ x1x2+x2x1
↘
� 2x1x2

�↘
↗
�

�1+x1x2+x2x1
�1+2x1x2

Proof. It is sufficient to show that ���t�=���t� where t=∑�∈Si y�−1�1�⊗· · ·⊗y�−1�i� and yk ∈L. We have

��t�=∑
�

y�−1�1� � � � y�−1�i�

���t�= �i−1�L�+
∑
�

y�−1�1� � � � y�−1�i�

��t�=∑
�

y�−1�1� � � � y�−1�i�

���t�= �i−1�L�+
∑
�

y�−1�1� � � � y�−1�i�

since the difference between y�−1�1� � � � y�−1�i� and the corresponding element
in canonical form lies in �i−1�L�. Hence ���t�=���t�.
We now define � � Si�L�→�i�L� by �=�−1�, and extend this map by lin-

earity to give � � S�L�→��L�. � is called the operation of symmetrisation.
We have

� �y1y2 � � � yi�=
1
i!
∑
�∈Si

y�−1�1� � � � y�−1�i��

Proposition 11.4 � � S�L�→��L� is an isomorphism of L-modules.

Proof. We know that � is an isomorphism of vector spaces and so must show
that

x ·��P�=��x ·P� for all x∈L�P ∈S�L��
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A derivation of an associative algebra A is a linear map D � A→A such
that

D�ab�=D�a�b+aD�b�
for all a� b∈A. It follows from the definition of the L-action that the maps

S�L�→S�L� ��L�→��L�

P→x ·P u→x ·u
for x∈L are derivations. Now L may be identified with a subspace of S�L�
and the map P→x ·P when restricted to L is ad x. Similarly L may be
identified with a subspace of ��L� and the map u→x ·u when restricted
to L is again ad x. Now S�L� is generated as an algebra by L and 1. We
have D�1�=0 for any derivation of S�L�. Thus there is a unique derivation
of S�L� extending ad x on L. Similarly u→x ·u is the unique derivation of
��L� extending ad x on L.
Let D � ��L�→��L� be this derivation. D transforms �i�L� into �i�L�

for each i. Using the isomorphism � of Proposition 11.3, D determines a map⊕
i

�i�L�

�i−1�L�
→⊕

i

�i�L�

�i−1�L�

which is still a derivation. Using the isomorphism � of Proposition 11.3 we
obtain a map S�L�→S�L� that is still a derivation and which acts as ad x on L.
Thus it is the map P→x ·P. Hence for P ∈S�L� we have

�−1�x ·��P��=x ·P�
Thus x ·��P�=��x ·P� as required.
Note The L-action on ��L� considered here may be described simply by

x ·u=xu−ux x∈L�u∈��L�
For this is a derivation of ��L� which extends ad x � L→L.

11.2 Invariant polynomial functions

Let G= Inn L be the group of inner automorphisms of the Lie algebra L. We
recall from Section 3.2 that G is generated by automorphisms of the form
exp ad x for elements x∈L such that ad x is nilpotent. We define an action
of G on L∗ by

�gf �x=f (g−1x) g∈G� f ∈L∗� x∈L�
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The tensor algebra

T �L∗�=⊕
k≥0

�L∗⊗· · ·⊗L∗�
k factors

may then be made into a G-module satisfying

g �f1⊗· · ·⊗fk�=gf1⊗· · ·⊗gfk
for g∈G�fi ∈L∗. Let I be the 2-sided ideal of T �L∗� generated by all elements
of form

f⊗g−g⊗f
for f� g∈L∗. Then I is a G-submodule of T �L∗�. Let

S �L∗�=T �L∗� /I�

Then S �L∗� may also be made into a G-module. S �L∗� is the symmet-
ric algebra on L∗. The algebra S �L∗� may be identified with the algebra
of polynomial functions on L. The element I+f1⊗· · ·⊗fk of S �L∗� gives
rise to the polynomial function f1f2 � � � fk on L. We define P�L�=S �L∗�
and Pm�L�=Sm �L∗�. This is the image of Tm �L∗� under the natural homo-
morphism T �L∗�→S �L∗�. Pk�L� is the space of homogeneous polynomial
functions of degree k on L. In particular P1�L� may be identified with L∗.
Each subspace Pk�L� is clearly a G-submodule of P�L�.
We now prove some lemmas which will help in understanding the action

of G on P�L�.

Lemma 11.5 The linear map � � Tm �L∗�→ �Tm�L��∗ uniquely determined
by

�� �f1⊗· · ·⊗fm�� �x1⊗· · ·⊗xm�=f1 �x1� f2 �x2� � � � fm �xm�
is an isomorphism of G-modules. Here x1� � � � � xm lie in L and f1� � � � � fm
in L∗.

Proof. The linear map � is clearly injective. Since Tm �L∗� and �Tm�L��∗

have the same dimension, �must also be surjective. Thus � is an isomorphism
of vector spaces. We must also show that

��� ·f1⊗· · ·⊗fm�=� ���f1⊗· · ·⊗fm��
for all �∈G. Now we have

� �f1⊗· · ·⊗fm�=�f1⊗· · ·⊗�fm�
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Thus

��� ·f1⊗· · ·⊗fm� �x1⊗· · ·⊗xm�= ��f1� �x1� � � � ��fm� �xm�

= f1
(
�−1x1

)
� � � fm

(
�−1xm

)
�

On the other hand

� ���f1⊗· · ·⊗fm�� �x1⊗· · ·⊗xm�= ��f1⊗· · ·⊗fm�
(
�−1x1⊗· · ·⊗�−1xm

)
= f1

(
�−1x1

)
� � � fm

(
�−1xm

)
�

This gives the required equality.

Lemma 11.6 Consider the maps

Tm�L�∗−→
�−1

Tm �L∗�−→
�
Sm �L∗�

and let � � �Tm�L��∗ −→Sm �L∗� be given by �=��−1. Thus � is a homo-
morphism of G-modules. Then we have ��f �x=f�x⊗· · ·⊗x� with m factors,
for x∈L.

Proof. It is sufficient to prove this when f has the form

f �x1⊗· · ·⊗xm�=f1 �x1� � � � fm �xm�
that is when �−1f =f1⊗· · ·⊗fm. In this case we have

��f �x=f1�x�f2�x� � � � fm�x�=f�x⊗· · ·⊗x��
An element f ∈ �Tm�L��∗ is called symmetric if

f �x1⊗· · ·⊗xm�=f
(
x��1�⊗· · ·⊗x��m�

)
for all x1� � � � � xm ∈L and all � ∈Sm. The set of symmetric elements of
�Tm�L��∗ will be denoted by �Tm�L��∗sym.
An element of Tm �L∗� is called symmetric if it is invariant under the linear

maps which transform f1⊗· · ·⊗fm to f��1�⊗· · ·⊗f��m� for all � ∈Sm.
The set of symmetric elements of Tm �L∗� will be denoted by Tm �L∗�sym.

Lemma 11.7 The subspaces Tm�L�∗sym and Tm �L∗�sym are G-submodules.
Moreover the maps �−1� � give isomorphisms

Tm�L�∗sym−→
�−1

Tm �L∗�sym−→
�
Sm �L∗� �
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Proof. The subspaces are G-submodules since the G-action commutes with
the Sm-action on Tm�L�∗ and Tm �L∗�. The map � transforms Tm �L∗�sym into
Tm�L�∗sym and, since � is an isomorphism and these two spaces have the same
dimension, we have

�
(
Tm �L∗�sym

)=Tm�L�∗sym�

Again the spaces Tm �L∗�sym and Sm �L∗� have the same dimension and
the map

� � Tm �L∗�sym−→Sm �L∗�

is surjective, since it transforms

1
m!

∑
�∈Sm

f��1�⊗· · ·⊗f��m�

into f1f2 � � � fm. Thus this map is also an isomorphism.

The G-module isomorphism

Pm�L�−→
�−1�

Tm�L�∗sym

is useful in determining the G-action on Pm�L�, since it is often easier to
calculate the action on the linear functions in Tm�L�∗sym than on the polynomial
functions in Pm�L�.
We shall now assume that the Lie algebra L is semisimple. The group G of

inner automorphisms is called the adjoint group of L. A polynomial function
P ∈P�L� is called invariant if ��P�=P for all �∈G. The set of invariant
polynomial functions on L is denoted by P�L�G. This is clearly a subalgebra
of P�L�. We shall investigate the algebra of invariant polynomial functions on
L by relating it to the algebra of polynomial functions on a Cartan subalgebra
of L invariant under the Weyl group.
Let H be a Cartan subalgebra of L and P�H�=S �H∗� be the algebra of

polynomial functions on H . Let W be the Weyl group of L. Then we know
that both H and H∗ are W -modules. (We recall from Section 5.2 that an
action of W was defined on the real subspace H∗� of H∗, and this gives
rise to a W -action on H∗ by linearity.) The W -actions on H and H∗ are
related by

�wf�h=f (w−1h) w∈W�f ∈H∗� h∈H�
There is then a W -action on T �H∗� satisfying

w�f1⊗· · ·⊗fm�=wf1⊗· · ·⊗wfm�



11.2 Invariant polynomial functions 211

This in turn induces a W -action on S �H∗�=T �H∗� /I since I is a
W -submodule of T �H∗�. Thus P�H�=S �H∗� may be regarded as a
W -module.
A polynomial function P ∈P�H� is called W -invariant if w�P�=P for all

w∈W . The set of W -invariant polynomial functions on H will be denoted by
P�H�W . This is a subalgebra of P�H�.

Now we have an algebra homomorphism

� � P�L�→P�H�

given by restriction from L to H . We consider the image of P�L�G under this
restriction map. We show first that this image lies in the subalgebra P�H�W .

Proposition 11.8 �
(
P�L�G

)⊂P�H�W .

Proof. We use the element �i ∈G given by

�i= exp ad ei ·exp ad �−fi� ·exp ad ei�

We recall from Proposition 7.18 that �i�H�=H and that �i�h�= si�h� for all
h∈H , where si ∈W is a fundamental reflection. Thus �i acts on H in the
same way as si. It follows that �i and si also act in the same way on H∗, and
on S �H∗�=P�H�.
Let P ∈P�L�G. Then �i�P�=P. We have ��P�∈P�H� and so si���P��=

��P�. However, the Weyl groupW is generated by its fundamental reflections
s1� � � � � sl, by Theorem 5.13. Thus we have

w���P��=��P� for allw∈W
and so ��P�∈P�H�W .

Proposition 11.9 The map � � P�L�G→P�H�W is injective.

Proof. Let R be the set of regular elements of L. We recall from the proof of
Proposition 3.12 that there is a polynomial function F ∈P�L� such that x∈R
if and only if F�x� 	=0. We also recall from Theorem 3.2 that every regular
element lies in some Cartan subalgebra and from Theorem 3.13 that any two
Cartan subalgebras are conjugate. Thus given any regular element x∈R there
exists �∈G such that ��x�∈H .
Now suppose P ∈P�L�G satisfies ��P�=O. Let x be a regular element and

let �∈G be such that ��x�∈H . Then

��P����x��=0�
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that is P���x��=0. Hence
(
�−1P

)
�x�=0. Since P ∈P�L�G we have �−1P=P

and we may deduce that

P�x�=0�

Thus P annihilates all regular elements of L. Hence P�x�=0 whenever
F�x� 	=0. By the principle of irrelevance of algebraic inequalities we have

P�x�=0 for allx∈L�
that is P=O.

Finally we show that the map � is also surjective.

Theorem 11.10 � � P�L�G→P�H�W is surjective, and is therefore an iso-
morphism of algebras.

Proof. We make use of ideas from the representation theory of L. Let �∈H∗
be a dominant integral weight and L��� be the finite dimensional irreducible
L-module with highest weight �. We can choose a basis of L��� with respect
to which L��� decomposes into a direct sum of 1-dimensional H-modules.
Let 	 be the representation of L afforded by this basis. Consider the function
P � L→� given by

P�x�= tr ��	�x��m� x∈L�
We claim that P ∈Pm�L�. For let b1� � � � � bn be a basis of L and let

x=�1b1+· · ·+�nbn �i ∈��
Then we have

	�x�=∑
i

�i	 �bi�

�	�x��m= ∑
i1���� �im

�i1 � � � �im	
(
bi1
)
� � � 	

(
bim

)
trace �	�x��m= ∑

i1���� �im

tr
(
	
(
bi1
)
� � � 	

(
bim

))
�i1 � � � �im �

This is evidently a polynomial function on L which is homogeneous of
degree m. Thus P ∈Pm�L�.
We wish to show that P is an invariant polynomial function, that is

P ∈ �Pm�L��G. We shall make use of the isomorphism

Pm�L�→Tm�L�∗sym
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obtained in Lemma 11.7. The element f ∈Tm�L�∗sym corresponding to
P ∈Pm�L� is given by

f �x1⊗· · ·⊗xm�=
1
m!

∑
�∈Sm

tr
(
	
(
x��1�

)
� � � 	

(
x��m�

))
�

For f certainly lies in Tm�L�∗sym and

f�x⊗· · ·⊗x�= tr �	�x�m� �

Lemma 11.6 now shows that f corresponds to P.

We recall that Tm�L� may be regarded as an L-module under the action

x ·�x1⊗· · ·⊗xm�=
∑
i

x1⊗· · ·⊗ �xxi�⊗· · ·⊗xm�

Its dual space Tm�L�∗ then becomes an L-module under the action

�xf� �x1⊗· · ·⊗xm�=−f �x �x1⊗· · ·⊗xm��
for x∈L� f ∈Tm�L�∗.
We now consider xf where f ∈Tm�L�∗sym is the function defined above.

We have

�xf � �x1⊗· · ·⊗xm�=−
∑
i

f �x1⊗· · ·⊗ �xxi�⊗· · ·⊗xm�

=− 1
m!

∑
�∈Sm

∑
i

tr
(
	
(
x��1�

)
� � � 	

([
xx��i�

])
� � � 	

(
x��m�

))
=− 1

m!
∑
�∈Sm

∑
i

tr
(
	
(
x��1�

)
� � � 	�x�	

(
x��i�

)
� � � 	

(
x��m�

))
+ 1
m!

∑
�∈Sm

∑
i

tr
(
	
(
x��1�

)
� � � 	

(
x��i�

)
	�x� � � � 	

(
x��m�

))
�

All the terms in these expressions cancel except those for which 	�x� occurs
at the beginning or the end of the product. Thus we have

�xf � �x1⊗· · ·⊗xm� = 1
m!

∑
�∈Sm

(
tr
(
	
(
x��1�

)
� � � 	

(
x��m�

)
	�x�

)
−tr (	�x�	 (x��1�) � � � 	 (x��m�)))

= 0 since tr�AB�= tr�BA��

Thus xf =0 for all x∈L.
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We now compare the L-action on Tm�L�∗sym with the G-action.
Let x be an element of L such that adx is nilpotent. Then exp ad x∈G and

G is generated by all such elements. Let

$�x� � Tm�L�∗sym→Tm�L�∗sym

be the linear map given by

$�x�f ′ =xf ′�
Then we have

$�x�f �x1⊗· · ·⊗xm�=
∑
i

f �x1⊗· · ·⊗ ad �−x� ·xi⊗· · ·⊗xm� �

Thus(
$�x�k

k! f

)
�x1⊗· · ·⊗xm�=

∑
i1���� �im

i1+···+im=k

f

(
�ad−x�i1

i1!
x1⊗· · ·⊗

�ad−x�im
im!

xm

)
�

Since ad x is nilpotent the right-hand side is 0 for k sufficiently large.
Hence

�exp $�x� ·f� �x1⊗· · ·⊗xm�=
∑

i1���� �im

f

(
�ad−x�i1

i1!
x1⊗· · ·⊗

�ad−x�im
im!

xm

)
= f �exp ad −x ·x1⊗· · ·⊗exp ad −x ·xm�
= �exp ad −x ·f� �x1⊗· · ·⊗xm� �

Thus we see that

exp ad −x ·f = exp $�x� ·f�
Now we have shown that xf =0, hence $�x�f =0. Thus exp $�x� ·f =f . It
follows that

exp ad −x ·f =f�
Since this holds for all x∈L with ad x nilpotent we deduce that

f ∈ (Tm�L�∗sym
)G

�

By Lemma 11.7 it follows that P ∈Pm�L�G.
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The restriction ��P� therefore lies in Pm�H�W . Let �1��2� � � � � �k be the
weights of L��� with �1=�. Then we have

	�x�=

⎛⎜⎜⎜⎜⎜⎝
�1�x� O

·
·
·

O �k�x�

⎞⎟⎟⎟⎟⎟⎠ x∈H

	�x�m=

⎛⎜⎜⎜⎜⎜⎝
�1�x�

m O

·
·
·

O �k�x�
m

⎞⎟⎟⎟⎟⎟⎠
tr 	�x�m=�m

1 �x�+· · ·+�m
k �x��

Hence ��P�=�m
1 + · · · +�m

k .
We shall show that polynomial functions of this kind span Pm�H�W . In the

first place we know that H∗ is spanned by the lattice X of integral weights.
It follows that Pm�H� is spanned by the set of monomials of degree m in the
integral weights. However, it is well known that the process of polarisation
can be used to express such a monomial as a linear combination of mth
powers. (For example the formula

�1�2= 1
2 ��1+�2�

2− 1
2�

2
1− 1

2�
2
2

expresses the monomial �1�2 as a linear combination of squares.) Thus the
elements �m for �∈X span Pm�H�. It follows that every W -invariant element
of Pm�H� is a linear combination of elements of form∑

w∈W
w���m �∈X�

Since each W -orbit of integral weights contains a dominant integral weight
we see that elements of form∑

w∈W
w���m �∈X+

span Pm�H�.
Now we have ��P�=�m

1 +· · ·+�m
k where �1=�. � appears with multiplic-

ity 1 in the set 
�1� � � � � �k� and each w��� also appears in this set. Moreover
this set is W -invariant, so is a union of W -orbits.
It follows from these facts that ��P�=∑w∈W w���m+ a linear combination

of terms
∑

w∈W w���m for �∈X+ with �≺�. There are only finitely many
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weights �∈X+ with �≺�. Therefore we may invert these equations and
express

∑
w∈W w���m as a linear combination of functions of the form ��P�

coming from representations with highest weight �≺�. Thus Pm�H�W is
spanned by functions of the form ��P�. Hence Pm�H�W lies in the image
of �. Since this is true for all m the image of � must be the whole of P�H�W .
Thus � is surjective.
We therefore have an isomorphism of algebras

� � P�L�G→P�H�W �

11.3 The structure of the ring of polynomial invariants

In this section we shall prove a theorem of Chevalley which shows that the
ring P�H�W of W -invariant polynomials on H is isomorphic to a polynomial
ring in l variables over �.

We write I=P�H�W and define � � P�H�→P�H� to be the operation of
averaging over W . Thus

��P�= 1
�W �

∑
w∈W

w�P��

It is clear that ��P�H��= I , that � acts as the identity on I , and that �2=�,
i.e. � is idempotent.
Let P�H�+ be the set of polynomial functions with constant term 0, and

let I+= I∩P�H�+. Let P�H�I+ be the ideal of P�H� generated by I+. The
elements of P�H�I+ have form

P1J1+· · ·+PkJk

with Pi ∈P�H�� Ji ∈ I+.

Lemma 11.11 Suppose J1� � � � � Jk are elements of I such that J1 does not
lie in the ideal of I generated by J2� � � � � Jk. Let P1�P2� � � � � Pk ∈P�H� be
homogeneous polynomials such that

P1J1+P2J2+ · · · +PkJk=O�
Then P1 ∈P�H�I+.

Proof. We shall show that J1 does not lie in the ideal of P�H� generated by
J2� � � � � Jk. Suppose this were false. Then we have

J1=Q2J2+· · ·+QkJk with Qi ∈P�H��
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Applying w∈W we obtain

J1=w�Q2� J2+· · ·+w�Qk� Jk

and therefore

J1=� �Q2� J2+· · ·+� �Qk� Jk�

However, � �Qi�∈ I and so J1 lies in the ideal of I generated by J2� � � � � Jk.
This gives the required contradiction.
We now show that P1 ∈P�H�I+ by induction on the degree of the homo-

geneous polynomial P1.
If degP1=0 then P1 is constant. Since P1J1+· · ·+PkJk=O and J1 is not

in the ideal of P�H� generated by J2� � � � � Jk this implies that P1=O. Thus
P1 ∈P�H�I+ in this case.
Now suppose deg P1>0. We recall that W is generated by its fundamental

reflections s1� � � � � sl. In the W -action on H each sj has a fixed point set
which is a hyperplane in H given by an equation Hj=O where Hj ∈P�H� is
a homogeneous polynomial of degree 1. We have(

sj �Pi�
)
x=Pi

(
sj�x�

)=Pi�x�

where Hj�x�=0. Thus the polynomial sj �Pi�−Pi vanishes at all x∈H for
which Hj vanishes. It follows that

sj �Pi�−Pi=HjP̄i

for some P̄i ∈P�H�.
Since Pi is homogeneous, sj �Pi� is also homogeneous of the same degree,

hence sj �Pi�−Pi is homogeneous. Thus P̄i is also homogeneous with deg P̄i <

degPi.
Now the relation

P1J1+· · ·+PkJk=O
implies

sj �P1� J1+· · ·+sj �Pk� Jk=O
and so

Hj

(
P̄1J1+· · ·+ P̄kJk

)=O�
Since Hj is not the zero polynomial this implies that

P̄1J1+· · ·+ P̄kJk=O�
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Since deg P̄1<deg P1 we may deduce by induction that P̄1 ∈P�H�I+. Hence
sj �P1�−P1 ∈P�H�I+ also.
Now P�H�I+ is a W -submodule of P�H�, thus P�H�/P�H�I+ is also a

W -module. We have

sj �P1�≡P1 mod P�H�I+

and since W is generated by s1� � � � � sl it follows that

w�P1�≡P1 mod P�H�I+

for all w∈W . Hence

� �P1�≡P1 mod P�H�I+�

Now P1 is a homogeneous polynomial of positive degree, therefore � �P1�∈
I+. In particular � �P1�∈P�H�I+ and so P1 ∈P�H�I+ as required.

Now the ideal P�H�I+ of P�H� is generated by the homogeneous elements
of I of positive degree. By Hilbert’s basis theorem there is a finite subset
of this generating set which generates P�H�I+. Let I1� � � � � In be a set of
homogeneous polynomials in I such that I1� � � � � In generates P�H�I+ but no
proper subset generates P�H�I+.

Proposition 11.12 The polynomials I1� � � � � In are algebraically independent.

Proof. Suppose the result is false. Then there is a non-zero polynomial P in
n variables such that

P �I1� � � � � In�=O�
We may assume, by comparing terms of a given degree, that all monomials
in I1� � � � � In which occur in P have the same degree d in x1� � � � � xl. Let
Pi= �P/�Ii. Then

Pi �I1� � � � � In� i=1� � � � � n

are elements of I and not all the Pi are zero.
Let J be the ideal of I generated by P1�P2� � � � � Pn. We may choose the

notation so that P1� � � � � Pm but no proper subset generate J as an ideal in I .
Thus there exist polynomials Qi�j ∈ I such that

Pi=
m∑
j=1

Qi�jPj i=m+1� � � � � n�
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Now each Pi is homogeneous in x1� � � � � xl of degree d−deg Ii. Thus, by
comparing terms of the same degree in x1� � � � � xl on both sides, we may
assume that each Qi�j is homogeneous of degree degPi−degPj .
Now P �I1� � � � � In�=O thus �P/�xk=0 for k=1� � � � � l. Hence

n∑
i=1

�P

�Ii

�Ii
�xk
=0�

that is
n∑
i=1

Pi�Ii/�xk=0�

It follows that
m∑
i=1

Pi�Ii/�xk+
n∑

i=m+1

m∑
j=1

Qi�jPj�Ii/�xk=0

that is

m∑
i=1

Pi

(
�Ii/�xk+

n∑
j=m+1

Qj�i�Ij/�xk

)
=0�

We now apply Lemma 11.11. P1� � � � � Pm are in I and P1 is not in the ideal
of I generated by P2� � � � � Pm. Each of the polynomials

�Ii/�xk+
n∑

j=m+1
Qj�i�Ij/�xk i=1� � � � �m

is homogeneous in x1� � � � � xl of degree deg Ii−1. For

degQj�i=degPj−degPi=deg Ii−deg Ij�

It follows from Lemma 11.11 that

�I1/�xk+
n∑

j=m+1
Qj�1�Ij/�xk ∈P�H�I+�

We now multiply this polynomial by xk and sum over k=1� � � � � l. For a
homogeneous polynomial Ij in x1� � � � � xl we have, by Euler’s formula,

l∑
k=1

xk
�Ij

�xk
=deg Ij · Ij�

Thus we have

deg I1 · I1+
n∑

j=m+1
deg Ij ·Qj�1Ij=

n∑
i=1

IiRi
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where each Ri ∈P�H�+. We note that all the terms on the left-hand side are
homogeneous polynomials of degree deg I1. Comparing terms of this degree
on the two sides we obtain

deg I1 · I1+
n∑

j=m+1
deg Ij ·Qj�1Ij=

∑
i

IiRi

where the sum on the right extends over a subset of 1� � � � � n not including
i=1, since I1R1 has degree greater than deg I1. It follows that I1 is in the ideal
of P�H� generated by I2� � � � � In. However, this contradicts the definition of
I1� � � � � In. Thus the proposition is proved.

Proposition 11.13 Every element of I is a polynomial in I1� � � � � In.

Proof. It is sufficient to prove this for homogeneous polynomials in I . Let
J ∈ I be homogeneous. We use induction on deg J , the result being clear if
deg J =0. Suppose deg J>0. Then J ∈ I+ and in particular J ∈P�H�I+. Thus
we have

J =P1I1+· · ·+PnIn

for certain polynomials P1� � � � � Pn ∈P�H�. Since J� I1� � � � � In are all homo-
geneous we may clearly assume that each Pi is homogeneous also, with

degPi=deg J−deg Ii�

Then we have

J =� �P1� I1+· · ·+� �Pn� In�

� �P1� � � � � � � �Pn� are homogeneous polynomials in I of degree less than
deg J . Thus they are polynomials in I1� � � � � In by induction, and so J is also.

Corollary 11.14 The algebra P�H�W =� �I1� � � � � In� is isomorphic to the
polynomial ring in n generators over �.

Proof. This follows from Propositions 11.12 and 11.13.

The set I1� � � � � In is called a set of basic polynomial invariants of W . We
now determine the number of invariants in a basic set.

Proposition 11.15 The number n of invariants in a basic set is equal to the
dimension l of H .
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Proof. Let K=� �x1� � � � � xl� be the field of rational functions in x1� � � � � xl
over �. Also let k=� �I1� � � � � In� be the field of rational functions in
I1� � � � � In over �. Then we have inclusions

�⊂k⊂K�
Since x1� � � � � xl are algebraically independent over � the transcendence
degree of K over � is given by

tr degK/�= l�
Since I1� � � � � In are algebraically independent over �, by Proposition 11.12,
the transcendence degree of k over � is given by

tr degk/�=n�
Since we have

tr degK/�= tr degk/�+ tr degK/k

we shall consider tr degK/k. Now K is generated over k by x1� � � � � xl.
However, each xi is an algebraic element over k. For the polynomial∏

w∈W
�t−w�xi��

has xi as a root, and its coefficients are the elementary symmetric functions in
the w�xi� as w runs overW . These coefficients areW -invariants and therefore
lie in I . In particular this polynomial lies in k�t� and so xi is algebraic over k.
Thus K is generated by a finite number of algebraic elements over k and so

tr degK/k=0�

It follows that

tr degK/�= tr degk/��

that is n= l.
Now the set I1� � � � � Il of basic polynomial invariants of W is not uniquely

determined. We show, however, that the degrees of these polynomials are
uniquely determined.

Proposition 11.16 Let I1� � � � � Il and I ′1� � � � � I
′
l be two sets of basic poly-

nomial invariants of W in P�H�. Then we may arrange the numbering so
that

deg Ii=deg I ′i for i=1� � � � � l�



222 Further properties of the universal enveloping algebra

Proof. Each of I ′1� � � � � I
′
l is expressible as a polynomial in I1� � � � � Il and

conversely. Consider the matrices(
�Ii/�I

′
j

) (
�I ′i /�Ij

)
�

These are inverse matrices, thus the determinant

det
(
�Ii/�I

′
j

)
is non-zero. It follows that for some permutation � of 1� � � � � l

l∏
i=1

�Ii
�I ′��i�

	=0�

By renumbering I ′1� � � � � I
′
l if necessary we may assume � is the identity. Thus

l∏
i=1

�Ii
�I ′i
	=0

and so �Ii/�I
′
i 	=0 for each i. This means that Ii, as a polynomial in I ′1� � � � � I

′
l ,

involves I ′i and so

deg Ii≥ deg I ′i �

This implies that

l∑
i=1

deg Ii≥
l∑

i=1
deg I ′i �

By symmetry we must have equality. This implies

deg Ii=deg I ′i for each i�

We summarise the results of this section in the following theorem, due to C.
Chevalley.

Theorem 11.17 (a) The algebra P�H�W of W -invariant polynomials on H is
isomorphic to a polynomial ring in l variables over �.
(b) P�H�W may be generated as a polynomial ring by l homogeneous invari-

ant polynomials I1� � � � � Il.
(c) The degrees d1� � � � � dl of I1� � � � � Il are independent of the system of

generators chosen.

11.4 The Killing isomorphisms

In the preceding sections we have investigated the algebras P�L�G and P�H�W

of invariant polynomial functions on L and H respectively. Assuming again
that the Lie algebra L is semisimple we show now how to relate these algebras
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to algebras S�L�G and S�H�W of invariants on the symmetric algebras of L
and H .
The action of G on the Lie algebra L may be extended to a G-action on

T�L� satisfying

� �x1⊗· · ·⊗xm�=�x1⊗· · ·⊗�xm �∈G�
We then obtain an induced action on S�L�=T�L�/I since I is aG-submodule.
S�L�G is the subalgebra of all G-invariant elements of S�L�. We shall relate
this to P�L�G by means of the Killing form.
We recall from Theorem 4.10 that the Killing form on the semisimple Lie

algebra L is non-degenerate. This implies that the linear map L→L∗ given
by x→x∗ where x∗�y�=�x� y� is bijective. We wish to show that this is an
isomorphism of G-modules.

Proposition 11.18 Let �∈G and x� y∈L. Then ��x��y�=�x� y�. Thus the
adjoint group preserves the Killing form.

Proof. Since G is generated by elements exp ad z where z∈L is such that
ad z is nilpotent, it is sufficient to show that

�exp ad z ·x� exp ad z ·y�=�x� y��
We recall from Proposition 4.5 that

��xz�� y�=�x� �zy���
Thus �ad z ·x� y�=�x� ad−z ·y�. Iterating we obtain〈

�ad z�ix� y
〉= 〈x� �ad−z�iy〉 �

Now we have

exp ad z=1+ad z+ �ad z�2

2! + · · · +
�ad z�k

k!
for some k, since ad z is nilpotent. Hence

�exp ad z ·x� y�=�x� exp ad−z ·y�
and so

�exp ad z ·x� exp ad z ·y�=�x� y��

Corollary 11.19 The Killing map L→L∗ is an isomorphism of G-modules.
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Proof. We must show that ��x�∗ =�x∗ for all �∈G�x∈L. We have

��x�∗�y�=��x� y�= 〈x��−1y〉=x∗ (�−1y)= ��x∗� �y��
Thus ��x�∗ =�x∗ as required.

The Killing map L→L∗ induces an isomorphism T�L�→T �L∗� and then
an isomorphism S�L�→S �L∗� in an obvious way. This is again an isomor-
phism of G-modules. There is therefore an isomorphism between S�L�G and
S �L∗�G. We recall that S �L∗�=P�L� and so obtain a Killing isomorphism of
algebras S�L�→P�L� which induces a Killing isomorphism S�L�G→P�L�G

between the subalgebras of invariants.
We now consider the action of the Weyl group W on the Cartan subalgebra

H of L. We recall from Proposition 4.14 that the Killing form of L remains
non-degenerate on restriction to H . Thus the map H→H∗ given by x→x∗

where x∗�y�=�x� y� for all y∈H is bijective.

Proposition 11.20 The Killing map H→H∗ is an isomorphism of
W -modules.

Proof. We have

�wh�∗x=�wh�x�=�h�w−1x�=h∗ (w−1x)= �wh∗� x for all x∈H�

Hence �wh�∗ =wh∗ as required.

The Killing isomorphism H→H∗ induces an isomorphism T�H�→T �H∗�
and then an isomorphism S�H�→S�H∗�. This is again an isomorphism of W -
modules. Since S �H∗�=P�H� we obtain a Killing isomorphism of algebras
S�H�→P�H� which induces an isomorphism S�H�W→P�H�W between the
subalgebras of invariants.
We now consider the relation between S�L� and S�H�. We recall that

L may be identified with a subspace of S�L� and that L has a triangular
decomposition

L=N−⊕H⊕N�

Let K be the ideal of S�L� generated by N and N−. Then we have S�L�/K
isomorphic to S�H�. Let % : S�L�→S�H� be the natural homomorphism given
in this way.
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Proposition 11.21 We have a commutative diagram of algebra homomor-
phisms

%

S�L�
�→ P�L�

↓ ↓
S�H�→

�
P�H�

�

where ��� are the Killing isomorphisms, � is restriction from P�L� to P�H�,
and % is projection from S�L� to S�H�.

Proof. We must show ���Q�=�%�Q� for all Q∈S�L�. It is sufficient to
prove this when

Q=f r1
�1
� � � f

rN
�N
h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

where �+= 
�1� � � � ��N �.
If ri=0 and ti=0 for each i then %�Q�=Q. Moreover ��Q�=���Q�.

Thus the diagram commutes.
If not all the ri and ti are 0 then %�Q�=O. Thus �%�Q�=O. We have

��Q�=� (f�1

)r1 � � � � (f�N )rN � �h1�
s1 � � � � �hl�

sl �
(
e�1

)t1 � � � � (e�N )tN �
Therefore, for x∈H we have

��Q�x= 〈f�1
� x
〉r1 � � � 〈f�N � x〉rN �h1� x�s1 � � �

〈
hl1� x

〉sl 〈e�1
� x
〉t1 � � � 〈e�N � x〉tN �

This is 0 since �N−�H�=0 and �N�H�=0, and some ri or ti is non-zero.
Thus the diagram commutes in this case also.

Corollary 11.22 We have a commutative diagram of algebra isomorphisms

%

S�L�G
�−→ P�L�G

↓ ↓
S�H�W −→

�
P�H�W

�

Proof. We have seen that the Killing isomorphisms ��� map S�L�G to P�L�G

and S�H�W to P�H�W , respectively. We also know from Theorem 11.10 that
� : P�L�G→P�H�W is an isomorphism of algebras. Thus % acts on S�L�G in
the same way as �−1��. Hence % : S�L�G→S�H�W is an algebra isomor-
phism.
We note by Theorem 11.17 that the four algebras S�L�G�P�L�G�S�H�W ,

P�H�W are all isomorphic to the polynomial algebra � �z1� � � � � zl�.
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11.5 The centre of the enveloping algebra

The centre Z�L� of ��L� is defined by

Z�L�= 
z∈��L�  zu=uz for all u∈��L���

Proposition 11.23 The centre Z�L� acts on each Verma module M��� by
scalar multiplications.

Proof. Let m� be the highest weight vector of M���. Let z∈Z�L� and h∈H .
Then

h�zm��= z �hm��=��h�zm��

Thus zm� ∈M����. Now the �-weight space of M��� is 1-dimensional – in
fact M����=�m�. Hence

zm�=�m� for some �∈��
Now let u∈��L�. Then we have

z �um��=u�zm��=�um��

Since M���=��L�m� we see that z acts on M��� as scalar multiplication
by �.

We write ���z�=�. Thus �� � Z�L�→� is a 1-dimensional representation
of Z�L�. �� is called the central character of M���. We shall show how to
determine this central character.
We consider ��L� as an L-module, as described in Section 11.1. The

L-action on ��L� is given by

x ·u=xu−ux x∈L�u∈��L��
��L� has basis

f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

where �+= 
�1� � � � ��N �. If x∈H we have

x ·f r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N
= �−r1�1−· · ·−rN�N

+t1�1+· · ·+ tN�N � �x�f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N
�

Thus f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

is a weight vector with weight
�t1−r1��1+· · ·+�tN −rN ��N .
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We consider the zero weight space ��L�0. This has basis f
r1
�1
� � � f

rN
�N

h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

where �t1−r1��1+· · ·+�tN −rN ��N =0. We have

��L�0= 
u∈��L�  xu−ux=0 for all x∈H�
thus ��L�0 is a subalgebra of ��L�. It is clear that Z�L�⊂��L�0.

Proposition 11.24 (i) ��L�N ∩��L�0=N−��L�∩��L�0=K.
(ii) The subspace K of (i) is a 2-sided ideal of ��L�0.
(iii) ��L�0=K⊕��H�.

Proof. (i) ��L�N is spanned by the basis vectors of ��L� with some
ti >0. N−��L� is spanned by the basis vectors with some ri >0.
��L�N ∩��L�0 is spanned by the basis vectors of ��L� with

∑
ti�i=∑

ri�i and some ti >0. N−��L�∩��L�0 is spanned by the basis vec-
tors of ��L� with

∑
ti�i=

∑
ri�i and some ri >0. These are clearly

equal.
(ii) ��L�N ∩��L�0 is clearly a left ideal of ��L�0 and N−��L�∩��L�0 is

a right ideal of ��L�0. Thus K is a 2-sided ideal of ��L�0.
(iii) ��H� is spanned by the basis vectors with all ri=0 and all ti=0. This

shows that ��L�0 is the direct sum of its subspaces K and ��H�.

Let � � ��L�0→��H� be the projection map obtained from the decom-
position

��L�0=K⊕��H��

Since K is a 2-sided ideal of ��L�0�� is a homomorphism of algebras. � is
called the Harish-Chandra homomorphism.
We can now determine the central character ��. The weight �∈H∗ deter-

mines a 1-dimensional representation of ��H�, also denoted by �.

Theorem 11.25 The central character �� � Z�L�→� is given by ���z�=
����z�� where � is the Harish-Chandra homomorphism.

Proof. We have

��L�0= ���L�N ∩��L�0�⊕��H�

and Z�L�⊂��L�0. Let z∈Z�L�. Then we can write

z=u1n1+· · ·+uknk+��z�
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where ui ∈��L� and ni ∈N . Thus

zm� = �u1n1+· · ·+uknk+��z��m�

= ����z��m�

since Nm�=O and ��z�m�=����z��m�. Thus ���z�=����z��.
We have seen that the Harish-Chandra homomorphism maps Z�L� into

��H�. Since the Lie algebra H is abelian we have ��H�=S�H�. We shall
show that by combining the Harish-Chandra homomorphism with a ‘twist-
ing homomorphism’ we get a homomorphism from Z�L� into S�H� with
very favourable properties. The twisting homomorphism $ � S�H�→S�H� is
defined as follows. We recall that S�H� is a polynomial algebra over � with
generators h1� � � � � hl. Thus there is a unique algebra homomorphism

$ � S�H�→S�H�

such that $ �hi�=hi−1. $ is in fact an automorphism of algebras. Its inverse
is given by $−1 �hi�=hi+1.
Let 	∈X be the element of the weight lattice given by

	=!1+· · ·+!l�

Thus 	 is the sum of the fundamental weights. We recall from Section 10.3
that

!i �hi�=1 wi

(
hj
)=0 if j 	= i�

Thus 	�hi�=1 for each i=1� � � � � l.
Now any element �∈H∗ extends to a 1-dimensional representation of S�H�.

�−	 is also a 1-dimensional representation of S�H�. We have

�$ �hi�=��hi−1�= ��−	�hi�
Since �$ and �−	 are 1-dimensional representations of S�H� and the hi
generate S�H� we have

�$�Q�= ��−	��Q� for all Q∈S�H��
The homomorphism

$� � Z�L�→S�H�

is called the twisted Harish-Chandra homomorphism. We wish to show
that the image of Z�L� under the twisted Harish-Chandra homomorphism lies
in S�H�W . To do so we first need a result on Verma modules.
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Proposition 11.26 Let �∈H∗ andM��� be the corresponding Verma module
with highest weight vector m�. Suppose ��+	� �hi�∈� and ��+	� �hi�>0
for some i. Let

v=f ��+	��hi�
i m��

Then the submodule of M��� generated by v is isomorphic to M��� where

�+	= si��+	��

Proof. We recall from Theorem 10.6 that there is an isomorphism of
� �N−�-modules between � �N−� and M��� given by u→um�. Since
f
��+	��hi�
i 	=0 in � �N−� we see that v 	=0 in M���. Since m� ∈M���� we
have v∈M���� where

�=�−��+	� �hi��i�

Thus we have

�+	= ��+	�−��+	� �hi��i= si��+	��
We shall show that Nv=O. It is sufficient to show that ejv=0 for j=1� � � � � l.
If j 	= i we have

ejv= ejf ��+	��hi�
i m�=f ��+	��hi�

i ejm�=0�

If j= i we have

eiv= eif
��+	��hi�
i m�

= f
��+	��hi�
i ei+��+	��hi�f ��+	��hi�−1

i �hi−��+	��hi�−1��m�

= ��+	� �hi� f ��+	��hi�−1
i �� �hi�−��hi�−1+1�m�=0�

Thus Nv=O.
Let V be the submodule of M��� generated by v. Since Nv=O and hiv=

��hi� v for i=1� � � � � l, there is a surjective homomorphism of��L�- modules
from M��� into V given by

um�→uv u∈� �N−� �

(See Proposition 10.13.) We consider the kernel of this homomorphism. Let
u∈� �N−� be such that uv=0. Then

uf
��+	��hi�
i m�=0�

Since uf ��+	��hi�
i ∈� �N−� this implies that uf ��+	��hi�

i =0. Since f ��+	��hi�
i 	=0

and ��L� has no zero-divisors we have u=0. Thus our homomorphism is an
isomorphism and so V is isomorphic to M���
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Proposition 11.27 The twisted Harish-Chandra homomorphism $� maps
Z�L� into S�H�W .

Proof. We must show that $��z�∈S�H�W for all z∈Z�L�. Since W is
generated by s1� � � � � sl it will be sufficient to show that

si�$��z��= $��z��
Since S�H�=P �H∗� it will be sufficient to show these elements take the
same value for all �∈H∗, i.e. that

��si�$��z���=��$��z�� for all �∈H∗�
In fact it will be sufficient to prove this for elements of H∗ of the form �+	
where �∈X+ is dominant and integral. For such weights form a dense subset
of H∗ in the Zariski topology, for which the closed sets are the algebraic sets.
Thus suppose �∈X+. Then we have

��+	��$���z���=����z��=���z�

using Theorem 11.25 and the definition of $. Similarly we have

��+	� �si�$���z����= ��+	��$���z���=����z��=���z�

where si��+	�=�+	.
We now apply Proposition 11.26. Since �∈X+ we have ��hi�≥0, so

��+	� �hi�>0. Thus the Verma moduleM��� contains a submodule isomor-
phic to M���. Now z∈Z�L� acts on M��� as scalar multiplication by ���z�

and on M��� as scalar multiplication by ���z�. Since M��� is isomorphic to
a submodule of M��� we must have

���z�=���z��

Thus

��+	��$���z���= ��+	� �si�$���z����
and hence

$���z��= si�$���z����
Thus $��z�∈S�H�W as required.

In fact we shall show that the twisted Harish-Chandra map

$� � Z�L�→S�H�W

is an isomorphism of algebras.
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To see this we first recall the operation � � S�L�→��L� of symmetrisation
which was shown in Proposition 11.4 to be an isomorphism of L-modules.
Now the adjoint group G acts on both S�L� and ��L�. For the G-action on
L can be extended to a G-action on T�L� as described in Section 11.4 and
these induce G-actions on the quotients S�L� and ��L�. Suppose x∈L is
such that ad x is nilpotent. Then exp ad x∈G. Let x induce the linear maps
��x� on S�L� and ��x� on ��L�. The definition of the G-actions then shows
that exp ad x acts as exp ��x� on S�L� and as exp��x� on ��L�. Since � is
an isomorphism of L-modules we have

���x�=��x���
It follows that

�
��x�i

i! =
��x�i

i! � for all i�

and therefore that

� exp��x�= exp��x���

(Note that both ��x� and ��x� are nilpotent.) Since G is generated by such
elements exp ad x it follows that � is an isomorphism of G-modules. We
deduce that � restricts to an isomorphism between S�L�G and ��L�G.

Proposition 11.28 ��L�G=Z�L�.
Proof. We first note that Z�L�⊂��L�G. Let z∈Z�L�. Let x∈L be such that
ad x is nilpotent. Thus exp ad x∈G. Since z∈Z�L� we have

x ·z=xz−zx=0�

Hence ��x�z=0. Thus

exp ad x ·z= exp��x� ·z=
(
1+��x�+ ��x�2

2! +· · ·
)
z= z�

Thus z is invariant under exp ad x. Since such elements generate G we have
z∈��L�G.
Conversely we show that ��L�G⊂Z�L�. Let u∈��L�G. Then expad x ·u=

u for all x∈L with ad x nilpotent. Suppose �ad x�t 	=0 but �ad x�t+1=0. We
choose elements �1� � � � � �t+1 ∈� which are all distinct. Then ad ��ix� is also
nilpotent and

exp ad ��ix�= 1+ad ��ix�+· · ·+
1
t! �ad ��ix��

t

= 1+�i�ad x�+· · ·+
�ti
t! �ad x�

t�
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Now the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 �1
�2
1

2! · · ·
�t1
t!

1 �2
�2
2

2! · · ·
�t2
t!

· · · · · · ·
· · · · · · ·
· · · · · · ·
1 �t+1

�2
t+1
2! · · ·

�tt+1
t!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1
2!3! � � � t!

∏
i<j

(
�i−�j

)

is non-zero. Thus the vector �0� 1� 0� � � � �0� is a linear combination of the
rows of the determinant. Thus there exist %1� � � � �%t+1 ∈� such that

ad x=%1 exp ad ��1x�+· · ·+%t+1 exp ad ��t+1x� �

So ad x ·u= �%1+· · ·+%t+1�u. Since ad x acts nilpotently on u it follows
that %1+· · ·+%t+1=0 and that ad x ·u=0. This means that xu−ux=0. This
holds for all x∈L with ad x nilpotent, in particular for x= ei and x=fi.
However, e1� � � � � el� f1� � � � � fl generate ��L�, together with 1. It follows that
xu−ux=0 for all x∈��L�, that is u∈Z�L�.
Thus the operation � of symmetrisation gives an isomorphism of vector

spaces

� � S�L�G→Z�L��

Now we also have an isomorphism of algebras

% � S�L�G→S�H�W

given in Corollary 11.22. Combining these maps we obtain an isomorphism
of vector spaces

%�−1 � Z�L�→S�H�W �

Thus we have two maps %�−1 and $� from Z�L� into S�H�W . The first is an
isomorphism of vector spaces and the second a homomorphism of algebras.
We shall compare these maps, using the structure of Z�L� and S�H� as filtered
algebras.
We recall from Section 11.1 that ��L�may be regarded as a filtered algebra

with filtration

�0�L�⊂�1�L�⊂�2�L�⊂· · · �
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We define Zi�L�=Z�L�∩�i�L�. This makes Z�L� into a filtered algebra.
S�H� also has a natural structure as a filtered algebra, where Si�H� is the
subspace of S�H� generated by all products a1a2 � � � aj� j≤ i, where ak ∈H .
We also define (

S�H�W
)
i
=S�H�W ∩Si�H��

This makes S�H�W into a filtered algebra.
We shall make use of the following lemma on filtered and graded algebras.

Lemma 11.29 Let A=⋃i≥0Ai and B=⋃i≥0 Bi be filtered algebras with

A0⊂A1⊂A2⊂· · ·
and

B0⊂B1⊂B2⊂· · · �
Let

grA=A0⊕A1/A0⊕A2/A1⊕· · ·
and

grB=B0⊕B1/B0⊕B2/B1⊕· · ·
be the corresponding graded algebras. Let � � A→B be a linear map such
that ��Ai�⊂Bi for each i. Then:

(a) There is a linear map gr� �grA→grB satisfying gr��Ai−1+ai�=Bi−1+
��ai� for ai ∈Ai.

(b) If ��Ai�=Bi for each i and � is bijective then gr� is bijective.
(c) If gr� is bijective then � is bijective.

Proof. (a) We must show that gr� �Ai/Ai−1→Bi/Bi−1 is well defined.
Suppose Ai−1+ai=Ai−1+a′i where ai� a

′
i ∈Ai. Then ai−a′i ∈Ai−1, so

��ai−a′i�∈Bi−1. Thus Bi−1+��ai�=Bi−1+��a′i� and so gr� is well
defined.
(b) Suppose now that ��Ai�=Bi for each i and that � is bijective. Then

the induced map gr� � Ai/Ai−1→Bi/Bi−1 is bijective. It follows that
gr� � grA→grB is bijective.

(c) Suppose conversely that gr� � grA→grB is bijective. This implies that

gr� � Ai/Ai−1→Bi/Bi−1

is bijective for each i. We show first that � is surjective. B0 lies in the
image of � since � � A0→B0 agrees with gr� � A0→B0. Assume by
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induction that Bi−1 lies in the image of �. Let bi ∈Bi. Then there exists
ai ∈Ai such that

Bi−1+��ai�=Bi−1+bi�
Thus bi−��ai�∈Bi−1. Hence bi−��ai� lies in the image of �, thus bi
does also. Thus � is surjective.
Now let a∈ ker �. If a∈A0 then a=0 since � agrees with gr� on

A0. Otherwise there exists i>0 such that a∈Ai but a 	∈Ai−1. But then
Ai−1+a 	=0 whereas gr��Ai−1+a�=0, a contradiction. Hence ker�=O
and so � is bijective.

Theorem 11.30 The twisted Harish-Chandra map $� gives an isomorphism
of algebras Z�L�→S�H�W .

Proof. We have maps $� � Z�L�→S�H�W and %�−1 � Z�L�→S�H�W .
Those induce maps

gr�$�� � grZ�L�→gr S�H�W

gr
(
%�−1

)
� grZ�L�→gr S�H�W �

We shall show that gr�$��=gr
(
%�−1

)
. Let z∈Z�L�. Then there exists d

such that z∈Zd�L� but z 	∈Zd−1�L�. Then z has the form

z= ∑
∑

ri+
∑

si+
∑

ti≤d
��r� s� t�f r1

�1
� � � f

rN
�N
h
sl
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

where �+= 
�1� � � � ��N � and ��r� s� t�∈�. Then
��z�= ∑

∑
si≤d

��o� s�o�hs11 � � � h
sl
l

$��z�= ∑
∑

si≤d
��o� s�o� �h1−1�s1 � � � �hl−1�sl

�−1�z�≡∑��r� s� t�f r1
�1
� � � f

rN
�N
h
s1
1 � � � h

sl
l e

t1
�1
� � � e

tN
�N

mod Sd−1�L�

%�−1�z�≡∑��o� s�o�hs11 � � � h
sl
l mod Sd−1�H��

Now it is apparent that

$��z�≡��z� mod Sd−1�H�

hence

$��z�≡%�−1�z� mod Sd−1�H��
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Since $��z� and %�−1�z� both lie in S�H�W they satisfy $��z�≡%�−1�z�
mod

(
S�H�W

)
d−1. Thus gr�$��=gr

(
%�−1

)
.

Now the maps �−1 � Z�L�→S�L�G and % � S�L�G→S�H�W satisfy

�−1 �Zd�L��=
(
S�L�G

)
d

%
(
S�L�G

)
d
= (

S�H�W
)
d
�

Thus we have

%�−1 �Zd�L��=
(
S�H�W

)
d
�

We may now apply Lemma 11.29. The map

%�−1 � Z�L�→S�H�W

is bijective and satisfies

%�−1 �Zd�L��=
(
S�H�W

)
d

for each d. Hence

gr
(
%�−1

)
� grZ�L�→gr S�H�W

is bijective. This is turn implies that

$� � Z�L�→S�H�W

is bijective. Since $� is known to be a homomorphism of algebras, it must
therefore be an algebra isomorphism.

We can deduce from this theorem a necessary and sufficient condition for
two central characters ����� to be equal.

Theorem 11.31 Let ���∈H∗. Then ��=�� if and only if �+	=w��+	�
for some w∈W .

Proof. Suppose first that �+	=w��+	�. Then, for z∈Z�L�, we have

���z�= ����z��= �w��+	�−	����z��
= w��+	��$���z���= ��+	� (w−1$���z��) �

Now $��z�∈S�H�W and so is fixed by w−1. Hence

���z�= ��+	��$���z���=����z��=���z��

by Theorem 11.25. Hence ��=��.
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Suppose conversely that �+	 	=w��+	� for all w∈W . Then the finite sets
W��+	� and W��+	� do not intersect. Therefore there exists a polynomial
function Q∈P �H∗� such that Q takes values 1 on W��+	� and values 0 on
W��+	�. We have

Q∈S�H�=P �H∗� �

By replacing Q by
1
�W �

∑
w∈W w�Q� we may assume Q lies in S�H�W .

We now make use of the isomorphism $� � Z�L�→S�H�W . There exists
z∈Z�L� such that $��z�=Q. Thus we have

���z�= ����z��= ��+	��$��z��= ��+	�Q=1

���z�= ����z��= ��+	��$��z��= ��+	�Q=0�

Hence �� 	=��.

A second deduction from Theorem 11.30 is the following important
result.

Theorem 11.32 The centre Z�L� of ��L� is isomorphic to the polynomial
ring over � in l variables, where L is semisimple and l= rankL.

Proof. This follows fromTheorem 11.30, Corollary 11.22 and Theorem 11.17.

As an example we consider the Lie algebra L of type A1. The algebra L

has a basis f�h� e with

�he�=2e� �hf�=−2f� �ef�=h�

The algebras

S�H�W �P�H�W �S�L�G�P�L�G�Z�L�

are all isomorphic to the polynomial ring over � in one variable. We find a
generator of each of these algebras.
We have W =�s� where s�h�=−h. Thus S�H�W is the polynomial algebra

generated by h2.
We now consider the isomorphism S�L�G→S�H�W given by projection.

The element of S�L�G mapping to h2 is homogeneous of degree 2 in e�h� f
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and has weight 0. It must therefore have form h2+�fe for some �∈�. We
determine the constant �. We have

ad e ·h=−2e� ad e ·f =h� ad e ·e=0�

Thus

�expad e�h=h−2e

�expad e�f =f+h−e
�expad e�e= e
�expad e�

(
h2+�fe)= �h−2e�2+��f+h−e�e

= h2+�fe+��−4�he+�4−��e2�
Thus expad e fixes h2+�fe if and only if �=4. Hence S�L�G is the polyno-
mial ring generated by h2+4fe.
Next we consider the Killing isomorphism L→L∗. L∗ has basis f ∗� h∗� e∗

dual to f�h� e, that is y∗�x�=1 if y=x and y∗�x�=0 if y 	=x. Now the Killing
form satisfies

�h�h�=8� �f� e�=4� �h�f�=0� �h� e�=0� �e� e�=0� �f� f�=0�

Thus under the Killing isomorphism L→L∗ we have e→4f ∗� h→8h∗�
f→4e∗. This induces a map S�L�→P�L� under which h2+4fe maps to
64

(
h∗2+f ∗e∗). Thus P�L�G is the polynomial ring generated by h∗2+f ∗e∗.

We also have a map S�L�G→Z�G� given by symmetrisation. Under this
map h2+4fe is transformed into

h2+2fe+2ef =h2+2h+4fe�

Thus Z�L� is the polynomial ring generated by h2+2h+4fe. We also note
that the element of Z�L� mapping to h2 ∈S�H�W under the twisted Harish-
Chandra homomorphism is h2+2h+1+4fe.
Thus we have:

S�H�W =�
[
h2
]

P�H�W =�
[
h∗2

]
S�L�G=�

[
h2+4fe

]
P�L�G=�

[
h∗2+f ∗e∗]

Z�L�=�
[
h2+2h+4fe

]
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11.6 The Casimir element

We now introduce an element of the centre Z�L� of ��L� which has useful
properties. Let x1� � � � � xn be a basis of L. Since the Killing form of L is
non-degenerate by Theorem 4.10 there is a unique dual basis y1� � � � � yn of L
satisfying 〈

xi� yj
〉=�ij�

Let c∈��L� be defined by

c=
n∑
i=1

xiyi�

Proposition 11.33 The element c is independent of the choice of basis
x1� � � � � xn of L.

Proof. Suppose x′1� � � � � x
′
n are a second basis of L and y′1� � � � � y

′
n are the

dual basis. Let

x′i=
∑
j

�ijxj y′i=
∑
j

$ijyj�

Then we have〈
x′i� y

′
j

〉=〈∑
k

�ikxk�
∑
l

$jlyl

〉
=∑

k�l

�ik$jl �xk� yl�=
∑
k

�ik$jk�

Hence if �= (�ij

)
� $= ($ij) we have �$ t= I . We then have

∑
i

x′iy
′
i=

∑
i

(∑
j

�ijxj

)(∑
k

$ikyk

)
=∑

j�k

(∑
i

�ij$ik

)
xjyk�

Now � t$= I so
∑

i �ij$ik=�jk. Hence
∑

i x
′
iy
′
i=

∑
i xiyi.

Definition c is called the Casimir element of ��L�.

Proposition 11.34 c lies in the centre Z�L� of ��L�.

Proof. It is sufficient to show that cx=xc for all x∈L. We have

cx =∑
i

xiyix=
∑
i

xi �xyi+ �yix��

=∑
i

��xxi+ �xix�� yi+xi �yix��

= xc+∑
i

��xix� yi+xi �yix�� �
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Let �xix�=
∑

j �ijxj and �yix�=
∑

j �ijyj . Since ��xix� � yj�=�xi�
[
xyj

]� we
have �ij=−�ji. It follows that∑

i

��xix� yi+xi �yix��=
∑
i

∑
j

�ijxjyi+
∑
i

∑
j

�ijxiyj

=∑
i�j

(
�ij+�ji

)
xjyi=0�

Thus cx=xc and so c∈Z�L�.
We now recall from Proposition 4.18 that for each e� ∈L� we can find

f� ∈L−� such that �e�f��=h′�, and that we then have �e�� f��=1. Since
the Killing form of L remains non-degenerate on H we may choose a basis
h′1� � � � � h

′
l of H and there will be a dual basis h′′1� � � � � h

′′
l satisfying

�h′i� h′′j �=�ij�
Then h′1� � � � � h

′
l� e� ��∈�+� � f� ��∈�+� are a basis of L and its dual basis

is

h′′1� � � � � h
′′
l � f�

(
�∈�+) � e�

(
�∈�+) �

Using this pair of dual bases we have

c=h′1h′′1+· · ·+h′lh′′l +
∑
�∈�+

e�f�+
∑
�∈�+

f�e��

Thus we obtain:

Proposition 11.35 The Casimir element of Z�L� is given by

c=
l∑

i=1
h′ih

′′
i +

∑
�∈�+

h′�+2
∑
�∈�+

f�e�

where h′1� � � � � h
′
l h
′′
1� � � � � h

′′
l are any pair of dual bases of H .

The properties of the Casimir element will be useful as we explore further
the representation theory of L.

Proposition 11.36 Let c∈Z�L� be the Casimir element. Then

���c�=��+	��+	�−�	�	��
Thus c acts on the Verma module M��� as scalar multiplication by
��+	��+	�−�	�	��
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Proof. We consider the action of c on the highest weight vector m� of M���.
By Proposition 11.35 we have

cm� =
(

l∑
i=1

h′ih
′′
i +

∑
�∈�+

h′�+2
∑
�∈�+

f�e�

)
m�

=
(

l∑
i=1

��h′i� � �h
′′
i �+

∑
�∈�+

��h′��

)
m�

Now
∑

�∈�+ ��h′��=
∑

�∈�+�����=���
∑

��∈�+�=2���	�.
Let h′� ∈H be the element corresponding to �∈H∗ under the isomorphism

defined by the Killing form. Thus

��h′i�= �h′��h′i�
��h′′i �= �h′��h′′i ��

We express h′� in terms of the dual bases h′1� � � � � h
′
l and h

′′
1� � � � � h

′′
l of H . Let

h′� = a1h
′
1+· · ·+alh′l

h′� = b1h
′′
1+· · ·+blh′′l �

Since �h′i� h′′j �=�ij we have

�h′��h′�� = a1b1+· · ·+albl
�h′��h′i� = bi �h′��h′′i �=ai�

It follows that
l∑

i=1
��h′i� � �h

′′
i �=

l∑
i=1
�h′��h′i��h′��h′′i �=�h′��h′��=������

Hence

cm� = ������+2���	��m�

= ���+	��+	�−�	�	��m��

Thus the value of the central character �� at c is given by

���c�=��+	��+	�−�	�	��



12
Character and dimension formulae

12.1 Characters of L-modules

Let V be an L-module where L is semisimple. We say that V admits a
character if V is the direct sum of its weight spaces and each weight space
of V is finite dimensional. Thus we have

V =⊕
�∈H∗

V� dim V� finite

where V�= 
v∈V hv=��h�v for all h∈H�. The character of V is then
the function chV �H∗→� given by

�chV����=dimV��

We see that if V admits a character then the structure of V as an H-module
is determined by chV .
In this chapter we shall obtain formulae for the characters of the Verma

modules M��� for �∈H∗ and for the finite dimensional irreducible modules
L��� for �∈X+.

We first identify a certain ring of functions H∗→� in which it will be
convenient to work. Given a function f � H∗→� we define Supp f , the
support of f , to be the set of �∈H∗ for which f��� 	=0. For example the
support of the function chM��� is the set of all �∈H∗ which have form

�=�−n1�1−· · ·−nl�l ni ∈�� ni≥0�

This follows from Theorem 10.7. We define

S���=Supp�chM�����

241
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Definition  denotes the set of all functions f � H∗→� such that there
exists a finite set �1� � � � � �k ∈H∗ with

Suppf ⊂S ��1�∪· · ·∪S ��k� �

It is clear that chM��� for �∈H∗ and chL��� for �∈X+ lie in . It is
also clear that if f� g∈ then f+g∈, since

Supp�f+g�⊂Suppf ∪Suppg�
Thus  is an additive group. We can also define a product on  which makes
it into a ring. Given f� g∈ we define fg � H∗→� by

�fg����= ∑
���∈H∗
�+�=�

f���g����

We note that the sum is finite, so that fg is well defined. For we may assume
�∈Suppf and �∈Suppg. Suppose

Suppf ⊂S ��1�∪· · ·∪S ��h�

Suppg⊂S ��1�∪· · ·∪S ��h� �
If �∈S ��i� and �∈S (�j) we have

�= �i−m1�1−· · ·−ml�l mk ∈�� mk≥0

� = �j−n1�1−· · ·−nl�l nk ∈�� nk≥0�

Since �+�=� we have

�= (�i+�j
)−r1�1−· · ·−rl�l rk ∈�� rk≥0

where rk=mk+nk. However, given i� j and � the non-negative integers
mk�nk with mk+nk= rk can be chosen in only finitely many ways, thus our
sum is finite. Also we see that Supp�fg�⊂⋃i�jS

(
�i+�j

)
, hence fg∈. It is

also readily checked that �fg�h=f�gh�, thus  becomes a ring.
For each �∈H∗ we define e� � H

∗→� by e����=1� e����=0 if � 	=�.
Thus e� is the characteristic function of �. All such characteristic functions
lie in . In fact if f is any function in  it is convenient to write

f = ∑
�∈H∗

f���e�

even though the sum may be infinite.
We note that e�e�= e�+�.
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Lemma 12.1 Suppose that the L-module V admits a character and let U be
a submodule of V . Then both U and V/U admit a character, and

chU+ch
V

U
= chV�

Proof. We have V =⊕�V�. Also U�=U ∩V�. Thus the sum
∑

� U� is direct.
Moreover U =∑� U� since if u∈U and u=∑u� with u� ∈V� then u� ∈U ,
as in the proof of Theorem 10.9. Hence we have

U =⊕
�

U�

with U�⊂V�, so U admits a character. We also have

V/U =⊕
�

�V�/U��

and V�/U� can be identified with the �-weight space �V/U��. Thus V/U

admits a character. Finally we have

�chU ����+�ch �V/U �����=dim U�+dim �V�/U��=dim V��

Thus chU+ch �V/U�= chV .

Lemma 12.2 Suppose V1�V2 are L-modules which both admit characters
such that chV1 and chV2 lie in . Then V1⊗V2 admits a character and
ch �V1⊗V2�= chV1chV2.

Proof. Since V1�V2 admit characters we have V1=
⊕

��V1�� and
V2=

⊕
��V2��. Hence

V1⊗V2=
⊕
���

(
�V1��⊗�V2��

)
�

V1⊗V2 may be made into an L-module by means of the action

x �v1⊗v2�=xv1⊗v2+v1⊗xv2
extended by linearity. In particular, if x∈H�v1 ∈ �V1�� and v2 ∈ �V2�� we have

x �v1⊗v2�= ���x�+��x��v1⊗v2�
Thus �V1��⊗�V2��⊂ �V1⊗V2��+�. It follows that

V1⊗V2=⊕ �V1⊗V2��
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where �V1⊗V2��=
∑

���
�+�=�

(
�V1��⊗�V2��

)
. Thus V1⊗V2 admits a character.

Moreover we have

�ch �V1⊗V2�� ���= dim �V1⊗V2��=
∑
���

�+�=�

dim �V1�� dim �V2��

= ∑
���

�+�=�

�chV1� ��� �chV2� ���= �chV1 chV2� ����

Thus ch �V1⊗V2�= chV1 chV2 as required.

12.2 Characters of Verma modules

We now consider the character of the Verma module M��� where �∈H∗.
We recall from Theorem 10.7 that

�chM���� ���=���−��
where ���−�� is the number of ways of expressing �−� as a sum of
positive roots. Thus we have

chM���= ∑
�∈H∗

���−��e�=
∑
�∈H∗

����e�−�

= ∑
�∈H∗

����e�e−�= e�
∑
�∈H∗

����e−��

We write � =∑�∈H∗����e−�. We have � ∈ since Supp� ⊂S�0�. Then we
have

chM���= e���

Lemma 12.3 � has an inverse in the ring  given by

�−1= ∏
�∈�+

�1−e−�� �

Proof. Let �+= 
�1� � � � ��N �. Then ���� 	=0 if and only if there exist non-
negative integers r1� � � � � rN such that �= r1�1+· · ·+rN�N . In fact ���� is
the number of such sets �r1� � � � � rN �. Thus we have

� =∑
�

����e−�=
∑

r1���� �rN≥0
e−r1�1−···−rN �N

= ∑
r1���� �rN≥0

e
r1
−�1

� � � e
rN
−�N =

N∏
i=1

(∑
ri≥0

e
ri
−�i

)
�
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This factorisation of � in  gives us the required result. For the element

1+e−�i+e2−�i+· · · of 

has an inverse 1−e−�i ∈. Thus � has an inverse

�−1=
N∏
i=1

(
1−e−�i

)= ∏
�∈�+

�1−e−�� �

This gives us a useful formula for the character of the Verma module M���.

Proposition 12.4 chM���= e�+	
�

where �= e	
∏

�∈�+ �1−e−��.

Proof. We have

chM���= e�� =
e�e	

�
= e�+	

�

by Lemma 12.3.

The denominator � is an element of  which can be expressed in a number
of alternative ways.
We recall that 	∈X was defined by

	=!1+· · ·+!l

i.e. 	 is the sum of the fundamental weights. This element can also be
expressed simply in terms of the roots.

Proposition 12.5 	= 1
2

∑
�∈�+ �. Thus 	 is one half the sum of the positive

roots.

Proof. Let 	′ = 1
2

∑
�∈�+ �. We can express 	′ as a linear combination of the

fundamental weights. Let

	′ =
l∑

i=1
ci!i with ci ∈��

Now the fundamental reflection si ∈W transforms �i to −�i and transforms
every other positive root to a positive root, by Lemma 5.9. Thus we have

si �	
′�=	′ −�i�

On the other hand we have

2

〈
�j�!i

〉〈
�j��j

〉 =�ij
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by Proposition 10.18. This shows that sj �!i�=!i if i 	= j and sj
(
!j

)=!j−�j .
Thus we have

si �	
′�=	′ −ci�i�

Comparing this with the above formula for si �	
′� we deduce that ci=1.

Hence 	′ =	 as required.

Corollary 12.6 �= e−	
∏

�∈�+ �e�−1�

Proof. We have

�= e	
∏

�∈�+
�1−e−��= e	

∏
�∈�+

e−� �e�−1�= e	
( ∏
�∈�+

e−�

) ∏
�∈�+

�e�−1�

= e	e−2	
∏

�∈�+
�e�−1�= e−	

∏
�∈�+

�e�−1� �

There is a further useful expression for the denominator �. Before proving
it we shall need some information about the geometry of the action of the
Weyl group W on the Euclidean space V =H∗�.

12.3 Chambers and roots

We recall that the Weyl group is a finite group of isometries of the Euclidean
space V generated by the reflections s� for �∈�. We have

s��v�=v−2
���v�
������ v∈V�

Let

L� = 
v∈V  s��v�=v�
= 
v∈V  ���v�=0��

L� is the reflecting hyperplane orthogonal to the root �. We consider the
complement

V − ∪
�∈�

L�

of the set of reflecting hyperplanes. This is an open subset of V . The con-
nected components of this set are called the chambers of V . Two points of
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V −⋃�∈�L� lie in the same chamber if and only if they lie on the same side
of each reflecting hyperplane.
Let C be a chamber in V and ��C� be the boundary of C. Then the

hyperplanes L� such that L�∩��C� is not contained in any proper subspace
of L� are called the bounding hyperplanes, or walls, of C.
Now let �= 
�1� � � � ��l� be a fundamental system of roots. Then the set

C= 
v∈V  ��i� v�>0 for i=1� � � � � l�

is a chamber of V . For if � is any positive root we have ���v�>0 for all v∈C.
Thus all elements of C lie on the same side of each reflecting hyperplane
L�. Thus C lies in V −⋃�∈�L� and C is connected. Moreover any subset of
V −⋃�∈�L� larger than C would contain an element v with ��i� v�<0 for
some i, and so would be disconnected. C is called the fundamental chamber
corresponding to the fundamental system �. The bounding hyperplanes of C
are L�1

� � � � �L�l
. For L�i

∩��C� consists of all v∈V such that ��i� v�=0 but〈
�j� v

〉≥0 for j 	= i. Since �1� � � � ��l are linearly independent L�i
∩��C� is

not contained in any proper subspace of L�i
. On the other hand let � be a

positive root which is not fundamental. Then �=∑i=1 ni�i with each ni≥0
and at least two ni >0. If v∈L�∩��C� then∑

ni ��i� v�=0

and so ��i� v�=0 whenever ni >0. Thus L�∩��C� lies in a proper subspace
of L�. Hence the bounding hyperplanes of C are L�1

� � � � �L�l
. In fact the set

�= 
�1� � � � ��l� of fundamental roots may be characterised as the roots
orthogonal to the bounding hyperplanes of C which point into C, that is such
that �i lies on the same side of L�i

as C.
Now the Weyl group acts on V in a way which permutes the roots. It

therefore permutes the reflecting hyperplanes L�, and so acts on V −
⋃

�∈�L�.
Since W is a group of isometries of V�W permutes the connected components
of V −⋃�∈�L�. Thus the Weyl group W acts on the set of chambers of V .

Proposition 12.7 (i) Given any two chambers C�C ′ of V there is a unique
element w∈W such that w�C�=C ′.
(ii) The number of chambers of V is equal to the order of the Weyl group.
(iii) If C is a chamber in V its closure C̄ contains just one element from each

W -orbit on V .

Proof. Let � be a fundamental system of roots and C be the chamber defined
by v∈C if and only if ��i� v�>0 for i=1� � � � � l. Let C ′ be any chamber
and let v∈C ′. We recall from Section 5.1 that � is associated with a total
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ordering > on V . We consider the set of transforms w�v� for w∈W and let
v′ be the one which is greatest in the above total ordering. Then we have

s�i �v
′�=v′ −2

��i� v
′�

��i��i�
�i �i ∈�

and since s�i �v
′�≤v′ we must have ��i� v

′�≥0. This holds for all i=1� � � � � l,
thus v′ ∈C. Now let v′ =w�v�. Since v∈C ′ we have v′ ∈w�C ′�. Thus w�C ′� is
a chamber which intersects C̄. However, the only chamber intersecting C̄ is C.
Thus w�C ′�=C. Hence any chamber C ′ is in the same W -orbit as C. Thus W
acts transitively on the set of chambers. It follows that any chamber is associated
to some fundamental system of roots in the manner described above.
Now suppose w�C�=C. Then we have w���=� where � is the funda-

mental system determined by C, i.e. the set of roots orthogonal to the walls
of C and pointing into C. It follows that w��+�=�+, so w makes every
positive root positive. Hence n�w�=0. It follows from Corollary 5.16 that
l�w�=0, i.e. w=1. Thus W acts simply transitively on the set of chambers.
It is a consequence of this that the number of chambers of V is equal

to �W �.
We now consider the closure C̄ of a chamber C. Since each vector lies

in the closure of some chamber and W acts transitively on the chambers
each orbit of W on V intersects C̄. We must also show that if v1� v2 ∈ C̄ and
w�v1�=v2 then v1=v2. We prove this by induction on l�w�. It is clear when
l�w�=0, i.e. w=1. Thus we assume l�w�>0. Then n�w�>0 so there exists
�i ∈� with w��i�<0. Thus

0≤�v1��i�=�v2�w ��i��≤0�

Hence �v1��i�=0 and s�i �v1�=v1. But now ws�i �v1�=v2. The only positive
root made negative by s�i is �i. Thus the positive roots made negative by
w and ws�i are the same, apart from �i, which is made negative by w and
positive by ws�i . Thus

n�w�=n (ws�i)+1

and so

l
(
ws�i

)= l�w�−1

by Corollary 5.16. We can then deduce that v1=v2 by induction, as required.

We shall now suppose that � is a fixed fundamental system of roots and
C is the corresponding fundamental chamber.
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Proposition 12.8 (i) v∈C if and only if v=∑l
i=1 ni!i with ni >0 for all i.

(ii) v∈ C̄ if and only if v=∑l
i=1 ni!i with ni≥0 for all i.

Proof. Since !1� � � � �!l are a basis of V we can write v=∑ni!i for each
v∈V . Now v∈C if and only if ��i� v�>0 for i=1� � � � � l. We recall from
the definition of the fundamental weights !1� � � � �!l that〈

�i�!j

〉= 0 if i 	= j
��i�!i� = 2 ��i��i� �

Thus we have ��i� v�=2ni ��i��i�. In particular ��i� v�>0 if and only if
ni >0. Similarly ��i� v�≥0 if and only if ni≥0. The required result follows.

We show in Figures 12.1, 12.2 and 12.3 the chambers for the 2-dimensional
root systems A2�B2 and G2.

α2
α1 + α2 = ω1 + ω2

C

ω2

ω1

–α1 α1

–α2–α1–α2

Figure 12.1 Two-dimensional root system type A2



250 Character and dimension formulae

ω1

2α1 + α2α1 + α2 = ω2
α2

–α1 α1

–α2–α1–α2
–2α1–α2

C

Figure 12.2 Two-dimensional root system type B2

3α1 + 2α2 = ω2

3α1 + α2

–α1 – α2

–3α1 – 2α2

α2

–α1 α1

–α2

C

α1 + α2 2α1 + α2 = ω1

–3α1 – α2 –2α1 – α2

Figure 12.3 Two-dimensional root system type G2
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Proposition 12.9 Suppose � is the root system of a simple Lie algebra and
let C be the fundamental chamber.

(i) Suppose all roots in � have the same length. Then there exists a unique
root �l=

∑l
i=1 ai�i in C̄. This root satisfies the condition that for any

root �=∑l
i=1 ki�i we have ki≤ai.

(ii) Now suppose there are two root lengths. Then there are just two roots

�l=
l∑

i=1
ai�i� �s=

l∑
i=1

ci�i

in C̄. �l is a long root and �s is a short root. �l satisfies the condition
that for any root �=∑l

i=1 ki�i we have ki≤ai. (In particular ci≤ai.)
�l is called the highest root and �s the highest short root.

Proof. By Proposition 12.7 C̄ contains just one root in each W -orbit on �.
Now two roots lie in the same W -orbit if and only if they have the same
length. For roots in the same orbit obviously have the same length; but any
root is in the same orbit as a fundamental root, and any two fundamental
roots of the same length can be joined in the Dynkin diagram by a sequence
of fundamental roots all of this length. Two fundamental roots of the same
length joined in the Dynkin diagram obviously lie in the same W -orbit.
Thus in case (i) C̄ contains a unique root �l and in case (ii) C̄ contains one

long root �l and one short root �s.
We now introduce a partial order ' on the set �+ of positive roots. Given

�=
l∑

i=1
mi�i� �=

l∑
i=1

ni�i

in �+ we write �'� if mi≥ni for each i. We consider maximal elements
of �+ with respect to this partial order. Let � be maximal. Then ����i�≥0
for each i, as otherwise �+�i would be a root higher than �. We also have
����i�>0 for some i. Let �=∑l

i=1mi�i. We show that eachmi >0. Suppose
this is not so. Then there exist i� i′ with mi 	=0�mi′ =0 and ��i��i′ �<0.
But then ����i′ �=

∑l
j=1mj

〈
�j��i′

〉
<0, a contradiction. Hence each mi >0.

We now show that � is the unique maximal element of �+ with respect
to '. Suppose if possible that � is also maximal and � 	=�. Then �+� 	∈�.
Also �−� 	∈�, as �−� 	∈� would imply �'� or �'�. Hence �����=0
by Proposition 4.22. But

�����=
l∑

i=1
mi ��i���>0
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since each mi >0, each ��i���≥0, and some ��i���>0. Thus we have a
contradiction. Hence � is the unique maximal element of�+ with respect to '.
Now �∈ C̄ since ����i�≥0 for each i. Thus �=�l or �s. We wish to

show �=�l. To do so we show that if �′ ∈�∩ C̄ then ��′��′�≤�����. By
the maximality of ���−�′ is a non-negative combination of �1� � � � ��l and
so ��−�′� x�≥0 for all x∈ C̄. In particular we have ��−�′���≥0 and
��−�′��′�≥0. Hence

�����≥����′�≥��′��′� �
It follows that �=�l. Thus �l is the unique maximal element of �+ with
respect to ' and the result is proved.

Definition The number h=1+ht �l is called the Coxeter number of L. It
is known to be equal to the order of the element s1s2 � � � sl ∈W , and also
to ���/���. (See, for example, Bourbaki, Groupes et algèbres de Lie,
Chapters 4, 5, 6.)

In order to prove Weyl’s denominator formula we shall need some prop-
erties of the transforms w�	�.

Proposition 12.10 (i) w�	�=	−∑�∈& � for some subset & of �+.
(ii) Given any subset & of �+ the vector 	−∑�∈& � either lies in one of

the reflecting hyperplanes L� or has the form w�	� for some w∈W .
(iii) If 	−∑�∈& � lies in the fundamental chamber then & is empty.

Proof. We know from Proposition 12.5 that 	= 1
2

∑
�∈�+ �. Let w∈W . Then

w permutes the roots and so

w�	�= 1
2

∑
�∈�+

�±��=	−∑
�∈&

�

where & is the set of positive roots made negative by w−1.
Now suppose & is any subset of �+. Suppose 	−∑�∈& � lies in the

fundamental chamber. We write v=∑�∈& �. Then �	−v��hi�>0 for each
i=1� � � � � l. Moreover �	−v��hi�∈� and 	�hi�=1, since !i�hi�=1 and
!j�hi�=0 if j 	= i. It follows that v�hi�≤0, that is that �v��i�≤0 for i=
1� � � � � l. However, v is a sum of positive roots so has form v=∑l

i=1 ni�i

where ni≥0 for each i. Hence

�v� v�=
l∑

i=1
ni �v��i�≤0�

It follows that v=0 and so & is empty.
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Finally we must show that 	−∑�∈& � either lies in a reflecting hyperplane
or is a W -transform of 	. Suppose it does not lie in any reflecting hyperplane.
Then it lies in a chamber. Thus there exists w∈W such that

w

(
	−∑

�∈&
�

)
lies in the fundamental chamber. However, 	−∑�∈& � has the form
1
2

∑
�∈�+�±��, so w�	−∑�∈& �� also has form 1

2

∑
�∈�+�±�� since w

permutes the roots. Hence

w

(
	−∑

�∈&
�

)
=	−∑

�∈&′
�

for some subset &′ of �+. Since this vector lies in the fundamental chamber,
&′ must be empty. Hence

w

(
	−∑

�∈&
�

)
=	

and so 	−∑�∈& � is a W -transform of 	

We can now prove Weyl’s denominator formula.

Theorem 12.11 (Weyl’s denominator formula).

e	
∏

�∈�+
�1−e−��=

∑
w∈W

 �w�ew�	�

where  �w�= �−1�l�w�.

Proof. Let � �H∗� be the set of functions f � H∗→� of finite support.
This is the set of finite �-combinations of the characteristic functions e�.
Weyl’s denominator formula is an identity in � �H∗�. There is a natural action
of W on � �H∗� given by

�wf��=f (w−1�) �
We define a map � � � �H∗�→� �H∗� by

��f �=∑
w∈W

 �w�wf�

It is clear that, for w′ ∈W��w′ = �w′� �, hence
� � �w′�w′�=�
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and

�2=�W ���
We now consider the effect of a fundamental reflection si on

�= e	
∏

�∈�+
�1−e−�� �

We have

si

(
e	

∏
�∈�+

�1−e−��
)
= esi�	�

∏
�∈�+

(
1−e−si���

)
�

Now si�	�=	−�i by the proof of Proposition 12.5. Also si transforms every
positive root to a positive root, except for �i. Hence we have

si

(
e	

∏
�∈�+

�1−e−��
)
= e	−�i

⎛⎜⎝ ∏
�∈�+
�	=�i

�1−e−��
⎞⎟⎠(

1−e�i
)

= e	

⎛⎜⎝ ∏
�∈�+
�	=�i

�1−e−��
⎞⎟⎠(

e−�i−1
)

=−e	
∏

�∈�+
�1−e−�� �

Thus si���=−�. It follows that w���= �w�� for all w∈W . Hence ����=
�W ��.
We also have

�= e	
∏

�∈�+
�1−e−��

= e	
∑

&⊂�+
�−1��&�e−∑�∈& �

= ∑
&⊂�+

�−1��&�e	−∑�∈& ��

Now 	−∑�∈& � either is of form w�	� for some w∈W or lies in some
reflecting hyperplane, by Proposition 12.10. If v lies in a reflecting hyperplane
then ��v�=0 since the terms in ��v� cancel out in pairs. For if v∈L� then

 �ww��ww�v=− �w�wv�
Thus we have

����=� ∑
w∈W

 �w�ew	
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since if 	−∑�∈& �=w�	� then �&�= l�w� by the proof of Proposition 12.10.
Thus

����=� (� (e	))=�2 (e	)=�W �� (e	) �
But ����=�W �� as shown above. It follows that

�=� (e	)=∑
w∈W

 �w�ew	�

Corollary 12.12 chM���= e�+	∑
w∈W  �w�ew	

.

Proof. This follows from Proposition 12.4 and Theorem 12.11.

12.4 Composition factors of Verma modules

We shall show in this section that each Verma moduleM��� has a composition
series of finite length and that all its composition factors are irreducible
modules of the form L��� where �=w��+	�−	 for some w∈W . It will
be convenient to define

w ·�=w��+	�−	�
We shall use these results in the following section to prove Weyl’s character
formula for the finite dimensional irreducible modules L���.
We begin with a lemma on filtered algebras and their corresponding graded

algebras. We recall the definitions as given in Section 11.1.

Lemma 12.13 Let A=⋃iAi be a filtered algebra with

A0⊂A1⊂A2⊂· · ·
and let B=B0⊕B1⊕B2⊕· · · be the corresponding graded algebra.

(i) if I is a left ideal of A then gr I=⊕i

Ai−1+�Ai∩ I�
Ai−1

is a left ideal of B.

(ii) If I1⊂ I2 then gr I1⊂gr I2.
(iii) If I1⊂ I2 and gr I1=gr I2 then I1= I2.
(iv) If B satisfies the maximal condition on left ideals so does A.

Proof. We recall that B=⊕iBi where Bi=Ai/Ai−1. If x∈Ai∩ I� y∈Aj then
we have (

Aj−1+y
)
�Ai−1+x�=Ai+j−1+yx
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where yx∈Ai+j∩ I . Thus Ai+j−1+yx∈gr I . It follows that gr I is a left
ideal of B.

It is clear from the definition that if I1⊂ I2 then gr I1⊂gr I2.

We now suppose that I1⊂ I2 and gr I1=gr I2. Then

Ai−1+�Ai∩ I1�=Ai−1+�Ai∩ I2�

for each i. Thus we have

Ai∩ I2= �Ai∩ I1�+�Ai−1∩ I2� �

We shall show that Ai∩ I1=Ai∩ I2 by induction on i. We know A0∩ I1=
A0∩ I2 since gr I1=gr I2.

Assume inductively that Ai−1∩ I1=Ai−1∩ I2. Then we have

Ai∩ I2= �Ai∩ I1�+�Ai−1∩ I1�=Ai∩ I1�

Thus Ai∩ I2=Ai∩ I1 for all i. Since A=∪iAi it follows that I1= I2.
Now suppose that

I1⊂ I2⊂ I3⊂· · ·

is a chain of left ideals of A. Then

gr I1⊂gr I2⊂gr I3⊂· · ·

is a chain of left ideals of B. Assume that B satisfies the maximal condition
on left ideals. Then we have gr Ii=gr Ij for all i� j sufficiently large. It
follows that Ii= Ij for all i� j sufficiently large. Hence A satisfies the maximal
condition on left ideals.

Proposition 12.14 ��L� satisfies the maximal condition on left ideals.

Proof. ��L� is a filtered algebra whose graded algebra is the symmetric alge-
bra S�L�. However, S�L� is isomorphic to the polynomial ring � �z1� � � � � zn�

where n=dimL, so satisfies the maximal condition on (left) ideals, by
Hilbert’s basis theorem. Thus ��L� satisfies the maximal condition on left
ideals, by Lemma 12.13.

Corollary 12.15 The Verma module M��� satisfies the maximal condition
on submodules.
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Proof. The left ideals of ��L� are the same as the ��L�-submodules. Thus
��L� satisfies the maximal condition on submodules. We recall that

M���=��L�/K�

where K� is a submodule of ��L�. It follows that M��� satisfies the maximal
condition on submodules.

Theorem 12.16 The Verma module M��� has a finite composition series

M���=N0⊃N1⊃N2⊃· · ·⊃Nr =O
where each Ni is a submodule of M��� and Ni+1 is a maximal submodule of
Ni. Moreover Ni/Ni+1 is isomorphic to L�w ·�� for some w∈W .

Proof. SinceM��� satisfies the maximal condition on submodules, every sub-
module of M��� has a maximal submodule. Thus we have a descending
series

M���=N0⊃N1⊃N2⊃· · ·
of submodules, in which Ni+1 is a maximal submodule of Ni. We wish to
show that this series reaches O after finitely many steps.
Now M��� is the direct sum of its weight spaces by Theorem 10.7. Thus

every submodule of M��� is also the direct sum of its weight spaces, by the
proof of Theorem 10.9. It follows that each quotient Ni/Ni+1 is the direct sum
of its weight spaces. Moreover each weight � of Ni/Ni+1 is a weight of M���

so satisfies �≺� with respect to the natural partial order on weights. Thus
we can choose a weight � of Ni/Ni+1 which is maximal in this partial order
among the set of possible weights. Let v be a non-zero vector in Ni/Ni+1 of
weight �. Then we have eiv=0 and hv=��h�v for all h∈H . Thus we have

��L�v=� �N−� v�

However, Ni/Ni+1 is an irreducible ��L�-module, thus ��L�v=Ni/Ni+1.
Thus we have a homomorphism M���→Ni/Ni+1 given by um�→uv for
all u∈� �N−� as in Proposition 10.13. This homomorphism is surjective and
its kernel is the unique maximal submodule of M���, since Ni/Ni+1 is irre-
ducible. It follows that Ni/Ni+1 is isomorphic to L���, the unique irreducible
quotient of M���.
We now consider the action of the centre Z�L� of ��L�. Z�L� acts on

M��� by scalar multiplications. The element z∈Z�L� acts on M��� by scalar
multiplication by ���z�, as in Section 11.5. Hence z acts on each submodule
Ni and each quotient Ni/Ni+1 as scalar multiplication by ���z�. However,



258 Character and dimension formulae

z acts on M��� as scalar multiplication by ���z�, and so also on its quotient
L���. Since Ni/Ni+1 is isomorphic to L��� we deduce that ���z�=���z�

for all z∈Z�L�. Hence ��=��. It follows from Theorem 11.31 that �+	=
w��+	� for some w∈W . This is equivalent to �=w ·� for some w∈W .

Now W is finite and so there are only finitely many possible composition
factors of M���, up to isomorphism. Also each weight space of M��� is
finite dimensional. Thus L���, which contains � as a weight, can appear as
a composition factor with multiplicity at most the dimension of the � weight
space M����. It follows that the series

M���=N0⊃N1⊃N2⊃· · ·
must reach O after at most

∑
w∈W dimM���w·� steps. Thus M��� has a finite

composition series and each composition factor has form L�w ·�� for some
w∈W .

12.5 Weyl’s character formula

We now find a formula for the characters of the finite dimensional irreducible
modules L��� where �∈X+.

Theorem 12.17 (Weyl’s character formula). Let �∈X+. Then

chL���=
∑

w∈W  �w�ew��+	�∑
w∈W  �w�ew�	�

�

(This is an equality in the ring  of Section 12.1 since the denominator

�=∑
w∈W

 �w�ew�	�

is an invertible element of .)

Proof. Since � is a dominant integral weight we have ��hi�≥0 for
i=1� � � � � l. Hence ��+	� �hi�=��hi�+1>0 for i=1� � � � � l. Thus �+	
lies in the fundamental chamber C. Hence w��+	� lies in the chamber
w�C�. It follows from Proposition 12.7 that the weights w��+	� for w∈W
are all distinct.

Nowthehighestweightof theVermamoduleM�w ·�� isw ·�=w��+	�−	.
Thus the characters chM�w ·��∈ are linearly independent asw runs overW .
Similarly the characters chL�w ·�� are linearly independent forw∈W .
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Now M�w ·�� has a finite composition series with composition factors of
form L�y ·�� for y∈W , by Theorem 12.16. Moreover, since y ·� is a weight
of L�y ·�� and w ·� is the highest weight of M�w ·�� we have y ·�≺w ·�
whenever L�y ·�� occurs as a composition factor of M�w ·��. Moreover w ·�
occurs as a weight of M�w ·�� with multiplicity 1, thus L�w ·�� appears as a
composition factor of M�w ·�� with multiplicity 1. We therefore have

chM�w ·��=∑
y∈W

awy chL�y ·��

where awy ∈�, awy≥0, aww=1, and awy 	=0 only if y ·�≺w ·�. If we write
the elements of W in an order compatible with the partial order y ·�≺w ·�
we see that the integers awy form a triangular �W �×�W � matrix with entries
1 on the diagonal. The determinant of this matrix is 1. Thus we may invert
the above equations to obtain

chL�w ·��=∑
y∈W

bwy chM�y ·��

where bwy ∈� and bww=1. (The bwy will no longer be non-negative.) In
particular we have

chL���=∑
y∈W

cychM�y ·��

where cy=b1y. By Proposition 12.4 this gives

chL���=
∑

y∈W cyey��+	�
�

where c1=1. We wish to determine the remaining coefficients cy.

We recall from Proposition 10.22 that

dimL����=dimL���w���

for all w∈W . Thus we have

w�chL����= chL��� for all w∈W�

On the other hand we have

si���=−�
by Theorem 12.11 and thus

w���= �w���
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It follows that

w

(∑
y∈W

cyey��+	�

)
= �w�

(∑
y∈W

cyey��+	�

)
�

Thus ∑
y∈W

cyewy��+	�=
∑
y∈W

 �w�cyey��+	�

since we�= ew�. This is equivalent to∑
y∈W

cw−1yey��+	�=
∑
y∈W

 �w�cyey��+	��

Since the functions ey��+	� for y∈W are linearly independent we deduce that

cw−1y= �w�cy�
In particular we have cw−1 = �w�, thus cw= 

(
w−1

)= �w�. It follows that
chL���=

∑
w∈W  �w�ew��+	�

�

as required.

We note that in the special case �=0 we have chL�0�= e0 as L�0� is the
trivial 1-dimensional representation of L. Thus we have∑

w∈W
 �w�ew�	�=�e0=��

This gives an alternative proof of Weyl’s denominator formula, Theo-
rem 12.11.
We also note that while the character chL��� is invariant under the Weyl

group both the numerator and the denominator in Weyl’s character formula
are alternating functions under the Weyl group, i.e. satisfy w�a�= �w�a.
We may deduce from Weyl’s character formula a formula due to Kostant

for the dimension of the weight space L���� of L���.

Theorem 12.18 (Kostant’s multiplicity formula). Let �∈X+ and �∈X. Then
dimL����=

∑
w∈W

 �w���w��+	�−��+	��

where � is the partition function defined in Theorem 10.7.

Proof. We have chL���=∑� dimL����e�. Moreover we know that

�−1= e−	� = e−	
∑
�

����e−�
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by Lemma 12.3. Thus Weyl’s character formula gives the identity

∑
�

dimL����e� =
(∑
w∈W

 �w�ew��+	�

)
e−	

∑
�

����e−�

= ∑
w∈W

∑
�

 �w�����ew��+	�−	−��

We compare the coefficients of e� on both sides. This gives

dimL����=
∑
w∈W

 �w���w��+	�−��+	���

We can also derive from Weyl’s character formula a formula for the
dimension of L���.

Theorem 12.19 (Weyl’s dimension formula). Let �∈X+. Then

dimL���=
∏

�∈�+��+	���∏
�∈�+�	���

�

Proof. Let 0 be the subring of  consisting of all finite sums
∑

�∈X n�e�
with n� ∈�. Then the character formula

� chL���=∑
w∈W

 �w�ew��+	�

may be regarded as an identity in 0. Let A=���t�� be the ring of formal
power series in the variable t with real coefficients. Then for each weight
�∈X we have a ring homomorphism

�� � 0→A

given by

���e��= exp������t�=1+�����t+ 1
2! �����

2t2+· · · �

Consider ��
(∑

w∈W  �w�ew�
)
. We have

��

(∑
w∈W

 �w�ew�

)
= ∑

w∈W
 �w� exp ����w��t�=∑

w∈W
 �w� exp

(〈
��w−1�

〉
t
)

= ∑
w∈W

 �w� exp����w�� t�=��
(∑
w∈W

 �w�ew�

)
�
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In particular we have

�	

(∑
w∈W

 �w�ew��+	�

)
= ��+	

(∑
w∈W

 �w�ew	

)

= ��+	

(
e−	

∏
�∈�+

�e�−1�

)
= exp���+	�−	�t� ∏

�∈�+
�exp��+	���t−1�

= exp���+	�−	�t� ∏
�∈�+

���+	���t+· · · �

= tN

( ∏
�∈�+
��+	���+· · ·

)
where N =��+��

By putting �=0 we obtain

�	

(∑
w∈W

 �w�ew	

)
= tN

( ∏
�∈�+
�	���+· · ·

)
�

Thus by applying �	 to Weyl’s character formula we obtain

tN

( ∏
�∈�+
�	���+· · ·

)∑
�

dimL���� exp��	���t�= tN
( ∏
�∈�+
��+	���+· · ·

)
�

By cancelling tN and then taking the constant term we obtain( ∏
�∈�+
�	���

)
dimL���= ∏

�∈�+
��+	����

12.6 Complete reducibility

We have now attained a good understanding of the finite dimensional irre-
ducible modules for a semisimple Lie algebra L. We now consider arbitrary
finite dimensional L-modules. Each of these turns out to be a direct sum of
irreducible L-modules.

Theorem 12.20 Let L be a semisimple Lie algebra and V a finite dimensional
L-module. Then V is completely reducible.

Proof. We shall prove this result in a number of steps. If V is itself irreducible
there is nothing to prove. Thus we suppose U is a proper submodule of V . It
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will be sufficient to show that U has a complementary submodule U ′ in V ,
that is a submodule such that V =U⊕U ′.
(a) Suppose dimV =2�dimU =1. Then U and V/U are 1-dimensional

L-modules. Since for x� y∈L�u∈U we have

�xy�u=x�yu�−y�xu�

and since the actions of x and y on the 1-dimensional module commute
we have

�xy�u=0�

Thus �LL� acts as 0 on U . Since L is semisimple we have �LL�=L. Thus
U gives the trivial 1-dimensional representation L�0�. Similarly V/U is
isomorphic to L�0�.

Now let v∈V . Then

�xy�v=x�yv�−y�xv��

Since L annihilates V/U we have xv∈U and yv∈U . Since L annihilates
U we have x�yv�=0 and y�xv�=0. Hence �xy�v=0. This shows that
�LL� annihilates V , i.e. L annihilates V . But then any complementary
subspace U ′ of U is a submodule of V .

(b) Suppose U is irreducible, dimU>1, and dim�V/U�=1.
Then U is isomorphic to L��� for some �∈X+ with � 	=0. We consider

the action of the Casimir element c on V . We recall from Proposition 11.36
that c acts on the irreducible module L��� as scalar multiplication by
��+	��+	�−�	�	�. In particular c acts on L�0� as zero, and c acts on
L��� for �∈X+�� 	=0, as multiplication by a positive scalar. For then
�����>0 and ���	�≥0 since �∈X+. Thus c has one eigenvalue 0 on
V and dimV −1 eigenvalues ���c�=��+	��+	�−�	�	�>0. Let U ′

be the eigenspace of c on V with eigenvalue 0. Then we have

V =U⊕U ′�

Moreover U ′ is a submodule of V . For let x∈L�u′ ∈U ′. Then

c �xu′�=x �cu′�=0

since c lies in the centre Z�L� of ��L�. Thus xu′ ∈U ′ and U ′ is the
required submodule of V .
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(c) Suppose dim�V/U�=1 but U is not irreducible. We prove the existence
of the required complementary submodule U ′ by induction on dimU . Let
Ū be a proper submodule of U . Then by induction we have

V/Ū =U/Ū⊕ V̄ /Ū
for some submodule V̄ of V containing Ū . We have dim�V̄ /Ū �=1 and
dim Ū <dimU . Thus we may apply induction again and conclude that
there exists a submodule U ′ such that

V̄ = Ū⊕U ′�
But then we have V =U⊕U ′ as required .

(d) We now consider the general case when U is any proper submodule of V .
We consider the set Hom�V�U� of all linear maps from V to U . We can
make this set into an L-module as follows. If x∈L and �∈Hom�V�U�

we define x�∈Hom�V�U� by

�x��v=x���v��−��xv�∈U�
Then we have

�y�x���v= y��x��v�−�x���yv�
= y�x��v��−y���xv��−x���yv��+��x�yv���

Similarly

�x�y���v=x�y��v��−x���yv��−y���xv��+��y�xv���
Thus

�x�y��−y�x���v= x�y��v��−y�x��v��+��y�xv��−��x�yv��
= �xy���v�−���xy�v�
= ��xy���v�

Thus Hom�V�U� is an L-module. Let S be the subspace of Hom�V�U�

of maps � such that ��U is a scalar multiplication. Then S is a submodule
of Hom�V�U�. For suppose �∈S�x∈L. Then for u∈U we have

�x��u=x��u�−��xu�=�xu−�xu=0

where � acts on U as multiplication by �. Thus S is a submodule of
Hom�V�U�. Moreover let T be the subspace of S of maps � such that
��U is zero. Then T is a submodule of S and dim�S/T�=1.
We know then from the earlier parts of the proof that there is a sub-

module T ′ of S such that S=T⊕T ′. We have dimT ′ =1. Suppose T ′ is
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spanned by the non-zero element f � V→U . We may choose f so that
f�u�=u for all u∈U . We have xf =0 for all x∈L since dimT ′ =1.
Thus

�xf�v=x�fv�−f�xv�=0

for all v∈V , that is
x�fv�=f�xv� for all x∈L�v∈V�

This shows that f � V→U is a homomorphism of L-modules. Let U ′ be
the kernel of f . Then U ′ is a submodule of V . We have U ∩U ′ =O since
f acts as the identity on U , and

dimV =dimU+dimU ′

since f is surjective. Hence we have

V =U⊕U ′

and U ′ is the required complementary submodule.

Note The crucial step in the above proof of complete reducibility is the
fact that the Casimir element c acts on the irreducible module L��� for
�∈X+�� 	=0, as multiplication by a positive scalar.
The theorem of complete reducibility shows that every finite dimensional

L-module is a direct sum of irreducible L-modules each isomorphic to L���

for some �∈X+.
In particular the tensor product L���⊗L��� is a direct sum of irreducible

modules L��� where ����'∈X+. It is natural to try to determine the mul-
tiplicity with which L��� occurs as a direct summand of L���⊗L���. This
multiplicity is given in a formula of Steinberg.

Theorem 12.21 (Steinberg’s multiplicity formula). Let ���∈X+ and

L���⊗L���= ∑
�∈X+

c���L����

Then

c���=
∑

w�w′∈W
 �w� �w′�� �w��+	�+w′��+	�−��+2	�� �

Proof. We have

chL���chL���= ∑
�∈X+

c���chL���
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by Lemma 12.2. We multiply both sides of this equation by the Weyl denom-
inator �. By Weyl’s character formula, Theorem 12.17, we have(∑

w∈W
 �w�ew��+	�

)(∑
�∈X

dimL����e�

)
= ∑

�∈X+
c���

(∑
w∈W

 �w�ew��+	�

)
�

Thus
∑

w∈W
∑

�∈X  �w�dimL����ew��+	�+�=
∑

�∈X+
∑

w∈W c��� �w�ew��+	�.
Now �∈X+, thus �+	 lies in the fundamental chamber C. Thus w��+	�
lies in the chamber w�C�. Thus the elements w��+	� are all distinct as w��
vary, and so the elements ew��+	� are linearly independent. We may therefore
compare the coefficients of ew��+	� on both sides of the above equation. In
fact we compare the coefficients of e�+	 on both sides. This gives

c��� =
∑
w∈W

w��+	�+�=�+	

∑
�∈X

 �w�dimL����

= ∑
w∈W

 �w�dimL����+	−w��+	��

We now use Kostant’s multiplicity formula, Theorem 12.18. This gives

dimL����+	−w��+	�=
∑
w′∈W

 �w′�� �w′��+	�+w��+	�−��+2	�� �

Thus we obtain

c���=
∑

w�w′∈W
 �w� �w′�� �w��+	�+w′��+	�−��+2	�� �



13
Fundamental modules for simple

Lie algebras

13.1 An alternative form of Weyl’s dimension formula

Let L be a finite dimensional simple Lie algebra. The irreducible L-modules
L�!i� whose highest weights are the fundamental weights !1� � � � �!l are
called the fundamental modules. In this chapter we shall determine the dimen-
sions of the fundamental modules for the various simple Lie algebras. We
shall first derive an alternative form of the Weyl dimension formula which
will be useful in this respect.

Theorem 13.1 Let �=∑l
i=1mi!i be a dominant integral weight. Then

dimL���= ∏
�∈�+

d�

where �=∑l
i=1 ki�i and

d�=
∑

i �mi+1� kiwi∑
i kiwi

�

Here the integer wi, called the weight of �i, is defined by

��i��i�=wi

〈
�i0

��i0

〉
where �i0

is a short fundamental root. Thus wi ∈ 
1�2�3� for each i.

Proof. We know from Theorem 12.19 that

dimL���= ∏
�∈�+

d�

where d�=
��+	���
�	��� .

267
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Since �=∑mi!i�	=
∑

!i� �=
∑

ki�i we have

d�= �
∑

�mi+1�!i�
∑

ki�i�
�∑!i�

∑
ki�i�

�

Now we know from the proof of Proposition 10.18 that
〈
!i��j

〉=0 if i 	= j
and �!i��i�= 1

2 ��i��i�. Thus

d�=
∑

i �mi+1� ki · 12 ��i��i�∑
i ki · 12 ��i��i�

=
∑

i �mi+1� kiwi∑
i kiwi

�

13.2 Fundamental modules for Al

The fundamental weights !1� � � � �!l for a simple Lie algebra of type Al will
be numbered according to the vertices of the Dynkin diagram as shown.

21 l–1 l

We shall use Theorem 13.1 to calculate dimL
(
!j

)
for j∈ 
1� � � � � l�. We

have dimL
(
!j

)=∏�∈�+d� where

d�=
∑

i �mi+1� ki∑
i ki

�

(All weights wi are equal to 1.) Now mj=1 and mi=0 if i 	= j. Thus if �
does not involve the fundamental root �j we have d�=1.
So suppose � does involve �j . Then �=�i+· · ·+�j+· · ·+�k for some

i with 1≤ i≤ j and some k with j≤k≤ l. For such a root � we have

d�=
k− i+2
k− i+1

�

Thus

dimL
(
!j

) = ∏
i

1≤i≤j

∏
k

j≤k≤l

k− i+2
k− i+1

= ∏
k

j≤k≤l

�k+1�k � � � �k−j+2�
k�k−1� � � � �k−j+1�

= ∏
k

j≤k≤l

k+1
k−j+1

= �j+1��j+2� � � � �l+1�
1�2� � � � ��l+1−j� = �l+1�!

j! �l+1−j�! =
(
l+1
j

)
�
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Thus we have shown

Proposition 13.2 The dimensions of the fundamental modules for the simple
Lie algebra of type Al are

l + 1 l + 1
2

l + 1
3

l + 1
3

l + 1
2

l + 1

These fundamental modules may be described in terms of exterior powers
of the natural Al-module of dimension l+1. We recall from Theorem 8.1 that
Al is isomorphic to the Lie algebra ��l+1��� of all �l+1�×�l+1� matrices
of trace 0. The identity map gives an �l+1�-dimensional representation of Al

called the natural representation. Its weights are the maps �1��2� � � � ��l+1
given by ⎛⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2

·
·
·
�l+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�i−→�i�

Then we have

�1−�2=�1

���

�l−�l+1=�l

�1+· · ·+�l+1=0�

On the other hand we have �i=
∑

j Aji!j by Proposition 10.17. Hence

�1=2!1−!2

�2=−!1+2!2−!3

���

�l−1=−!l−2+2!l−1−!l

�l= −!l−1+2!l�
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Eliminating �1� � � � ��l we obtain

�1=!1

�2=−!1+!2

���

�l=−!l−1+!l

�l+1=−!l�

Now the weights of the natural module satisfy �1"�2"· · ·"�l+1 since
�i−�i+1=�i. Thus the highest weight of the natural module is �1=!1. It
follows that L�!1� is one of the irreducible direct summands of the natural
module V . Since

dimV =dimL�!1�= l+1

it follows that V =L�!1�. Thus we have shown

Proposition 13.3 The natural Al-module is an irreducible module with high-
est weight !1.

To obtain the remaining fundamental Al-modules we introduce exterior
powers of modules.

13.3 Exterior powers of modules

Let V be a finite dimensional module for a Lie algebra L. Let

T�V�=T 0�V �⊕T 1�V �⊕T 2�V �⊕· · ·
be the tensor algebra of V , where

Tn�V�=V ⊗· · ·⊗V �n factors��

T�V� may be made into an associative algebra in which

�x1⊗· · ·⊗xm� �y1⊗· · ·⊗yn�=x1⊗· · ·⊗xm⊗y1⊗· · ·⊗yn
for x1� � � � � xm� y1� � � � � yn ∈V .
T�V� may also be given the structure of an L-module satisfying

x �x1⊗· · ·⊗xm�=
m∑
i=1

x1⊗· · ·⊗xi−1⊗xxi⊗xi+1⊗· · ·⊗xm

for all x∈L.
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Let J be the 2-sided ideal ofT�V �generated by the elements v⊗v for all v∈V .

Definition 13.4 #�V �=T�V �/J is called the exterior algebra of V .

Let v� v′ ∈V . Then
�v+v′�⊗�v+v′�=v⊗v+v′ ⊗v′ +v⊗v′ +v′ ⊗v�

Hence

v⊗v′ +v′ ⊗v∈ J�
Now let v1� � � � � vn be a basis of V . Then J is the 2-sided ideal of T�V �

generated by all elements of form

vi⊗vi i=1� � � � � n

vi⊗vj+vj⊗vi i<j�

It follows from this that

J =⊕
k≥0

(
Tk�V �∩J)

and that T 0�V �∩J =O�T 1�V �∩J =O. Hence
#�V �=#0V ⊕#1V ⊕#2V ⊕· · ·

where #kV =Tk�V �/Tk�V �∩J . In particular we have

#0V �T 0�V �= �1

#1V �T 1�V �= V�

Thus we may identify the subspace #0V ⊕#1V of #�V � with �1⊕V .
Let � � T�V �→#�V �=T�V �/J be the natural homomorphism. We define

� �v⊗v′�=v∧v′ for v� v′ ∈V�
Then every element of #�V � is a linear combination of elements

vi1 ∧· · ·∧vik i1� � � � � ik ∈ 
1� � � � � n��
The relations defining J may be written

vi∧vi=0 i∈ 
1� � � � � n�
vj∧vi=−

(
vi∧vj

)
i< j�
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By applying these relations we see that each element of #�V � is a linear
combination of elements

vi1 ∧· · ·∧vik for i1< · · ·<ik

and that the relations cannot be used further. Thus we have shown:

Proposition 13.5 (i) #�V �=#0V ⊕#1V ⊕· · ·⊕#nV

(ii) dim#kV = (n
k

)
(iii) dim#�V �=2n

(iv) The elements vi1 ∧· · ·∧vik for subsets 
i1� � � � � ik�⊂ 
1� � � � � n� with
i1< · · ·<ik form a basis of #�V �.

We now show that #�V � has the structure of an L-module. We recall that
T�V � is an L-module and that its ideal J is generated by v⊗v for all v∈V .
For x∈L we have

x�v⊗v�=xv⊗v+v⊗xv�
Since the right-hand side lies in J we see that J is a submodule of T�V �.
Thus #�V �=T�V �/J can be made into an L-module in the natural way. Each
exterior power #kV is a submodule.

Proposition 13.6 Let V be a finite dimensional module for the simple Lie
algebra L. Then the weights of #kV are all sums of k distinct weights of V .

Proof. Let H be a Cartan subalgebra of L. We consider V as an H-module.
V is a direct sum of 1-dimensional H-submodules. Let v1� � � � � vn be a basis
of V adapted to this decomposition. Let �1� � � � � �n ∈H∗ be the corresponding
weights. Then

xvi=�i�x�vi for x∈H�
Now #kV has basis vi1 ∧· · ·∧vik for all i1< · · ·<ik. We have

x
(
vi1 ∧· · ·∧vik

)= k∑
r=1

vi1 ∧· · ·∧xvir ∧· · ·∧vik
= (

�i1
�x�+· · ·+�ik

�x�
)
vi1 ∧· · ·∧vik x∈H�

Thus vi1 ∧· · ·∧vik is a weight vector with weight �i1
+· · ·+�ik

. Thus the
weights of #kV are sums of k distinct weights of V .
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Theorem 13.7 Let V be the natural module for the simple Lie algebra Al.
Then the fundamental modules for Al are

#1V�#2V� � � � �#lV�

Proof. We have seen in Proposition 13.3 that #1V =V is the fundamental
module with highest weight !1. The weights of V are the maps �1� � � � ��l+1
given by

�i �

⎛⎜⎜⎜⎝
�1

�2

� � �

�l+1

⎞⎟⎟⎟⎠→�i�

Since �i−�i+1=�i we have �i"�i+1. Thus the weights are ordered by

�1"· · ·"�l+1�

Now �1=!1, �i−�i+1=�i and �i=
∑

j Aji!j by Proposition 10.17. Hence

�1 = 2!1−!2

�i =−!i−1+2!i−!i+1 for 2≤ i≤ l−1

�l =−!l−1+2!l�

It follows that

�1=!1

�2=−!1+!2

�3=−!2+!3

���

�l=−!l−1+!l

�l+1=−!l�

By Proposition 13.6 the highest weight of #kV is �1+· · ·+�k=!k, for
1≤k≤ l. Thus #kV contains the irreducible module L�!k� as one of its
irreducible direct summands. However,

dimL�!k�=dim#kV =
(
l+1
k

)
by Proposition 13.2. Hence L�!k�=#kV .
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13.4 Fundamental modules for Bl and Dl

The fundamental weights !1� � � � �!l for a simple Lie algebra of type Bl or
Dl will be numbered according to the labelling of the Dynkin diagrams:

3
Bl

21 l –1 l

321 l–2 l–1

l
Dl

We again use Theorem 13.1 to calculate dimL
(
!j

)
.

We suppose first that we have an algebra of type Bl. We know from
Section 8.3 that the roots have the following form. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then the fundamental roots are

�i�h�= �i−�i+1 for 1≤ i≤ l−1

�l�h�= �l

The full set of positive roots is given by

h→�i−�j for i< j

h→�i+�j for i< j

h→�i

where i� j∈ 
1� � � � � l�. These positive roots can be expressed as combinations
of fundamental roots as follows:

�i+· · ·+�j−1 for i< j

�i+· · ·+�j−1+2�j+· · ·+2�l for i< j

�i+· · ·+�l�
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The first two families are long roots and the third family are short roots. Thus
the weights wi are given by

w1=· · ·=wl−1=2 wl=1�

According to Theorem 13.1 we have

dimL
(
!j

)= ∏
�∈�+

d�

where �=∑ki�i and

d�=
∑l

i=1 kiwi+kjwj∑l
i=1 kiwi

�

We have d�=1 if � does not involve �j . We first suppose j∈ 
1� � � � � l−1�.
Then the positive roots involving j are:

�i+· · ·+�j+· · ·+�k 1≤ i≤ j� j≤k≤ l−1

�i+· · ·+�j+· · ·+�l 1≤ i≤ j
�i+· · ·+�j+· · ·+�k−1+2�k+· · ·+2�l 1≤ i≤ j� j≤k−1<l

�i+· · ·+�k−1+2�k+· · ·+2�j+· · ·+2�l 1≤ i<k� k≤ j≤ l−1�

The values of d� in these four cases are

k− i+2
k− i+1

�
2l−2i+3
2l−2i+1

�
2l−k− i+2
2l−k− i+1

�
2l−k− i+3
2l−k− i+1

respectively. The product of all possible d� in these four cases is

�j+1��j+2� · · · l
1 ·2 · · · l−j �

2l+1
2l−2j+1

�
�2l−j��2l−j−1� · · · �l+1�

�2l−2j��2l−2j−1� · · · �l+1−j� �

2l�2l−1��2l−2� · · · �2l+2−j�
�2l−j��2l−j−1� · · · �2l−2j+3��2l−2j+2�

respectively. Finally the total product
∏

�∈�+d� is
(2l+1

j

)
. We now take j= l.

Then the positive roots involving l are

�i+· · ·+�l 1≤ i≤ l
�i+· · ·+�k−1+2�k+· · ·+2�l 1≤ i<k≤ l�
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The values of d� in these cases are 2l−2i+2
2l−2i+1 �

2l−i−j+2
2l−i−j+1 respectively. The prod-

uct of all possible d� in the two cases is

2l�2l−2��2l−4� · · ·2
�2l−1��2l−3� · · ·3 ·1 �

�2l−1��2l−2� · · · �l+1�
�2l−2��2l−4� · · ·2

respectively. Finally the total product
∏

�∈�+ d� is 2l.
Thus we have shown:

Proposition 13.8 The dimensions of the fundamental modules for the simple
Lie algebra of type Bl are

2l + 1 2l
3

2l + 1
2

2l + 1 2l + 1
l–1

The dimensions of the modules L
(
!j

)
for 1≤ j≤ l−1 suggest that these

modules are exterior powers of the �2l+1�-dimensional natural module. This
is indeed the case.

Theorem 13.9 Let V be the �2l+1�-dimensional natural module for the
simple Lie algebra Bl (described in Section 8.3). Then the fundamental module
L
(
!j

)
is isomorphic to #jV for 1≤ j≤ l−1.

Proof. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then the weights of V are 0��1� � � � ��l�−�1� � � � �−�l where �i�h�=�i.
Since �i−�i+1=�i for 1≤ i≤ l−1 and �l=�l we have

�1"�2"· · ·"�l"0�
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Thus the highest weight of #jV for 1≤ j≤ l is �1+�2+· · ·+�j . Expressing
the �s in terms of the �s gives

�1=�1+· · ·+�l

�2=�2+· · ·+�l

���

�l=�l�

We also have �i=
∑

Aji!j , which in type Bl gives

�1=2!1−!2

�i=−!i−1+2!i−!i+1 2≤ i≤ l−2

�l−1=−!l−2+2!l−1−2!l

�l= −!l−1+2!l�

It follows that

�1=!1

�2=−!1+!2

���

�l−1=−!l−2+!l−1

�l=−!l−1+2!l�

Hence �1+· · ·+�j=!j for 1≤ j≤ l−1

�1+· · ·+�l=2!l�

Thus the highest weight of #jV is !j for 1≤ j≤ l−1. Since

dimL
(
!j

)=dim#jV =
(
2l+1
j

)
j≤ l−1

we deduce that L
(
!j

)
is isomorphic to #jV . This argument fails when

j= l since the highest weight of #lV is 2!l rather than !l. We shall see
subsequently how to find the remaining fundamental module L�!l�.
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We now consider the simple Lie algebra of type Dl. This algebra was
described in Section 8.2. Its roots have the following form. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then the fundamental roots are

�i�h�= �i−�i+1 for 1≤ i≤ l−1

�l�h�= �l−1+�l�

The full set of positive roots is given by

h→�i−�j i<j

h→�i+�j i<j�

These are expressed as combinations of the fundamental roots by

�i+· · ·+�j−1 for 1≤ i< j≤ l
�i+· · ·+�j−1+2�j+· · ·+2�l−2+�l−1+�l for 1≤ i< j≤ l−1

�i+· · ·+�l−2+�l for 1≤ i≤ l−2�

We take a fixed j with 1≤ j≤ l−2 and consider dimL
(
!j

)
. By Theorem 13.1

this is given by

dimL
(
!j

)= ∏
�∈�+

d�

where �=∑ki�i and

d�=
∑l

i=1 ki+kj∑l
i=1 ki

�
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(All weights wi are equal to 1 in type Dl.) As usual d�=1 if � does not
involve �j . The positive roots involving �j are

�i+· · ·+�j+· · ·+�k 1≤ i≤ j� j≤k≤ l−1

�i+· · ·+�j+· · ·+�k+2�k+1+· · ·+2�l−2+�l−1+�l 1≤ i≤ j� j≤k≤ l−2

�i+· · ·+�k+2�k+1+· · ·+2�j+· · ·+2�l−2+�l−1+�l 1≤ i≤k<j

�i+· · ·+�j+· · ·+�l−2+�l 1≤ i≤ j�

The values of d� in these four cases are

k− i+2
k− i+1

�
2l− i−k

2l− i−k−1
�

2l− i−k+1
2l− i−k−1

�
l− i+1
l− i

respectively. The product of all possible d� in these four cases is

�j+1��j+2� · · · l
1 ·2 · · · · �l−j� �

�2l−j−1��2l−j−2� · · · �l+1�
�2l−2j−1��2l−2j−2� · · · �l+1−j� �

�2l−1��2l−2� · · · �2l−j+1�
�2l−j−1��2l−j−2� · · · �2l−2j+1�

�
l

l−j

respectively. Finally the total product is
(2l
j

)
.

We next suppose j= l−1. The positive roots involving �l−1 are

�i+· · ·+�l−1 1≤ i≤ l−1

�i+· · ·+�k−1+2�k+· · ·+2�l−2+�l−1+�l 1≤ i<k≤ l−1�

The values of d� in these two cases are l−i+1
l−i �

2l−i−k+1
2l−i−k respectively. The

product of all possible d� in those two cases is l�2l−1/l respectively, and so
the total product is 2l−1.
Finally suppose j= l. The positive roots involving �l are

�l

�i+· · ·+�l−2+�l 1≤ i≤ l−2

�i+· · ·+�k−1+2�k+· · ·+2�l−2+�l−1+�l 1≤ i<k≤ l−1�

The values of d� in these three cases are 2� l−i+1
l−i �

2l−i−k+1
2l−i−k respectively.

The product of all possible d� in these three cases is 2, l/2�2
l−1/l respectively.

Thus the total product is 2l−1.
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Thus we have shown

Proposition 13.10 The dimensions of the fundamental modules for the simple
Lie algebra of type Dl are

2l
3
2l

2
2l

2l – 1

2l – 1

2l
l–2

Again the dimensions of these modules for 1≤ j≤ l−2 suggest that they
are given by exterior powers of the natural module.

Theorem 13.11 Let V be the 2l-dimensional natural module for the simple
Lie algebra Dl (described in Section 8.2). Then the fundamental module
L
(
!j

)
is isomorphic to #jV for 1≤ j≤ l−2.

Proof. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then the weights of V are �1� � � � ��l�−�1� � � � �−�l where �i�h�=�i. We
have

�1−�2=�1

���

�l−1−�l=�l−1

�l−1+�l=�l

and

�1=2!1−!2

�2=−!1+2!2−!3

���

�l−3=−!l−4+2!l−3−!l−2
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�l−2=−!l−3+2!l−2−!l−1−!l

�l−1=−!l−2+2!l−1

�l=−!l−2+2!l

using the Cartan matrix of type Dl. It follows that

�1=!1

�2=−!1+!2

���

�l−2=−!l−3+!l−2

�l−1=−!l−2+!l−1+!l

�l=−!l−1+!l�

Since �1"�2"· · ·"�l−1"�l the highest weight of #
jV for 1≤ j≤ l−2 is

�1+· · ·+�j . Also we have �1+· · ·+�j=!j for j≤ l−2. Thus the highest
weight of #jV is !j when j≤ l−2. Since

dimL
(
!j

)=dim#jV =
(
2l
j

)
� j≤ l−2

we deduce that L
(
!j

)
is isomorphic to #jV for j≤ l−2.

13.5 Clifford algebras and spin modules

There remain one fundamental module for Bl of dimension 2l and two funda-
mental modules for Dl of dimension 2l−1 which cannot be obtained as exterior
powers of the natural module. These are called spin modules and give rise
to spin representations of Bl and Dl. We shall now show how these modules
may be obtained in terms of the Clifford algebra.
Let V be a vector space of dimension n over � and suppose we are given

a symmetric bilinear map V ×V→� under which the pair v� v′ maps to
�v� v′�∈�. Thus we have

�v′� v�= �v� v′� �
Let T�V � be the tensor algebra of V and J be the two-sided ideal of T�V �
generated by elements

v⊗v−�v� v�1 for all v∈V�
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Since

�v+v′�⊗�v+v′�−�v+v′� v+v′�1= �v⊗v−�v� v�1�+�v′ ⊗v′ −�v′� v′�1�
+ �v⊗v′ +v′ ⊗v−2 �v� v′�1�

we see that

v⊗v′ +v′ ⊗v−2 �v� v′�1∈ J for all v� v′ ∈V�
Let C�V �=T�V �/J . Then C�V � is an associative algebra called the Clif-

ford algebra of V .
Now let v1� � � � � vn be a basis of V . Then the elements

vi⊗vi−�vi� vi�1
vi⊗vj+vj⊗vi−2

(
vi� vj

)
1 i< j

lie in J and it is evident that these elements generate J as a 2-sided ideal. We
observe also that

��1⊕V�∩J = (T 0�V �⊕T 1�V �
)∩J =O

and so the natural map T�V �→C�V � is injective when restricted to �1⊕V .
We shall regard �1⊕V as a subspace of C�V �. Thus C�V � is generated, as
associative algebra with 1, by elements v1� � � � � vn subject to relations

vivi = �vi� vi�1

vjvi =−vivj+2
(
vi� vj

)
1 i< j�

By using these relations any polynomial in v1� � � � � vn can be written as a poly-
nomial in which each monomial has form vi1vi2 � � � vik where i1<i2< · · ·<ik
and 0≤k≤n. Moreover an element of C�V � in this standard form cannot be
simplified further by the use of the above relations. Thus we have shown

Proposition 13.12 (i) dimC�V �=2n.
(ii) The elements vi1vi2 � � � vik for i1<i2< · · ·<ik with 0≤k≤n form a basis

for C�V �. (The empty product is 1.)

We note that all generators of J lie in T 0V ⊕T 2V . We define
T�V �+� T�V �− by

T�V �+ = ⊕
i even

T iV

T�V �− = ⊕
i odd

T iV�
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Then we have

T�V �=T�V �+⊕T�V �−
J = (J ∩T�V �+)⊕�J ∩T�V �−� �

This follows from the fact that J is generated by elements of T�V �+. Hence

C�V �� T�V �+

J ∩T�V �+ ⊕
T�V �−

J ∩T�V �− �

We write C�V �+= T�V �+
J∩T�V+� and C�V �−= T�V �−

J∩T�V �− . Then

C�V �=C�V �+⊕C�V �−�
In terms of our basis for C�V ��C�V �+ has basis vi1vi2 � � � vik for i1<i2< · · ·<
ik with k even and C�V �− has basis consisting of these elements with k odd.
Thus

dimC�V �+=dimC�V �−=2n−1�

Now the associative algebra C�V � can be made into a Lie algebra �C�V ��
in the usual way by defining �xy�=xy−yx. Let L be the subspace of �C�V ��
spanned by the elements �vv′� for all v� v′ ∈V . Then L can be spanned by
elements

[
vivj

]
for i< j, and since[

vivj
]=2vivj−2

(
vi� vj

)
1

these elements are linearly independent. Thus dimL=n�n−1�/2. We shall
show that L is a Lie subalgebra of �C�V ��.

Lemma 13.13 (i) Let x� y� z∈V . Then ��xy�z�=4�y� z�x−4�x� z�y.
(ii) Let x� y� z�w∈V . Then

��xy�� �zw��=4�y� z��xw�−4�y�w��xz�+4�x�w��yz�−4�x� z��yw��

Proof. (i) ��xy�z�= �xy−yx�z−z�xy−yx�
= xyz−yxz−zxy+zyx
=−xzy+2�y� z�x+yzx−2�x� z�y

+xzy−2�x� z�y−yzx+2�y� z�x

= 4�y� z�x−4�x� z�y�
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�ii� ��xy�� �zw��= �xy�zw− �xy�wz−zw�xy�+wz�xy�
= ��xy�z�w+z�xy�w− ��xy�w�z−w�xy�z−zw�xy�+wz�xy�
= ��xy�z�w− ��xy�w�z+z��xy�w�−w��xy�z�
= ���xy�z�w�− ���xy�w�z�
= �4�y� z�x−4�x� z�y�w�− �4�y�w�x−4�x�w�y� z�

=4�y� z��xw�−4�x� z��yw�−4�y�w��xz�+4�x�w��yz��

Corollary 13.14 L is a Lie subalgebra of �C�V ��.

Now C�V � is a �C�V ��-module giving the adjoint representation so is in
particular an L-module. Lemma 13.13 (i) shows that its subspace V is an
L-submodule.

Proposition 13.15 Suppose the symmetrix scalar product on V is non-
degenerate. Then V is a faithful L-module.

Proof. Let x∈L and suppose �xv�=0 for all v∈V . We must show x=0. Let
x=∑i<j cij

[
vivj

]
. We may define a skew-symmetrix n×n matrix C= (cij)

by cii=0 and cji=−cij for i< j. We have∑
i<j

cij
[[
vivj

]
v
]=0�

By Lemma 13.13 (i) we have

4
∑
i<j

cij
((
vj� v

)
vi−�vi� v� vj

)=0�

The coefficient of vi in this expression is

4

⎛⎜⎝∑
j
j>i

cij
(
vj� v

)−∑
j
j<i

cji
(
vj� v

)⎞⎟⎠=4
n∑

j=1
cij

(
vj� v

)
�

It follows that

n∑
j=1

cij
(
vj� v

)=0



13.5 Clifford algebras and spin modules 285

for all i and all v∈V . Let (vj� vk)=mjk. Then we have

n∑
j=1

cijmjk=0 for all i� k

that is CM=O whereM= (mjk

)
. If the scalar product on V is non-degenerate

then M is a non-singular matrix. Then C=O and so x=0.

Lemma 13.16 Let x∈L and v� v′ ∈V . Then

��xv�� v′�+�v� �xv′��=0�

Proof. It is sufficient to prove this when x= �yz� for y� z∈V . Now

���yz�v�� v′�= 4�z� v� �y� v′�−4�y� v� �z� v′�

�v� ��yz�v′��= 4 �z� v′� �v� y�−4 �y� v′� �v� z�

by Lemma 13.13 (i). The result follows.

Thus we have a Lie algebra L of dimension n�n−1�/2, an L-module V of
dimension n, and a symmetric bilinear scalar product on V invariant under L
in the sense of Lemma 13.16.
We now consider some special cases of the above situation. First let V be a

vector space with dimV =2l+1 and let v0� v1� � � � � vl� v−1� � � � � v−l be a basis
of V . Consider the symmetric bilinear scalar product V ×V→� determined by

�v0� v0�=2

�vi� v−i�=1 i=1� � � � � l

and all other scalar products of basis elements 0. The matrix of this scalar
product is ⎛⎜⎜⎜⎝

2 0 · · · · 0
0 O Il
���

0 Il O

⎞⎟⎟⎟⎠
The condition

��xv�� v′�+�v� �xv′��=0
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of Lemma 13.16 tells us that if the element x∈L is represented by the matrix
X on V then

XtM+MX=O�
Now L has dimension l�2l+1� and, by Proposition 13.15, acts faithfully
on V . However, the Lie algebra of all �2l+1�×�2l+1� matrices X satis-
fying XtM+MX=O is the simple Lie algebra Bl (cf. Section 8.3) and has
dimension l�2l+1�. Since L is contained in this set of matrixes we must have
L=Bl.
We aim to find the spin module for Bl inside the Clifford algebra C�V �.

Recall that V has basis

v0� v1� � � � � vl� v−1� � � � � v−l�

We define ui=v0vi and u−i=v0v−i for i=1� � � � � l. Let U be the subspace of
C�V � spanned by elements

u−j1u−j2 � � � u−jt u1u2 � � � ul

for all subsets j1<j2< · · ·<jt of 
1� � � � � l� with 0≤ t≤ l. Bearing in mind
the natural basis of C�V � we see that these elements are linearly independent.
Thus dimU =2l. We have U ⊂C�V �+.

Lemma 13.17 C�V �+U ⊂U . Thus U is a left ideal of C�V �+.

Proof. We first observe that C�V �+ is generated by the elements ui and u−i
for i=1� � � � � l. This follows from the fact that v0 anticommutes with vi and
v−i for all i=1� � � � � l.

We note next that u2
i =0 and u2

−i=0 for i=1� � � � � l� that, ui� uj anticom-
mute and u−i� u−j anticommute when i 	= j and both lie in 
1� � � � � l�, that
ui� u−j anticommute for all i� j∈ 
1� � � � � l�, and that

uiu−i+u−iui=−4 ·1�
For uiu−i+u−iui=v0viv0v−i+v0v−iv0vi=−v20 �viv−i+v−ivi�=−2 ·2�vi� v−i�1
=−4 ·1�
It follows from these relations that

ui ·u−j1 � � � u−jt u1 � � � ul

=
{
±4u−j1 � � � û−i � � � u−jt u1 � � � ul if i∈ 
j1� � � � � jt�
0 otherwise
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where û−i means the term u−i is omitted.

u−i ·u−j1 � � � u−jt u1 � � � ul=
{
0 if i∈ 
j1� � � � � jt�
±u−j1 � � � u−i � � � u−jt u1 � � � ul if i 	∈ 
j1� � � � � jt��

This shows that uiU ⊂U and u−iU ⊂U , so C�V �+U ⊂U .

This lemma shows that we may regard U as a C�V �+-module under left
multiplication. U is therefore a �C�V �+�-module under the same action. Since
L is a Lie subalgebra of �C�V �+� we may regard U as an L-module under
left multiplication.
Warning note Whereas the action of L on U is given by left multiplication

the action of L on C�V � considered earlier in this section was given by Lie
multiplication.
We consider the weights of the L-module U . In order to do this we identify

the diagonal Cartan subalgebra H of L.

Lemma 13.18 Under the above isomorphism L�Bl the element �viv−i�∈L
corresponds to the diagonal matrix

i

−i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
� � �

0
4

0
� � �

0
−4

0
� � �

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proof. The matrix representation of L comes from the L-module V with basis
v0� v1� � � � � vl� v−1� � � � � v−l. Now

��viv−i� � v0�=0[
�viv−i� � vj

]=4
(
v−i� vj

)
vi−4

(
vi� vj

)
v−i=�ij ·4vi[

�viv−i� � v−j
]=4

(
v−i� v−j

)
vi−4

(
vi� v−j

)
v−i=−�ij ·4v−i

by Lemma 13.13 (i).
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It follows from this lemma that the element

h=
l∑

i=1

�i

4 �viv−i�

is represented by the diagonal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We recall from Section 8.3 that such matrices form a Cartan subalgebra
H of L.
We consider the action of h on the L-module U . We have

�viv−i�= viv−i−v−ivi= 1
2 �viv0v0v−i−v−iv0v0vi�

=− 1
2uiu−i+ 1

2u−iui�

Thus

�viv−i� u−j1 � � � u−jt u1 � � � ul =− 1
2uiu−i ·u−j1 � � � u−jt u1 � � � ul

+ 1
2u−iui ·u−j1 � � � u−jt u1 � � � ul

=
{
−2u−j1 � � � u−jt u1 � � � ul if i∈ 
j1� � � � � jt�
2u−j1 � � � u−jt u1 � � � ul if i 	∈ 
j1� � � � � jt��

Thus

hu−j1 � � � u−jt u1 � � � ul= 1
2

(
l∑

i=1
 i�i

)
u−j1 � � � u−jt u1 � � � ul

where  i=
{
−1 if i∈ 
j1� � � � � jt�
1 if i 	∈ 
j1� � � � � jt�

. Let �i ∈H∗ be given by �i�h�=�i. Then

the weights of L coming from the L-module U are

1
2

l∑
i=1

 i�i
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for all possible choices of the signs  i=±1. In particular the highest weight
is 1

2

∑l
i=1�i.

We recall from the proof of Theorem 13.9 that !l= 1
2 ��1+· · ·+�l�. Thus

U has highest weight !l. It follows that U contains the spin module L�!l�

as an irreducible direct summand. But

dimU =dimL�!l�=2l�

Thus we have proved

Theorem 13.19 Let L be the simple Lie algebra of type Bl. Then the L-module
U constructed as above in the Clifford algebra is the spin module L�!l� of
dimension 2l.

We now consider a second special case. This time let V be a vector space
with dimV =2l and let v1� � � � � vl� v−1� � � � � v−l be a basis of V . Consider the
symmetric bilinear scalar product V ×V→� determined by

�vi� v−i�=1 i=1� � � � � l

and all other scalar products of basis elements are 0. The matrix of this scalar
product is

M=
(
O Il
Il O

)
�

The condition of Lemma 13.16 implies that if x∈L is represented by the
matrix X with respect to this basis of V then

XtM+MX=O�
Now L has dimension l�2l−1� and acts faithfully on V . The Lie algebra of
all 2l×2l matrices X satisfying XtM+MX=O is the simple Lie algebra Dl,
by Section 8.2. Since dimDl= l�2l−1� we have L=Dl.
We again aim to find the two spin modules for Dl inside the Clifford

algebra C�V �. Let U be the subspace of C�V � spanned by all elements of
form

v−j1v−j2 � � � v−jt v1 � � � vl

for all subsets j1< · · ·<jt of 
1� � � � � l�. These elements are linearly indepen-
dent, so form a basis for U . We have dimU =2l.

Lemma 13.20 C�V �U ⊂U . Thus U is a left ideal of C�V �.
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Proof. C�V � is generated by elements vi� v−i and we have

vi ·v−j1 � � � v−jt v1 � � � vl =
{
±2v−j1 � � � v̂−i � � � v−jt v1 � � � vl if i∈ 
j1� � � � � jt�
0 if i 	∈ 
j1� � � � � jt�

v−i ·v−j1 � � � v−jt v1 � � � vl =
{
0 if i∈ 
j1� � � � � jt�
±v−j1 � � � v−i � � � v−jt v1 � � � vl if i 	∈ 
j1� � � � � jt�

�

Thus viU ⊂U and v−iU ⊂U , so C�V �U ⊂U .

Let U+=U ∩C�V �+ and U−=U ∩C�V �−. Then we have

C�V �+U+⊂U ∩C�V �+ = U+

C�V �+U−⊂U ∩C�V �− = U−�

Since L⊂C�V �+ it follows that

LU+⊂U+� LU− ⊂ U−�

Thus U+ and U− are L-modules under left multiplication, with

dimU+=dimU−=2l−1�

We shall show that these are the two spin modules for L.
We consider the weights of the L-modules U+, U− by identifying the

diagonal Cartan subalgebra H of L.

Lemma 13.21 Under the above isomorphism L�Dl the element �viv−i�∈L
corresponds to the diagonal matrix

i

−i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
� � �

0
4

0
� � �

0
−4

0
� � �

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



13.5 Clifford algebras and spin modules 291

Proof. The proof is the same as that for Lemma 13.18 with the first row and
column omitted.

Thus the element

h=
l∑

i=1

�i

4 �viv−i�

is represented by the diagonal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We consider the action of h on the L-modules U+ and U−. We have

�viv−i�v−j1 � � � v−jt v1 � � � vl

=viv−iv−j1 � � � v−jt v1 � � � vl−v−iviv−j1 � � � v−jt v1 � � � vl

=
{
−2v−j1 � � � v−jt v1 � � � vl if i∈ 
j1� � � � � jt�
2v−j1 � � � v−jt v1 � � � vl if i� 
j1� � � � � jt�

since v−ivi+viv−i=21. Thus

hv−j1 � � � v−jt v1 � � � vl= 1
2

(
l∑

i=1
 i�i

)
v−j1 � � � v−jt v1 � � � vl

where  i=
{
−1 if i∈ 
j1� � � � � jt�
1 if i� 
j1� � � � � jt��

As before let �i ∈H∗ be defined by

�i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=�i�
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Then the weights of the L-module U are

1
2

l∑
i=1

 i�i

for all possible choices of the signs  i=±1.
If l is even, the basis elements with t even lie in U+ and those with t

odd in U−. Thus the weights of U+ have an even number of  i negative
and those of U− have an odd number negative. Since �1"�2"· · ·"�l the
highest weight of U+ is 1

2

∑l
i=1�i and that of U− is 1

2

(∑l−1
i=1�i−�l

)
.

If l is odd we have the reverse situation in which 1
2

∑l
i=1�i is the highest

weight of U− and 1
2

(∑l−1
i=1�i−�l

)
is the highest weight of U+.

Now by the proof of Theorem 13.11 we have

1
2 ��1+· · ·+�l−1+�l�= !l

1
2 ��1+· · ·+�l−1−�l�= !l−1�

Thus we have proved

Theorem 13.22 Let L be the simple Lie algebra of type Dl. Then the
L-modules U+� U− are the spin modules of dimension 2l−1. If l is even we
have U+=L�!l� � U

−=L�!l−1�. If l is odd we have U+=L�!l−1� � U−=
L�!l�.

13.6 Fundamental modules for Cl

The fundamental weights !1� � � � �!l for a simple Lie algebra of type Cl will
be numbered according to the labelling of the Dynkin diagram

321 l–1 l

As before we shall use Theorem 13.1 to calculate dimL
(
!j

)
. We knows from

Section 8.4 that the roots of Cl have the following form. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�
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Then the fundamental roots are

�i�h�= �i−�i+1 for 1≤ i≤ l−1

�l�h�= 2�l�

The full set of positive roots is given by

h→�i−�j for i< j

h→�i+�j for i< j

h→2�i

where i� j∈ 
1� � � � � l�. These positive roots can be expressed as combinations
of fundamental roots as follows:

�i+· · ·+�j−1 1≤ i< j≤ l
�i+· · ·+�j−1+2�j+· · ·+2�l−1+�l 1≤ i< j≤ l
2�i+· · ·+2�l−1+�l 1≤ i≤ l�

The first two families are short roots and the third family are long roots. The
weights wi are given by

w1=· · · = wl−1=1 wl=2�

According to Theorem 13.1 we have

dimL
(
!j

)= ∏
�∈�+

d�

where �=∑ki�i and

d�=
∑l

i=1 kiwi+kjwj∑l
i=1 kiwi

�

We have d�=1 if � does not involve �j .
We first suppose that j∈ 
1� � � � � l−1�. Then the positive roots involv-

ing j are:

�i+· · ·+�j+· · ·+�k−1 1≤ i≤ j<k≤ l
�i+· · ·+�j+· · ·+�k−1+2�k+· · ·+2�l−1+�l 1≤ i≤ j<k≤ l
�i+· · ·+�k−1+2�k+· · ·+2�j+· · ·+2�l−1+�l 1≤ i<k≤ j
2�i+· · ·+2�j+· · ·+2�l−1+�l 1≤ i≤ j�



294 Fundamental modules for simple Lie algebras

The values of d� in these four cases are

k− i+1
k− i �

2l− i−k+3
2l− i−k+2

�
2l− i−k+4
2l− i−k+2

�
l− i+2
l− i+1

respectively. The product of all possible d� in these four cases is

�j+1��j+2� · · · l
1 ·2 · · · · l−j �

�2l−j+1��2l−j� · · · �l+2�
�2l−2j+1��2l−2j� · · · �l−j+2�

�

�2l+1�2l�2l−1� · · · �2l−j+2�
�2l−j+2��2l−j+1� · · · �2l−2j+3�

�
l+1

l−j+1

respectively. The total product
∏

�∈�+ d� is

�2l�!
�2l−j+2�! j! �2l+1��2l−2j+2��

This expression may be written in a more suggestive form by using the
identity (

2l
j

)
−
(

2l
j−2

)
= �2l�!
�2l−j+2�!j! �2l+1��2l−2j+2��

Thus dimL
(
!j

)=(2l
j

)
−
(

2l
j−2

)
for 1≤ j≤ l−1.

We now suppose that j= l. The positive roots involving �l are

2�i+· · ·+2�l−1+�l 1≤ i≤ l
�i+· · ·+�j−1+2�j+· · ·+2�l−1+�l 1≤ i< j≤ l�

The first family are long roots and the second short roots. The values of 1d�

in these two cases are

l− i+2
l− i+1

�
2l− i−j+4
2l− i−j+2

respectively. The product of all possible d� in these cases is

l+1�
�2l+1��2l� · · · �l+2�
�l+2��l+1� · · ·3

respectively, and the total product
∏

�∈�+ d� is �2l+1�!2
�l+2�!l! .
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By using the identity (
2l
l

)
−
(

2l
l−2

)
= �2l+1�!2

�l+2�!l!
we see that

dimL�!l�=
(
2l
l

)
−
(

2l
l−2

)
�

Thus we have shown

Proposition 13.23 The dimensions of the fundamental modules for the simple
Lie algebra of type Cl are

2l
2
2l – 1

3
2l – 2l l–1

2l
l–3
2l–

l
2l

l–2
2l–

13.7 Contraction maps

We shall now identify the fundamental modules whose dimensions we have
obtained. We begin with L�!1�.

Proposition 13.24 The natural 2l-dimensional Cl-module is isomorplic to
L�!1�.

Proof. Let V be the natural Cl-module. Let

h=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

� � �

�l

−�1

� � �

−�l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Then the weights of V are �1� � � � ��l� −�1� � � � �−�l where �i�h�=�i. Since

�i−�i+1=�i 1≤ i≤ l−1

2�l=�l

we have

�1"�2"· · ·"�l"0�
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Thus the highest weight of V is �1. We have

�1 = �1+· · ·+�l−1+ 1
2�l

�2 = �2+· · ·+�l−1+ 1
2�l

���

�l = 1
2�l�

We also have �i=
∑

j Aji!j which in type Cl gives

�1=2!1−!2

�2=−!1+2!2−!3

���

�l−1=−!l−2+2!l−1−!l

�l=−2!l−1+2!l�

It follows that

�1=!1

�2=−!1+!2

���

�l=−!l−1+!l�

Thus V is a Cl-module with highest weight !1. It therefore contains L�!1�

as an irreducible component. However,

dimV =dimL�!1�=2l

thus V is irreducible and isomorphic to L�!1�.

We now consider the fundamental modules L
(
!j

)
for j≥2. We have

dimL
(
!j

)=(2l
j

)
−
(

2l
j−2

)
�

This suggests that we should look for L
(
!j

)
as a submodule of the exterior

power #jV . The key idea is to find a homomorphism of Cl-modules from
#jV into #j−2V , called a contraction map.
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Proposition 13.25 Let v� v′ → �v� v′� be the skew-symmetric bilinear map
V ×V→� given by the matrix

M=
(
O Il
−Il O

)
�

Then there is a unique homomorphism of Cl-modules

� � #jV→#j−2V

satisfying the condition

�
(
u1∧· · ·∧uj

)=∑
r<s

�−1�r+s−1 �ur� us� u1∧· · ·∧ ûr∧· · ·∧

ûs∧· · ·∧uj forall u1� � � � � uj ∈V� (†)

Here as usual the notation ûr � ûs means that those terms are omitted.

Proof. It is clear that if such a map � exists it will be unique. To prove the
existence let v1� � � � � v2l be a basis of V . Then there is a unique linear map �

satisfying

�
(
vi1 ∧· · ·∧vij

)
=∑

r<s

�−1�r+s−1 (vir � vis)vi1 ∧· · ·∧ v̂ir ∧· · ·∧ v̂is ∧· · ·∧vij
for all i1� � � � � ij ∈ 
1� � � � �2l� with i1< · · ·<ij . We show this map has the
required properties. Since both sides of equation �†� are linear in u1� � � � � uj it
will be sufficient to prove it when each uk is one of the basis elements of V .
If the same basis element appears twice both sides of �†� are 0. Thus we may
assume the basis elements are all distinct. They may not occur in increasing
order, thus we must show that the above formula defining � remains valid if
the factors vi1� � � � � vij are permuted. In fact it is sufficient to see this if we
transpose two consecutive terms vik � vik+1 . When we carry out such a transpo-
sition the expression vi1 ∧· · ·∧vij changes in sign. We show that each term

�−1�r+s−1 (vir � vis)vi1 ∧· · ·∧ v̂ir ∧· · ·∧ v̂is ∧· · ·∧vij
changes in sign also. If neither of r� s lie in 
k� k+1� the term

vi1 ∧· · ·∧ v̂ir ∧· · ·∧ v̂is ∧· · ·∧ v̂ij
will change in sign when we make the transposition. If just one of r� s lies
in 
k� k+1� the term �−1�r+s−1 will change in sign when the transposition
is made. Finally if r=k� s=k+1 the term

(
vir � vis

)
changes in sign, since

the bilinear map is skew-symmetric. This shows that the linear map � we
have defined satisfies �†�.
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It remains to show that � is a homomorphism of Cl-modules. Let x lie in
the Lie algebra Cl. Then

x�
(
u1∧· · ·∧uj

)= x
∑
r<s

�−1�r+s−1 �ur� us� u1∧· · ·∧ ûr∧· · ·∧ ûs∧· · ·∧uj

=∑
r<s

∑
k

k 	=r�k 	=s

�−1�r+s−1 �ur� us� u1∧· · ·∧xuk∧· · ·∧ ûr∧· · ·

∧ûs∧· · ·∧uj�
On the other hand we have

�x�u1∧ · · · ∧uj�
= �

∑
k

u1∧· · ·∧xuk∧· · ·∧uj=x�
(
u1∧· · ·∧uj

)
+ ∑

k

∑
s

k<s

�−1�k+s−1 �xuk� us� u1∧· · ·∧ ûk∧· · ·∧ ûs∧· · ·∧uj

+ ∑
k

∑
r

r<k

�−1�r+k−1 �ur� xuk�u1∧· · ·∧ ûr∧· · ·∧ ûk∧· · ·∧uj�

Renaming the suffixes we see that the last two sums cancel since

�xuk� us�+�uk� xus�=0�

This condition is equivalent to

XtM+MX=O
where X is the matrix representing x on V , and we recall from Section 8.4
that the simple Lie algebra Cl satisfies this condition. It follows that

�x
(
u1∧· · ·∧uj

)=x� (u1∧· · ·∧uj
)

and so � is a homomorphism of Cl-modules.

This homomorphism � � #jV→#j−2V will be called a contraction map.
Now the weights of #jV are sums of j distinct weights of V . By the proof

of Proposition 13.24 the weights of V are

!1 "−!1+!2"−!2+!3"· · ·"−!l−1+!l

" !l−1−!l"· · ·"!2−!3"!1−!2"−!1�

Thus if j≤ l the highest weight of #jV is !j . Similarly the highest weight of
#j−2V is !j−2. Since !j >!j−2 we see that !j is not a weight of #

j−2V . Since
!j is the highest weight of #jV the module L

(
!j

)
must be an irreducible
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direct summand of #jV . On the other hand L
(
!j

)
cannot be a submodule of

#j−2V , as !j is not a weight of this module. Thus L
(
!j

)
must lie in the

kernel of the contraction map �.
We shall show subsequently that when j≤ l the contraction map � � #jV→

#j−2V is surjective. It will follow that

dim�ker ��=
(
2l
j

)
−
(

2l
j−2

)
=dimL

(
!j

)
and therefore that L

(
!j

)=ker �. This will identify the irreducible module
L
(
!j

)
as the submodule of #jV which is the kernel of the contraction map �.

Let v1� � � � � vl� v−1� � � � � v−l be the natural basis of V with respect to which
the skew-symmetric bilinear form is given by

�vi� v−i�= 1 1≤ i≤ l
�v−i� vi�=−1

and all other scalar products zero. Let W be the subspace of V spanned by
v1� � � � � vl and W− the subspace spanned by v−1� � � � � v−l. Then W� W− are
isotropic subspaces of V , i.e. the skew-symmetric form restricted to W and
W− is identically zero. Also we have V =W⊕W−. It follows that

#jV = ⊕
a+b=j

(
#aW⊗#bW−

)
�

The contraction map � � #jV→#j−2V satisfies

�
(
#aW⊗#bW−

)⊂#a−1W⊗#b−1W−

since a basis element in W has a non-zero scalar product only with a basis
element in W−. Thus in order to show that � � #jV→#j−2V is surjective for
j≤ l it will be sufficient to show that

� � #aW⊗#bW−→#a−1W⊗#b−1W−

is surjective whenever a+b≤ l.
For each subset I⊂ 
1� � � � � l� we define vI =vi1 ∧· · ·∧vik where I=


i1� � � � � ik� with i1< · · ·<ik. We also define v−I =v−i1 ∧· · ·∧v−ik . Then any
basis element of #a−1W⊗#b−1W− can be written in the form

± �vX∧vT �⊗�v−T ∧v−Y �
for some subsets T� X� Y of 
1� � � � � l� with

T ∩X=�� T ∩Y =�� X∩Y =�� �X�+�T �=a−1� �Y �+�T �=b−1�
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Wewrite �T �= r. Since a+b≤ lwe have �X�+�Y �+2r+2≤ l, that is l−�X�−
�Y �≥2r+2. Thus it is possible to choose a subset S of 
1� � � � � l� such that

�S�=2r+1� S∩X=�� S∩Y =�� S⊃T�
We can now describe an element of #aW⊗#bW− which maps under � to a
non-zero multiple of �vX∧vT �⊗�v−T ∧v−Y �.
Proposition 13.26 Suppose subsets T�X�Y�S of 
1� � � � � l� are chosen as
above, and let � � #jV→#j−2V be the contraction map. Then

�

⎛⎜⎜⎜⎜⎜⎝
r∑

i=0
�−1�i i!�r− i�! ∑

U
U<S�U �=r+1
�U∩T �=i

�vX∧vU �⊗�v−U ∧v−Y �

⎞⎟⎟⎟⎟⎟⎠
= �r+1�! �vX∧vT �⊗�v−T ∧v−Y � �

Consequently the map

� � #aW⊗#bW−→#a−1W⊗#b−1W−

is surjective when a+b≤ l.
Proof. We note that S⊃T� �S�=2r+1� �T �= r and that we are summing over
all subsets U of S with �U �= r+1 and �U ∩T �= i. Since �X�+�T �=a−1 and
�Y �+�T �=b−1 we have �X�+�U �=a and �Y �+�U �=b. Thus the left-hand
side lies in #aW⊗#bW−.

By definition of � we have

� �vu⊗v−u�= �−1�r
∑
R

R⊂U
�R�=r

vR⊗v−R

where the right-hand side involves a sum over all r-element subsets R of U .
Thus

�

⎛⎜⎝ ∑
U�U∩T �=i

vU ⊗v−U

⎞⎟⎠ = �−1�r ∑
U�U �=r+1

�U∩T �=i

⎛⎜⎜⎝∑
R�R�=r

R⊂U

vR⊗v−R

⎞⎟⎟⎠

= �−1�r ∑
R�R�=r

⎛⎜⎜⎜⎜⎜⎝
∑
U

R⊂U
�U �=r+1
�U∩T �=i

1

⎞⎟⎟⎟⎟⎟⎠vR⊗v−R�
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Since �U ∩T �= i and R is obtained from U by omitting one element we
have �R∩T �= i or �R∩T �= i−1. We split the sum according to those two
possibilities. Thus

�

⎛⎜⎝ ∑
U�U∩T �=i

vU⊗v−U

⎞⎟⎠

= �−1�r ∑
R�R�=r

�R∩T �=i

⎛⎜⎜⎜⎜⎜⎝
∑
U

R⊂U
�U �=r+1
�U∩T �=i

1

⎞⎟⎟⎟⎟⎟⎠vR⊗v−R+�−1�r
∑
R�R�=r

�R∩T �=i−1

⎛⎜⎜⎜⎜⎜⎝
∑
U

R⊂U
�U �=r+1
�U∩T �=i

1

⎞⎟⎟⎟⎟⎟⎠vR⊗v−R

= �−1�r ∑
R�R�=r

�R∩T �=i

�i+1�vR⊗v−R+�−1�r
∑
R�R�=r

�R∩T �=i−1

�r+1− i�vR⊗v−R

since in the first case the additional element of U can be chosen in i+1 ways
and in the second case in r+1− i ways. Thus

�

⎛⎜⎝ r∑
i=0

�−1�i i!�r− i�! ∑
U�U∩T �=i

vU⊗v−U

⎞⎟⎠
= �−1�r

r∑
i=0

�−1�i i!�r− i�! ∑
R�R�=r

�R∩T �=i

�i+1�vR⊗v−R

+�−1�r
r∑

i=0
�−1�i i!�r− i�! ∑

R�R�=r
�R∩T �=i−1

�r+1− i�vR⊗v−R�

We rename the variable i in the second sum to give

�−1�r
r∑

i=0
�−1�i i!�r− i�! ∑

R�R�=r
�R∩T �=i

�i+1�vR⊗v−R

+�−1�r
r−1∑
i=−1

�−1�i+1�i+1�!�r− i−1�! ∑
R�R�=r

�R∩T �=i

�r− i�vR⊗v−R
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= �−1�r
r−1∑
i=0

�−1�i�i+1�!�r− i�! ∑
R�R�=r

�R∩T �=i

�1−1�vR⊗v−R

+�r+1�! ∑
R�R�=r

�R∩T �=r

vR⊗v−R

= �r+1�!vT⊗v−T �
We now consider

�

⎛⎜⎜⎜⎜⎜⎝
r∑

i=0
�−1�i i!�r− i�! ∑

U
U⊂S
�U �=r+1
�U∩T �=i

�vX∧vU �⊗�v−U ∧v−Y �

⎞⎟⎟⎟⎟⎟⎠ �

Since the vi for i∈X and the v−i for i∈Y have scalar product 0 with all
factors in the above product they are not involved in any contraction. Thus

�

⎛⎜⎝ r∑
i=0

�−1�i i!�r− i�! ∑
U�U∩T �=i

�vX∧vU �⊗�v−U ∧v−Y �
⎞⎟⎠

=vX∧�
⎛⎜⎝ r∑

i=0
�−1�i i!�r− i�! ∑

U�U∩T �=i

vU⊗v−U

⎞⎟⎠∧v−Y
=vX∧��r+1�!vT⊗v−T �∧v−Y
= �r+1�! �vX∧vT �⊗�v−T ∧v−Y � �

Corollary 13.27 The contraction map � � #jV→#j−2V is surjective when
j≤ l.

The surjectivity of � enables us to identify the fundamental modules L
(
!j

)
.

Theorem 13.28 The fundamental modules L
(
!j

)
for the simple Lie algebra

Cl are given as follows.

(a) L�!1� is the natural 2l-dimensional Cl-module V .

(b) For 2≤ j≤ l�L (!j

)
is the submodule of #jV given by the kernel of the

contraction map � � #jV→#j−2V .
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Proof. (a) was shown in Proposition 13.24. We also pointed out earlier that
L
(
!j

)
is a submodule of #jV contained in the kernel of �. Since � � #jV→

#j−2V is surjective for j≤ l we have

dim ker �=
(
2l
j

)
−
(

2l
j−2

)
and this is equal to dimL

(
!j

)
by Proposition 13.23. It follows that L

(
!j

)=
ker �.

13.8 Fundamental modules for exceptional algebras

By applying Theorem 13.1 to the exceptional simple Lie algebras and making
use of the information about their root systems available in Sections 8.5, 8.6
and 8.7 we can show that the dimensions of the fundamental modules for
these algebras are as shown. We omit the details.

14
G2

F4

E6

E7

E8

52 26
52

522

7

( )–

1– 56–

26
522( )–

27

78

27
27

2( ) 27
2( )27

3( )

56

912

56
2 133( ) 56

3( ) –
56

4( ) 56
2( ) –

133
2( ) 133

248 30 380 2 450 240 146 325 270

147 250

6 696 000 3875

6 899 079 264
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We shall show in each case how to obtain the fundamental module of small-
est dimension. We begin by obtaining a 27-dimensional fundamental mod-
ule for E6.

Proposition 13.29 (a) The number of positive roots of E7 not in E6 is 27.
(b) The subspace V of E7 spanned by vectors e� for such roots is a 27-

dimensional fundamental E6-module.

Proof. We recall from Section 8.7 that the fundamental roots of E7 are given
by

β2–β3 β3–β4 β4–β5 β5–β6 β6+β7 – βi

β6–β7

  Σ
8

i=1
1
2

and that the full set of roots of E7 is

±�i±�j i 	= j i� j∈ 
2�3�4�5�6�7�
± ��1+�8�

1
2

∑
 i�i  i ∈ 
1�−1��

∏
 i=1�  1= 8�

The positive roots are

�i−�j i 	= j i� j∈ 
2�3�4�5�6�7�
�i+�j i 	= j i� j∈ 
2�3�4�5�6�7�
−�1−�8

1
2

∑
 i�i  i ∈ 
1�−1��

∏
 i=1�  1= 8=−1�

The positive roots of E7 which are not roots of E6 are

�2−�j j∈ 
3�4�5�6�7�
�2+�j j∈ 
3�4�5�6�7�
−�1−�8

1
2

∑
 i�i

∏
 i=1�  1= 8=−1�  2=1�

The number of such roots is 27.
Now let V be the subspace of E7 spanned by the root vectors e� for such

roots �. Then dim V =27.
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Now E7 may be regarded as an E7-module giving the adjoint representation.
In particular E7 may be regarded as an E6-module. We observe that V is
an E6-submodule. To see this it is sufficient to show that

[
e�e�

]∈V for all
�∈��E6� ��∈�+ �E7�−�+ �E6�. We have

[
e�e�

]={N���e�+� if �+�∈��E7�

0 otherwise.

Suppose �+�∈��E7�. Since � is not a root of E6�� will involve the
fundamental root of E7 not in E6, and since � is positive this fundamental root
will have positive coefficient in �. It will therefore have positive coefficient
in �+�, and so �+�∈�+ �E7�. We claim that �+� 	∈��E6�. Suppose to
the contrary that �+�∈��E6�. Then −�∈��E6� and[

e�+�e−�
]=N�+��−�e��

Since N��� 	=0 it follows from Proposition 7.1 that N�+��−� 	=0 and so
�∈��E6�, a contradiction. Hence �+�∈�+ �E7�−�+ �E6� and V is an
E6-module.

In order to determine the highest weight of V it is convenient to use the
linear function

h �
8∑

i=1
��i→�

determined by the property that h��i�=1 for each fundamental root �i of
E8. Thus

h��i−�i+1�=1 for i∈ 
1� � � � �6�
h ��6+�7�=1

h

(
− 1

2

8∑
i=1

�i

)
=1�

Hence we have

h��1�=6� h ��2�=5� h ��3�=4� h ��4�=3� h ��5�=2�

h ��6�=1� h ��7�=0� h ��8�=−23�

Of our 27 roots the one with the highest h-value is −�1−�8. This must
therefore be a highest weight of V . Now the fundamental roots of E6 are
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β3–β4 β4–β5 β5–β6 β6+β7 – βi

β6–β7

  Σ
8

i =1
1
2

and −�1−�8 is orthogonal to all of them except − 1
2

∑8
i=1�i. Moreover the

scalar product 
� � satisfies{
−�1−�8�− 1

2

8∑
i=1

�i

}
= 1

2

{
− 1

2

8∑
i=1

�i�− 1
2

8∑
i=1

�i

}

thus −�1−�8 is the fundamental weight !8. Hence L�!8� is an irreducible
direct summand of V . Since

dimL�!8�=dimV =27

we deduce that V =L�!8�.

In order to obtain the other 27-dimensional fundamental E6-module we
introduce the dual module. We recall that, given any L-module V , the dual
space V ∗ of linear maps from V to � may be made into an L-module by the
rule

�xf �v=−f�xv� x∈L� f ∈V ∗� v∈V�
The weights of V ∗ are the negatives of the weights of V . In the case of the
27-dimensional E6-module V above, the highest weight of V ∗ is the negative
of the lowest weight of V . The lowest weight of V is the one with the smallest
value of h, i.e. �2−�3. Thus the highest weight of V ∗ is �3−�2. This is
orthogonal to all fundamental roots of E6 except for �3=�3−�4. Since


�3−�2� �3−�4�= 1
2 
�3−�4� �3−�4�

we deduce that �3−�2=!3. Hence V
∗ =L�!3�.

Now the weight of V with second highest value of h is 1
2 �−�1+�2+�3+

�4+�5+�6+�7−�8� and the third highest is 1
2 �−�1+�2+�3+�4+�5

−�6−�7−�8�. Thus the highest weight of #2V is

�−�1−�8�+ 1
2 �−�1+�2+�3+�4+�5+�6+�7−�8�

= 1
2 �−3�1+�2+�3+�4+�5+�6+�7−3�8� �
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By considering the scalar products 
� � of this weight with the fundamental
roots of E6 we see that this weight is !7. Since

dimL�!7�=
(
27
2

)
=dim#2V

we deduce #2V =L�!7�.
Similarly the highest weight of #3V is

�−�1−�8�+ 1
2 �−�1+�2+�3+�4+�5+�6+�7−�8�

+ 1
2 �−�1+�2+�3+�4+�5−�6−�7−�8�

=−2�1+�2+�3+�4+�5−2�8�

We check by computing scalar products 
� � that this is the weight !5 of E6.
Since

dimL�!5�=
(
27
3

)
=dim#3V

we deduce #3V =L�!5�.
It may be shown similarly that

#2V ∗ =L�!4� and #3V ∗ =#3V =L�!5� �

Finally L�!6� is the adjoint module. Thus the fundamental E6-modules are

V∗ Λ2V∗ Λ3V∗ = Λ3V Λ2V

L

V

We now consider the simple Lie algebra E7 and obtain a 56-dimensional
fundamental module. The idea is similar to what we have seen for E6.

Proposition 13.30 (a) The number of positive roots of E8 not in E7 is 57.
(b) The subspace V of E8 spanned by vectors e� for such roots is a

57-dimensional E7-module. V decomposes as the direct sum of a
56-dimensional fundamental module with a 1-dimensional module L�0�.
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Proof. We see from Section 8.7 that the positive roots of E8 not in E7 are

�1−�j j∈ 
2�3�4�5�6�7�
�1+�j j∈ 
2�3�4�5�6�7�
�i−�8 i∈ 
2�3�4�5�6�7�
−�i−�8 i∈ 
2�3�4�5�6�7�
�1−�8

1
2

8∑
i=1

 i�i

∏
 i=1�  8=−1�  1=1�

The number of such roots is 57.
Let V be the subspace of E8 spanned by the e� for this set of roots. The

argument of Proposition 13.29 shows that V is an E7-module. Now �1−�8

is orthogonal to all fundamental roots of E7 and it follows that[
e�e�1−�8

]=0 for all �∈��E7� �

Hence �e�1−�8
is a 1-dimensional E7-submodule of V . Let V ′ be the subspace

spanned by the remaining e�. The fact that �1−�8 is orthogonal to all
�∈��E7� implies that �1−�8 cannot be expressed in the form �+� where
�∈��E7� ��∈�+ �E8�. This shows that V ′ is an E7-submodule of V . Its
highest weight is obtained by picking the weight with the highest value of h,
and this is �2−�8. In fact the first few highest weights are

�2−�8� �3−�8� �4−�8� �5−�8� � � �

By calculating scalar products 
� � with the fundamental roots of E7 we see
that �2−�8=!2. Thus L�!2� is an irreducible direct summand of V ′. Since

dimL�!2�=56=dimV ′

we have V ′ =L�!2�. Thus

V =L�!2�⊕L�0��
We can obtain information about some of the other fundamental E7-modules

by considering exterior powers of V ′. The highest weight of #2V ′ is

��2−�8�+��3−�8�=�2+�3−2�8�

A calculation of scalar products 
� � shows that

�2+�3−2�8=!3�
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Thus #2V ′ contains L�!3� as an irreducible direct summand. But we know
that

dimL�!3�=
(
56
2

)
−1�

Thus

#2V ′ =L�!3�⊕L�0��
The highest weight of #3V ′ is

��2−�8�+��3−�8�+��4−�8�=�2+�3+�4−3�8�

We have

�2+�3+�4−3�8=!4�

Thus L�!4� is an irreducible direct summand of #3V ′. We know that

dimL�!4�=
(
56
3

)
−56�

In fact we have

#3V ′ =L�!4�⊕L�!2� �

The highest weight of #4V ′ is

��2−�8�+��3−�8�+��4−�8�+��5−�8�=�2+�3+�4+�5−4�8�

We have

�2+�3+�4+�5−4�8=!5�

We know that

dimL�!5�=
(
56
4

)
−
(
56
2

)
�

In fact it turns out that

#4V ′ =L�!5�⊕L�!3�⊕L�0��
Some of the remaining fundamental E7-modules may be identified by

means of the adjoint module. The highest root of E7 is −�1−�8 and we have
−�1−�8=!8. Thus we see that L�!8� is the adjoint E7-module, since

dimL�!8�=133=dimL�
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The second highest root of E7 is
1
2 �−�1+�2+�3+�4+�5+�6+�7−�8�.

Thus the highest weight of #2L is

�−�1−�8�+ 1
2 �−�1+�2+�3+�4+�5+�6+�7−�8�

= 1
2 �−3�1+�2+�3+�4+�5+�6+�7−3�8� �

We have

1
2 �−3�1+�2+�3+�4+�5+�6+�7−3�8�=!7�

Thus L�!7� is an irreducible direct summand of #2L. Since

dimL�!7�=
(
133
2

)
−1

we have

#2L=L�!7�⊕L�0��
We next consider the simple Lie algebra E8. The smallest dimension of a

fundamental module for E8 is

dimL�!1�=248�

The highest root of E8 is �1−�8, and we have �1−�8=!1. Since
dim L=248 we deduce that L�!1�=L. Thus the fundamental module L�!1�

is the adjoint module.
The description of the remaining fundamental modules of E8 is considerably

more complicated than in the other simple Lie algebras. We shall not discuss
the details.
We now turn to the simple Lie algebra F4 and show how to obtain the

26-dimensional fundamental module. This will be done by identifying F4 with
a subalgebra of E6. We shall retain our previous numbering of the fundamental
roots of E6 given by

3 4 5 7

6

8

Let � be the permutation of the vertices given by

�= �3 8��4 7��5��6��
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Then � gives a symmetry of the Dynkin diagram of E6 with �
2=1. We have

A��i���j�=Aij for all i� j�

Thus by Theorem 7.5 there is an automorphism of E6, which we shall also
call � , satisfying

� �ei�= e��i�

� �fi�= f��i�

� �hi�= h��i��

Since ei� fi� hi generate the Lie algebra, � is determined by these conditions,
and we have �2=1.
We may define a linear map on the real vector space spanned by the simple

roots, also denoted by � , to satisfy

� ��i�=���i��

Then we have ����=�. All the �-orbits on � have size 1 or 2. Examination
of the root system of E6 shows there are 24 orbits of size 1 and 24 of size 2.

Proposition 13.31 Let L be the simple Lie algebra E6 and � � L→L be the
automorphism of order 2 given above. Then the subalgebra L� of �-stable
elements of L is isomorphic to F4. The elements

E1= e6 E2= e5 E3= e4+e7 E4= e3+e8
F1=f6 F2=f5 F3=f4+f7 F4=f3+f8
H1=h6 H2=h5 H3=h4+h7 H4=h3+h8

are standard generators of F4.

Proof. Let
(
Aij

)
be the Cartan matrix of F4 given by

A=

⎛⎜⎜⎝
2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

⎞⎟⎟⎠ �

It is straightforward to check that the elements Ei�Fi�Hi satisfy the relations[
HiHj

]=0[
HiEj

]=AijEj[
HiFj

]=−AijFj
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�EiFi�=Hi[
EiFj

]=0 if i 	= j[
Ei� � � �

[
EiEj

]]=0 if i 	= j[
Fi� � � �

[
FiFj

]]=0 if i 	= j
where the last two relations have 1−Aij factors Ei�Fi respectively. By Propo-
sition 7.35 there is a homomorphism

� � F4→L

whose image is the subalgebra generated by the elements Ei�Fi�Hi. Since
� 	=0 and F4 is simple the image of � is isomorphic to F4.
We shall also show that im �=L� . Since each Ei�Fi�Hi lies in L

� we have
im �⊂L� . On the other hand consider the decomposition

L=H⊕ ∑
�∈�

����=�

�e�⊕
∑
�∈�

����	=�

(
�e�+�e����

)
�

Each direct summand is �-stable, thus L� is the direct sum of the �-stable
subspaces of the components. We have

dimH� =4

dim ��e��
� ≤1 if ����=�

dim
(
�e�+�e����

)� ≤1 if ���� 	=��
Thus dimL� ≤4+24+24=52. But dim�im ��=52, thus im �=L� . Hence
L� is isomorphic to F4.

Now let V be the 27-dimensional fundamental module L�!8� for E6 con-
structed in Proposition 13.29. Then V may be regarded as an F4-module using
our embedding of F4 in E6. We label the fundamental roots of F4 by the
diagram

1 3 42

Proposition 13.32 The F4-module V decomposes as

V =L�!4�⊕L�0�
where L�!4� is the 26-dimensional fundamental module.
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Proof. We determine the weights of the F4-module V . We recall that the
weights of V have form

�2−�j 3≤ j≤7

�2+�j 3≤ j≤7

−�1−�8

1
2

8∑
i=1

 i�i

∏
 i=1�  1=−1�  2=1�  8=−1�

Now the fundamental roots of E8 are

�i = �i−�i+1 i=1� � � � �6

�7 = �6+�7

�8 =− 1
2

8∑
i=1

�i�

Also �j �hi�=Aij i� j∈ 
1� � � � �8� where
(
Aij

)
is the Cartan matrix of E8.

It follows that the numbers �j �hi� i� j∈ 
1� � � � �8� are given by

�i �hi�=1 i=1� � � � �7

�i+1 �hi�=−1 i=1� � � � �6

�i �h8�=− 1
2 i=1� � � � �8

�i

(
hj
)=0 otherwise�

Let H1�H2�H3�H4 be the fundamental coroots of F4 defined above
and !1�!2�!3�!4 the corresponding fundamental weights of F4. Then
!i

(
Hj

)=�ij . By calculating the values �i

(
Hj

)
we deduce

�1=�2=�8=− 1
2!4

�3 = 1
2!4

�4 =!3− 3
2!4

�5 =!2−!3− 1
2!4

�6 =!1−!2+!3− 1
2!4

�7 =−!1+!3− 1
2!4
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when the �i are regarded as weights for F4. Hence the 27 weights of the
F4-module V are

± 
!4�!1−!3�!1−!4�!2−!3�!3−!4�!3−2!4� !1−!2+!3�!1−!2

+!4�!1−!3+!4�!2−!3−!4� !2−2!3+!4�!1−!2+!3−!4�

∪ 
0�0�0��
The only dominant weight among these, excluding 0, is !4. Thus V has
highest weight !4 and so L�!4� is an irreducible direct summand of V . Since

dimV =27� dimL�!4�=26

we have

V =L�!4�⊕L�0��
Using the relation �i=

∑
j Aji!j in F4 we see that

!4=�1+2�2+3�3+2�4�

This is the highest short root of F4. All short roots of F4 are transforms of this
one under elements of the Weyl group W . Thus all 24 short roots of F4 are
weights of L�!4�. So the weights of L�!4� are the 24 short roots together
with 0 with multiplicity 2.
We now discuss the other fundamental modules for F4. We first consider

L�!1�. The relations �i=
∑

j Aji!j for F4 show that

!1=2�1+3�2+4�3+2�4�

We recall from Section 8.6 that

�1=�1−�2 �2=�2−�3 �3=�3 �4= 1
2 �−�1−�2−�3+�4�

and so

!1=2�1+3�2+4�3+2�4=�1+�4�

The long roots of F4 have form±�i±�j and, since �4"�1"�2"�3� �1+�4

is the highest root. Thus !1 is the highest root of F4 and L�!1� is therefore
the adjoint F4-module.
The remaining fundamental modules L�!2� �L �!3� for F4 satisfy

dimL�!2�=
(
52
2

)
−52

dimL�!3�=
(
26
2

)
−52�
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It can be shown that L�!2� �L �!3� appear as irreducible direct summands of
#2L�!1� �#

2L�!4� respectively, and that

#2L�!1�= L�!1�⊕L�!2�

#2L�!4�= L�!1�⊕L�!3� �

Finally we consider the simple Lie algebra G2 and show how to obtain
the 7-dimensional fundamental module. We do this by identifying G2 with a
subalgebra of D4. The fundamental roots of D4 will be numbered as in the
diagram

1 2 3

4

Let � be the permutation of the vertices given by

�= �1 3 4��2��

� gives a symmetry of the Dynkin diagram with �3=1. Since

A��i���j�=Aij for all i� j

there exists by Theorem 7.5 an automorphism � of D4 satisfying

� �ei�= e��i�

� �fi�= f��i�

� �hi�= h��i��

We may also define a linear map � on the vector space spanned by the simple
roots, satisfying � ��i�=���i�. We have ����=�. These are 6 �-orbits of
size 1 on � and 6 orbits of size 3.

Proposition 13.33 Let L be the simple Lie algebra D4 and � � L→L be the
automorphism of order 3 given above. Then the subalgebra L� of �-stable
elements of L is isomorphic to G2.
The elements

E1=e2 E2= e1+e3+e4
F1=f2 F2=f1+f3+f4
H1=h2 H2=h1+h3+h4

are standard generators of G2.
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Proof. The idea is the same as that for F4 in E6. The Cartan matrix of G2 is

A=
(

2 −1
−3 2

)
�

It is again straightforward to check that the elements E1�E2�F1�F2�H1�H2

satisfy the defining relations[
HiHj

]=0[
HiEj

]=AijEj[
HiFj

]=−AijFj

�EiFi�=Hi[
EiFj

]=0 if i 	= j[
Ei� � � �

[
EiEj

]]=0 if i 	= j[
Fi� � � �

[
FiFj

]]=0 if i 	= j
where the last two relations have 1−Aij factors Ei�Fi respectively.

Thus by Proposition 7.35 there is a homomorphism � � G2→L. The image
im � is isomorphic to G2. We show im �=L� . Since Ei�Fi�Hi lie in L� we
have im �⊂L� . Now consider the decomposition

L=H⊕ ∑
�∈�

����=�

�e�⊕
∑
�∈�

����	=�

(
�e�+�e����+�e�2���

)
�

Each direct summand is �-stable, thus L� is the direct sum of the �-stable
subspaces of the components. We have

dimH� =2

dim ��e��
� ≤1 if ����=�

dim
(
�e�+�e����+�e�2���

)� ≤1 if ���� 	=��
Thus dimL� ≤2+6+6=14. But dim�im ��=14, thus im �=L� . Hence L�

is isomorphic to G2.

Proposition 13.34 Let V be the 8-dimensional natural D4-module. Regard
V as a G2-module using the above embedding of G2 in D4. Then

V =L�!2�⊕L�0�
where L�!2� is the 7-dimensional fundamental G2-module.
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Proof. We recall from Section 8.2 that in this 8-dimensional representation
we have

e1 = E12−E−2−1� e2=E23−E−3−2� e3=E34−E−4−3� e4=E3−4−E4−3

f1 =−E−1−2+E21� f2=−E−2−3+E32� f3=−E−3−4+E43�

f4 =−E−34+E−43�
Hence

h1 = E11−E22−E−1−1+E−2−2
h2 = E22−E33−E−2−2+E−3−3
h3 = E33−E44−E−3−3+E−4−4
h4 = E33−E−4−4−E−3−3+E44

and so

H1 = E22−E33−E−2−2+E−3−3
H2 = E11−E22+2E33−E−1−1+E−2−2−2E−3−3�

Let v1� v2� v3� v4� v−1� v−2� v−3� v−4 be the natural basis of V . Let !1�!2 be
the fundamental weights for G2. Since !i

(
Hj

)=�ij these basis vectors span
weight spaces with weights

!2� !1−!2� −!1+2!2� 0� −!2� −!1+!2� !1−2!2� 0

respectively. The highest weight is !2, thus L�!2� is an irreducible direct
summand of V . We have

dimV =8� dimL�!2�=7

and so

V =L�!2�⊕L�0��
We note that !2=�1+2�2 is the highest short root of G2. All short roots

are transforms of this root by elements of the Weyl group, thus all six short
roots are weights of L�!2�. Thus the weights of L�!2� are the short roots
together with 0.
Now we have

E1 = E23−E−3−2� E2=E12+E34+E3−4−E−2−1−E−4−3−E4−3

F1 =−E−2−3+E32� F2=−E−1−2−E−3−4−E−34+E21+E43+E−43�
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It may be checked that the vector v4−v−4 is annihilated by E1�E2�F1�F2 and
so spans the 1-dimensional submodule L�0�.

Finally we consider the other fundamentalG2-module L�!1�. The relations
�i=

∑
j Aji!j show that

!1=2�1+3�2�

This is the highest root of G2. Therefore the fundamental module L�!1� is
the 14-dimensional adjoint module.



14
Generalised Cartan matrices
and Kac–Moody algebras

In 1967 V.G. Kac and R.V. Moody independently initiated the study of
certain Lie algebras L�A� associated with a generalised Cartan matrix A. An
n×n matrix A= (Aij

)
is called a generalised Cartan matrix if it satisfies

the conditions
Aii=2 for i=1� � � � � n

Aij ∈� and Aij≤0 if i 	= j
Aij=0 implies Aji=0�

The Cartan matrix of any finite dimensional simple Lie algebra is a generalised
Cartan matrix, as shown in Section 6.4. We shall see that, in the special
case when A is a Cartan matrix, the Lie algebra L�A� constructed by Kac
and Moody coincides with the finite dimensional simple Lie algebra with
Cartan matrix A. However, the Lie algebra L�A� can in general be infinite
dimensional.
The term ‘generalised Cartan matrix’ will be abbreviated to GCM. The

Lie algebra L�A� associated to a GCM A will be called the Kac–Moody
algebra associated to A. We shall explain the definition and some of the basic
properties of L�A� in the present chapter. In fact the introductory ideas do
not use the fact that A is a GCM – we shall assume initially that A is any
n×n matrix over �.

14.1 Realisations of a square matrix

Let A be an n×n matrix over �. A realisation of A is a triple �H����v�

where:

H is a finite dimensional vector space over �

�v= 
h1� � � � � hn� is a linearly independent subset of H

319
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�= 
�1� � � � ��n� is a linearly independent subset of H∗

�j �hi�=Aij for all i� j�

Proposition 14.1 If �H����v� is a realisation of A then dimH≥2n−
rank A.

Proof. Let rank A= l and dimH=m. We extend the set �v to give a basis
h1� � � � � hm of H and extend � to give a basis �1� � � � ��m of H∗. Consider
the m×m matrix

(
�j �hi�

)
. This is non-singular so its rows are linearly

independent. Thus the n×m matrix given by the first n rows has rank n.
This matrix therefore has n linearly independent columns. Now the leading
n×n submatrix is A, so has rank l. Thus the remaining n×�m−n� matrix
has rank at least n− l. It follows that m−n≥n− l, that is m≥2n− l.

Definition A minimal realisation of A is a realisation in which

dimH=2n− rank A�

Proposition 14.2 Any n×n matrix over � has a minimal realisation.

Proof. Since rank A= l�A has a non-singular l× l submatrix. By reordering
the rows and columns we obtain a matrix

l

n− l
(
A11 A12

A21 A22

)
l n− l

in which A11 is non-singular. Let

C=
⎛⎝A11 A12 O

A21 A22 In−l
O In−l O

⎞⎠ l

n− l
n− l

l n− l n− l�
Since detC=±detA11 	=0 we see that C is a non-singular �2n− l�×�2n− l�
matrix. Let H be the vector space of all �2n− l�-tuples over �. Define
�1� � � � ��n ∈H∗ to be the first n coordinate functions

��1� � � � � �2n−l�→�i i=1� � � � � n�

Define h1� � � � � hn ∈H to be the first n row vectors of C. Then �1� � � � ��n

and h1� � � � � hn are linearly independent and we obtain a realisation of(
A11 A12

A21 A22

)
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with dimH=2n− l. By reordering �1� � � � ��n and h1� � � � � hn appropriately
we obtain a minimal realisation of A.

Now let �H����v� and �H ′��′� ��′�v� be two realisations of A. We say
the realisations are isomorphic if there is an isomorphism of vector spaces

� � H→H ′

such that ��hi�=h′i and �∗ ��′i�=�i where

�∗ � �H ′�∗→H∗

is the isomorphism induced by �.

Proposition 14.3 Any two minimal realisations of an n×n matrix A over �
are isomorphic.

Proof. Let �H����v� be the minimal realisation of A constructed in Proposi-
tion 14.2 and �H ′��′� ��′�v� be another minimal realisation. We reorder the
rows and columns of A as before to obtain(

A11 A12

A21 A22

)
where A11 is non-singular.
We complete h′1� � � � � h

′
n to a basis h′1� � � � � h

′
2n−l of H

′. Then the matrix(
�′j �h

′
i�
)
for i=1� � � � �2n− l  j=1� � � � � n has form

⎛⎝A11 A12

A21 A22

B1 B2

⎞⎠ �

Since �′1� � � � ��
′
n are linearly independent this matrix has rank n. Thus it has

n linearly independent rows. Since rows l+1� � � � � n are linear combinations
of rows 1� � � � � l the matrix (

A11 A12

B1 B2

)
l

n− l
l n− l

must have linearly independent rows, so is non-singular.
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We now extend �′1� � � � ��
′
n to �′1� � � � ��

′
2n−l so that the �2n− l�×�2n− l�

matrix
(
�′j �h

′
i�
)
is ⎛⎝A11 A12 O

A21 A22 In−l
B1 B2 O

⎞⎠ l

n− l
n− l

l n− l n− l�
This matrix is non-singular, thus �′1� � � � ��

′
2n−l are a basis for �H ′�∗.

Since A11 is non-singular, by adding suitable linear combinations of the
first l rows to the last n− l rows we may achieve B1=O. Thus it is possible
to choose h′n+1� � � � � h

′
2n−l so that h′1� � � � � h

′
2n−l are a basis of H ′ and

(
�′j �h

′
i�
)=

⎛⎝A11 A12 O

A21 A22 In−l
O B′2 O

⎞⎠ �

The matrix B′2 must be non-singular since the whole matrix is non-singular.
We now make a further change to h′n+1� � � � � h

′
2n−l equivalent to left multi-

plying the above matrix by ⎛⎝ Il O O

O In−l O

O O �B′2�
−1

⎞⎠ �

Then we obtain

(
�′j �h

′
i�
)=

⎛⎝A11 A12 O

A21 A22 In−l
O In−l O

⎞⎠ �

This is equal to the matrix C above. Thus the map hi→h′i gives an iso-
morphism H→H ′ which induces the isomorphism �H ′�∗→H∗ given by
�′j→�j . This shows that the realisations �H����v� and �H ′��′� ��′�v� are
isomorphic.

14.2 The Lie algebra L̃�A� associated with a complex matrix

Let A be an n×n matrix over � with rank l. Let �H����v� be a minimal
realisation of A. Then we have

dimH=2n− l
�v= 
h1� � � � � hn�⊂H� �= 
�1� � � � ��n�⊂H∗
�j �hi�=Aij
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We define a Lie algebra L̃�A� by generators and relations.
Let X= 
e1� � � � � en� f1� � � � � fn� x̃ for all x∈H� and let R be the following
set of Lie words in X:

x̃−�ỹ−�z̃ for all x� y� z∈H� ���∈� with x=�y+�z
�x̃ỹ� for all x� y∈H
�eifi�− h̃i for i=1� � � � � n[
eifj

]
for all i 	= j

�x̃ei�−�i�x�ei for all x∈H and i=1� � � � � n

�x̃fi�+�i�x�fi for all x∈H and i=1� � � � � n�

We define L̃�A�=L�X  R� to be the Lie algebra generated by the elements
X subject to relations R.

Lemma 14.4 If a different minimal realisation of A is chosen the Lie algebra
L̃�A� is the same up to isomorphism.

Proof. This follows from Proposition 14.3.

We note that ifA is a Cartan matrix then L̃�A� is the Lie algebra investigated
earlier in Section 7.4 and Example 9.13. For in this case A is non-singular
and H is the vector space with basis hi= �eifi�.

Proposition 14.5 There is an automorphism !̃ of L̃�A� uniquely deter-
mined by

!̃ �ei�=−fi� !̃ �fi�=−ei� !̃�x̃�=−x̃
for all x∈H . Also !̃2=1.

Proof. There is a map !̃ � X→FL�X� given by the above formulae. By
Proposition 9.9 there is a unique Lie algebra homomorphism FL�X�→FL�X�

extending this map. We shall denote this map also by !̃. It satisfies !̃2=1.
Let �R� be the ideal of FL�X� generated by the above set R of Lie words.
By applying !̃ to the elements of R we see that !̃��R��⊂�R�. Thus we may
define the induced map

!̃ � FL�X�/�R�→FL�X�/�R��
Since !̃2=1� !̃ is an automorphism of L̃�A�.
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Let H̃ be the subalgebra of L̃�A� generated by the elements x̃ for all x∈H .
Let Ñ be the subalgebra generated by e1� � � � � en and Ñ− the subalgebra
generated by f1� � � � � fn. Then we have

!̃�H̃�= H̃� !̃�Ñ �= Ñ−� !̃
(
Ñ−

)= Ñ �

Now let V be an n-dimensional vector space over � with basis v1� � � � � vn
and let

T�V �=⊕
s≥0

Ts�V �

be the tensor algebra of V . Thus Ts�V � has basis

vi1⊗· · ·⊗vis =vi1 � � � vis
for all i1� � � � � is ∈ 
1� � � � � n�. For each linear map �∈H∗ we define a map

�� � X→End T�V ��

It is sufficient to define the effect of these endomorphisms on the basis
elements of T�V �. T 0�V � has basis 1. We define

���x̃� ·1=��x�1
���x̃� ·

(
vi1 � � � vis

)= (�−�i1
−· · ·−�is

)
�x�vi1 � � � vis

for x∈H .

��
(
fj
) ·1=vj

��
(
fj
) ·(vi1 � � � vis)=vjvi1 � � � vis �

We define ��
(
ej
)
by induction on s as follows

��
(
ej
) ·1=0

��
(
ej
) ·vi=�ij� (hj)1

��
(
ej
) ·(vi1 � � � vis)=vi1 (�� (ej) (vi2 � � � vis))

+�ij
(
�−�i2

−· · ·−�is

) (
hj
)
vi2 � � � vis s>1�

Proposition 14.6 The above map �� � X→End T�V� can be extended to a
Lie algebra homomorphism L̃�A�→ �End T�V��.

Proof. The idea of the proof is essentially the same as in Proposition 7.9.
�� can first be extended to a homomorphism

�� � FL�X�→ �End T�V��
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by Proposition 9.9. We have

L̃�A��FL�X�/�R�

and so in order to show that �� induces a homomorphism L̃�A�→ �End T�V��
we must verify that ���r�=0 for all r ∈R.
The elements of R have form

x̃−�ỹ−�z̃
�x̃ỹ�

�eifi�− h̃i[
eifj

]
i 	= j

�x̃ei�−�i�x�ei

�x̃fi�+�i�x�fi�

The relation ���r�=0 may be checked for each such r ∈R in a straightforward
manner, just as in the proof of Proposition 7.9

Corollary 14.7 The map x→ x̃ is an isomorphism of vector spaces H→ H̃ .

Proof. H̃ is the subalgebra of L̃�A� generated by x̃ for all x∈H . However,
these elements form a Lie algebra since

x̃1+ x̃2= ˜x1+x2
�x̃= �̃x
�x̃1x̃2�=0�

Thus H̃= 
x̃  x∈H�.

Consider the map H→ H̃ given by x→ x̃. This is a homomorphism of Lie
algebras. It is surjective. To show it is an isomorphism we must show it is
also injective. Thus suppose x∈H and x̃=0. Then ���x̃�=0. Thus ��x�=0.
Since this holds for all �∈H∗ we may deduce that x=0.

We next consider the restriction of �� to Ñ−. It is clear from the definition
that this is independent of �. We call it

� � Ñ−→ �End T�V ���
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Now � �fi� is left multiplication by vi. Thus, for any Lie word w�f1� � � � � fn�

in f1� � � � � fn� � �w �f1� � � � � fn�� is left multiplication by w�v1� � � � � vn�.

Proposition 14.8 f1� � � � � fn generate Ñ
− freely, and so Ñ− is isomorphic to

FL�f1� � � � � fn�.

Proof. Define � � Ñ−→ �T�V�� by ��w�=��w� ·1. Thus
��w �f1� � � � � fn��=w�v1� � � � � vn� �

Then � is a Lie algebra homomorphism, since

��w�f1� � � � � fn� �w
′ �f1� � � � � fn��= �w �v1� � � � � vn� �w

′ �v1� � � � � vn��

= �� �w�f1� � � � � fn�� ���w′ �f1� � � � � fn��� �

Now T�V�=F �v1� � � � � vn�, the free associative algebra on v1� � � � � vn. Thus
the free Lie algebra FL�v1� � � � � vn� lies in �T�V�� and consists of all Lie
words in v1� � � � � vn. Thus FL�v1� � � � � vn� is the image of �. Hence the
homomorphism

� � Ñ−→FL�v1� � � � � vn�

is surjective. But there is a Lie algebra homomorphism

�′ � FL �v1� � � � � vn�→ Ñ−

with �′ �vi�=fi. Moreover we have ���′ =1 on FL�v1� � � � � vn� and
�′ ��=1 on Ñ−. Thus ���′ are inverse isomorphisms and Ñ− is isomorphic
to FL�f1� � � � � fn�.

Corollary 14.9 e1� � � � � en generate Ñ freely.

Proof. Apply the automorphism w̃ of Proposition 14.5. We have w̃
(
Ñ−

)= Ñ
and w̃ �fi�=−ei. Thus the result follows from Proposition 14.8.

Proposition 14.10 L̃�A�= Ñ−⊕H̃⊕ Ñ , a direct sum of subspaces.

Proof. The proof is similar to that of Proposition 7.12. We show that
I= Ñ−+H̃+ Ñ is an ideal of L̃�A�. It is sufficient to show that

ad ei · I⊂ I� ad fi · I⊂ I� ad x̃ · I⊂ I�
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Since the defining relations show that

ad ei ·H̃⊂ Ñ � ad ei · Ñ ⊂ Ñ
ad fi ·H̃⊂ Ñ−� ad fi · Ñ−⊂ Ñ−
adx̃ ·H̃=O� ad x̃ · Ñ ⊂ Ñ � ad x̃ · Ñ−⊂ Ñ−

it is sufficient to check that

ad fi · Ñ ⊂ H̃+ Ñ
ad ei · Ñ−⊂ H̃+ Ñ−�

We have

ad fi ·ej=�ijh̃i ∈ H̃+ Ñ �

Suppose w1�w2 ∈ Ñ satisfy

ad fi ·w1 ∈ H̃+ Ñ � ad fi ·w2 ∈ H̃+ Ñ �

Then

ad fi �w1w2�= �ad fi ·w1�w2�+ �w1� ad fi ·w2�∈ H̃+ Ñ �

Thus ad fi · Ñ ⊂ H̃+ Ñ .
The relation ad ei · Ñ−⊂ H̃+ Ñ− follows similarly. Thus I is an ideal of

L̃�A� containing all the generators, and so L̃�A�= Ñ−+H̃+ Ñ .
In order to show the sum is direct we verify that if w− ∈ Ñ−� x̃∈ H̃�w∈ Ñ

satisfy

w−+ x̃+w=0

then we have w−=0� x̃=0�w=0. Thus suppose w−+ x̃+w=0. Then
�� �w−+ x̃+w� is the zero endomorphism of T�V�. In particular ���w−+
x̃+w� ·1=0. Now �� �w−� ·1=��w−� � ���x̃� ·1=��x�1 and ���w� ·1=0.
Hence

��w−�+��x�1=0�

Now ��w−�∈
⊕

s≥1T
s�V� and ��x�1∈T 0�V �. It follows that ��w−�=0 and

��x�1=0, that is ��x�=0. Since this holds for all �∈H∗ we have x=0.
Hence x̃=0.
Now � � Ñ−→FL�v1� � � � � vn� is an isomorphism, and so ��w−�=0

implies w−=0. Finally w−+ x̃+w=0 implies w=0. Thus

L̃�A�= Ñ−⊕H̃⊕ Ñ �



328 Generalised Cartan matrices and Kac–Moody algebras

LetQ be the subgroup ofH∗ given byQ= 
�=k1�1+· · ·+kn�n  k1� � � � �

kn ∈��. Let Q+= 
� 	=0∈Q  ki≥0 for all i� and Q−= 
� 	=0∈Q  ki≤0
for all i�. For each �∈Q let

L̃�=
{
y∈ L̃�A�  �x̃y�=��x�y for all x∈H}

�

Proposition 14.11 (i) L̃�A�=⊕�∈QL̃�

(ii) dim L̃� is finite for all �∈Q.
(iii) L̃0= H̃ .
(iv) If � 	=0 then L̃�=0 unless �∈Q+ or �∈Q−.
(v)

[
L̃�L̃�

]⊂ L̃�+� for all ���∈Q.

Proof. To show L̃�A�=∑�∈Q L̃� it is sufficient to show H̃⊂∑�∈Q L̃�� Ñ ⊂∑
�∈Q L̃�� Ñ

−⊂∑�∈Q L̃�. It is clear that H̃⊂ L̃0. To show that Ñ ⊂∑�∈Q+ L�

we observe that each Lie monomial w in e1� � � � � en satisfies �x̃w�=��x�w
for all x∈H and some �∈Q+. For

�x̃ei�=�i�x�ei

and if

�x̃w1�=��x�w1� �x̃w2�=��x�w2

we have

�x̃ �w1w2��= ��+���x� �w1w2� �

This shows Ñ ⊂∑�∈Q+ L̃� and similarly we have Ñ−⊂∑�∈Q− L̃�. Thus
L̃�A�=∑�∈Q L̃�.
In order to show that the sum is direct we show that

v1+· · ·+vk=0

for vi ∈ L̃�i
with �1� � � � ��k distinct implies each vi=0. Suppose this is false.

Choose the minimal value of k for which it is false. Suppose v1+· · ·+vk=0
for this value of k but that not each vi=0. Then

�x̃� v1+· · ·+vk�=0 for all x∈H�
Thus

�1�x�v1+· · ·+�k�x�vk=0�

We also have

�k�x�v1+· · ·+�k�x�vk=0�
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Hence

��1�x�−�k�x�� v1+· · ·+��k−1�x�−�k�x�� vk−1=0�

By the minimality of k we have

��i�x�−�k�x�� vi=0 for i=1� � � � � k−1�

Since �i 	=�k there exists x∈H with �i�x� 	=�k�x�. Hence vi=0 for
i=1� � � � � k−1. It follows that vk=0. This contradicts our assumption.
Hence

L̃�A�=⊕
�∈Q

L̃��

Since L̃�A�= Ñ−⊕H̃⊕ Ñ by Proposition 14.10 and

Ñ−⊂ ∑
�∈Q−

L̃�� H̃⊂ L̃0� Ñ ⊂ ∑
�∈Q+

L̃�

it follows that

H̃= L̃0� Ñ = ∑
�∈Q+

L̃�� Ñ−= ∑
�∈Q−

L̃��

Also we have L̃�=O if � 	=0�� 	∈Q+�� 	∈Q−. The Jacobi identity shows
that

[
L̃�L̃�

]⊂ L̃�+� for all ���∈Q.
Finally we show dim L̃� is finite. We have dim L̃0=2n− l. So let �∈Q+.

Then L̃�⊂ Ñ . Now Ñ is spanned by Lie monomials in e1� � � � � en and each
Lie monomial lies in some L̃�. Let �=k1�1+· · ·+kn�n with ki ∈� and
ki≥0. A Lie monomial lies in L̃� if and only if ei appears ki times in it for
each i. But there are only finitely many Lie monomials in which ei appears ki
times for each i. Thus dim L̃� is finite. A similar argument proves this when
�∈Q−. We note in particular that

dim L̃�i
=1� dim L̃−�i =1

dim L̃k�i
=0� dim L̃−k�i =0 if k>1�

The following lemma will be needed in the proof of the next proposition.

Lemma 14.12 Let H be a finite dimensional abelian Lie algebra and V be
an H-module such that

V =⊕
�∈H∗

V�
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where V�= 
v∈V  xv=��x�v for all x∈H�. Let U be a submodule of V .
Then

U =⊕
�∈H∗

�U ∩V�� �

Proof. Let u∈U . Then u=u1+· · ·+um where ui ∈V�i
and �1� � � � � �m are

distinct elements of H∗. Let

Hij=
{
x∈H  �i�x�=�j�x�

}
for i 	= j�

Hij is a subspace of H of codimension 1. Now H 	=⋃i 	=jHij since a finite
dimensional vector space over � cannot be the union of finitely many proper
subspaces. So we can find x∈H with �1�x�� � � � � �m�x� all distinct.

Let ��x� � V→V be the linear map given by ��x�v=xv. Then we have

u=u1+· · ·+um
��x�u=�1�x�u1+· · ·+�m�x�um

��x�2u=�1�x�
2u1+· · ·+�m�x�

2um

���

��x�m−1u=�1�x�
m−1u1+· · ·+�m�x�

m−1um�

We have here m equations in u1� � � � � um whose coefficients have non-zero
determinant. Thus u1� � � � � um may be expressed as linear combinations of
u���x�u� ��x�2u� � � � � ��x�m−1u. These vectors all lie in U . Thus ui ∈U ∩V�i

.
Thus we have shown that U =∑�∈H∗ �U ∩V�� and the sum is direct because∑

�∈H∗ V� is a direct sum.

Proposition 14.13 The algebra L̃�A� contains a unique ideal I maximal with
respect to I∩H̃=O.

Proof. Let J be any ideal of L̃�A� with J ∩H̃=O. We have

L̃�A�= ⊕
�∈H∗

L̃�

by Proposition 14.11, and we consider L̃�A� as an H̃-module. By
Lemma 14.12 we have

J = ⊕
�∈H∗

(
L̃�∩J

)
�
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Now each L̃� with � 	=0 lies in Ñ or in Ñ−. Thus

J = �Ñ−∩J�⊕�Ñ ∩J��
In particular J ⊂ Ñ−⊕ Ñ .

Now consider the ideal I of L̃�A� generated by all ideals J with J ∩H̃=O.
All such ideals J lie in Ñ−⊕ Ñ , thus I lies in Ñ−⊕ Ñ . Hence I∩H̃=O.
Thus I is the unique ideal of L̃�A� maximal with respect to I∩H̃=O.

14.3 The Kac–Moody algebra L�A�

We now suppose that A is a GCM. Let L̃�A� be the Lie algebra associated
with A defined in Section 14.2 and I be the unique maximal ideal of L̃�A�
with I∩H̃=O. Let L�A� be defined by

L�A�= L̃�A�/I�
The Lie algebra L�A� is called the Kac–Moody algebra with GCM A. We
have a natural homomorphism � � L̃�A�→L�A�. We define N =��Ñ � and
N−=� (Ñ−).
Proposition 14.14 L�A�=N−⊕��H̃�⊕N . Moreover the map � � H̃→��H̃�

is an isomorphism.

Proof. We know from the proof of Proposition 14.13 that

I= (Ñ−∩ I)⊕�Ñ ∩ I��
Since L̃�A�= Ñ−⊕H̃⊕ Ñ it follows that

L�A�=N−⊕��H̃�⊕N
and that � � H̃→��H̃� is an isomorphism.

We recall from Corollary 14.7 that there is a natural isomorphism H→ H̃ .
Combining this with � we obtain an isomorphism H→��H̃�. We shall subse-
quently use this isomorphism to identify ��H̃�withH , and we shall write

L�A�=N−⊕H⊕N�
In order to show that a given Lie algebra is isomorphic to L�A� the

following result is often useful.

Proposition 14.15 Suppose we are given an n×n GCM A= (Aij

)
. Let L be

a Lie algebra over � and H be a finite dimensional abelian subalgebra of L
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with dimH=2n− rank A. Suppose �= 
�1� � � � ��n� is a linearly indepen-
dent subset of H∗ and �v= 
h1� � � � � hn� a linearly independent subset of H
satisfying �j �hi�=Aij .

Suppose also that e1� � � � � en� f1� � � � � fn are elements of L satisfying

�eifi�=hi[
eifj

]=0 if i 	= j
�xei�=�i�x�ei for x∈H
�xfi�=−�i�x�fi for x∈H

Suppose that e1� � � � � en� f1� � � � � fn and H generate L and that L has no
non-zero ideal J with J ∩H=O. Then L is isomorphic to the Kac–Moody
algebra L�A�.

Proof. The elements e1� � � � � en� f1� � � � � fn and x∈H generate L and satisfy all
the defining relations of L̃�A� given in Section 14.2. Thus there is a surjective
Lie algebra homomorphism � � L̃�A�→L and L is isomorphic to L̃�A�/ker �.
The restriction map � � H̃→H is an isomorphism by Corollary 14.7,
thus ker �∩H̃=O. It follows that ker �⊂ I , the largest ideal of L̃�A� with
I∩H̃=O. In fact we have ker �= I since L has no non-zero ideal J with
J ∩H=O. Hence

L� L̃�A�/I=L�A��

Corollary 14.16 If A is a Cartan matrix then L�A� is the finite dimensional
semisimple Lie algebra with Cartan matrix A.

Proof. In this case we have rank A=n, so dimH=n. The finite dimensional
semisimple Lie algebra satisfies all the hypotheses of Proposition 14.15, so
is isomorphic to the Kac–Moody algebra L�A�.

This result shows that the theory of Kac–Moody algebras is an extension
of the theory of finite dimensional semisimple Lie algebras, which we have
already described.
We shall now describe some further basic properties of the Kac–Moody

algebra L�A�. We shall denote the images of ei� hi� fi ∈ L̃�A� under the
natural homomorphism L̃�A�→L�A� by ei� hi� fi ∈L�A�. This should not
lead to confusion as we shall subsequently be concentrating on L�A� rather
than L̃�A�.
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Proposition 14.17 There is an automorphism ! of L�A� satisfying !2=1
determined by

!�ei�=−fi� ! �fi�=−ei
!�x�=−x for all x∈H�

Proof. By Proposition 14.5 L̃�A� has an automorphism !̃ with !̃2=1. Thus
!̃�I� is the unique maximal ideal with

!̃�I�∩ !̃�H̃�=O�
But !̃�H̃�= H̃ so !̃�I�= I . Thus !̃ induces an automorphism ! of L̃�A�/I=
L�A� satisfying the stated conditions.

There is also an analogue of Proposition 14.11. For each �∈Q define
L� by

L�= 
y∈L�A� �xy�=��x�y for all x∈H��

Proposition 14.18 (i) L�A�=⊕�∈QL�

(ii) dimL� is finite for all �∈Q.
(iii) L0=H
(iv) If � 	=0 then L�=O unless �∈Q+ or �∈Q−.
(v)

[
L�L�

]⊂L�+� for all ���∈Q.

Proof. Let � � L̃�A�→L�A�= L̃�A�/I be the natural homomorphism. We
have

L̃�A�=⊕
�∈Q

L̃� by Proposition 14�11�

Also

I=⊕
�∈Q

(
I∩ L̃�

)
by Lemma 14�12�

It follows that

L�A�=⊕
�∈Q

�
(
L̃�

)
�

Now we clearly have �
(
L̃�

)⊂L�, thus L�A�=
∑

�∈Q L�. This sum is direct,
just as in the proof of Proposition 14.11. It follows that L�A�=⊕�∈QL� and
that L�=�

(
L̃�

)
. Now

L�A�=N−⊕H⊕N by Proposition 14�14
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and N−⊂∑�∈Q− L�� H⊂L0� N ⊂∑�∈Q+ L�, hence we have

N−= ⊕
�∈Q−

L�� H=L0� N = ⊕
�∈Q+

L��

dimL� is finite because L�=�
(
L̃�

)
and dim L̃� is finite. Finally

[
L�L�

]⊂
L�+� follows from the Jacobi identity.

Definitions H will be called a Cartan subalgebra of L�A�. This fits in with
our previous terminology when A was a Cartan matrix. An element �∈H∗ is
called a root of L�A� if � 	=0 and L� 	=O. Every root lies in Q+ or Q−. The
roots in Q+ are called positive roots and those in Q− negative roots. If � is
a root then L� is called the root space of �. The dimension of L� is called
the multiplicity of �. When A is a Cartan matrix we recall that all roots have
multiplicity 1. However, we shall see that this is not always the case when A

is a GCM.

Proposition 14.19 (i) dimL�i
=1 and dimL−�i =1.

(ii) If k>1 then dimLk�i
=0�dimL−k�i =0.

Proof. Since L�i
=� (L̃�i

)
and dim L̃�i

=1 we have dimL�i
≤1. If dimL�i

=0
we would have ei ∈ I=ker �. This would imply �eifi�= h̃i ∈ I , contrary to
I∩H̃=O. Thus dimL�i

=1. A similar argument gives dimL−�i =1.
Since L̃k�i

=O and L̃−k�i =O for k>1 it follows that Lk�i
=O and

L−k�i =O.
�1��2� � � � ��n are called the fundamental roots of L�A�, again in agree-

ment with the earlier terminology when A is a Cartan matrix.

Remark 14.20 For a general n×n matrix A over � we constructed a
minimal realisation �H����v� where H is a vector space over � of
dimension 2n− rank A��v= 
h1� � � � � hn� is a linearly independent subset
of H and �= 
�1� � � � ��n� is a linearly independent subset of H∗ such that
�j �hi�=Aij .
In the case when A is a GCM the matrix A is real and so we can find

a real vector space H�, of dimension 2n− rank A over �, contained in H

such that h1� � � � � hn lie in H� and are linearly independent and �1� � � � ��n,
when restricted to H∗�, remain linearly independent. In the construction of
H , described in Proposition 14.2 as the vector space of all �2n− l�-tuples
over �, we define H� as the subset of all �2n− l�-tuples over �. The triple
�H�����

v� with �v⊂H� and �⊂H∗� is called a real minimal realisa-
tion of A.
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We denote by L�A�′ the subalgebra of L�A� generated by e1� � � � � en,
f1� � � � � fn.

Proposition 14.21 (i) L� lies in L�A�′ for each root � of L�A�.
(ii) L�A�′ = �H∩L�A�′�⊕∑�	=0L�.
(iii) L�A�′ = �L�A�L�A��.

Proof. We know from Proposition 14.18 that L� 	=O implies �∈Q+ or �∈
Q−. If �∈Q+ then L�⊂N and if �∈Q− then L�⊂N−. Since N is the
subalgebra generated by e1� � � � � en and N− is the subalgebra generated by
f1� � � � � fn we have L�⊂L�A�′ for each �.
Since L�A�=H⊕∑�	=0L� and L�⊂L�A�′ we have

L�A�′ = �H∩L�A�′�⊕∑
�	=0

L��

It follows that L�A�=L�A�′ +H . We also have �H�L�A�′�⊂L�A�′ and so
L�A�′ is an ideal of L�A�. We have

L�A�/L�A�′ �H/H∩L�A�′

and so L�A�/L�A�′ is abelian. Hence �L�A�L�A��⊂L�A�′. On the other hand
we have �eifi�=hi� �hiei�=2ei� �hifi�=−2fi and so ei� fi ∈ �L�A�L�A��.
Thus L�A�′ ⊂ �L�A�L�A�� and we have equality.



15
The classification of generalised

Cartan matrices

The structure of the Kac–Moody algebra L�A� depends crucially on the
GCM A. In the present chapter we shall discuss various possible types of
GCM A which can occur.

15.1 A trichotomy for indecomposable GCMs

Two GCMs A�A′ are called equivalent if they have the same degree n and
there is a permutation � of 1� � � � � n such that

A′ij=A��i���j� for all i� j�

A GCM A is called indecomposable if it is not equivalent to a diagonal sum(
A1 O

O A2

)
of smaller GCMs A1�A2. If A is a GCM so is its transpose At . Moreover A
is indecomposable if and only if At is indecomposable.
We shall now define three particular types of GCM. Let v= �v1� � � � � vn�

be a vector in �n. We write v≥0 if vi≥0 for each i, and v>0 if vi >0 for
each i.

Definitions A GCM A has finite type if

(i) detA 	=0

(ii) there exists u>0 with Au>0

(iii) Au≥0 implies u>0 or u=0.

336
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The GCM A has affine type if

(i) corank A=1 (i�e� rank A=n−1)
(ii) there exists u>0 such that Au=0
(iii) Au≥0 implies Au=0.

The GCM A has indefinite type if

(i) there exists u>0 such that Au<0
(ii) Au≥0 and u≥0 imply u=0.

All vectors u in these definitions are assumed to lie in �n, and are column
vectors.

We aim to prove the following theorem.

Theorem 15.1 Let A be an indecomposable GCM. Then exactly one of the
following three possibilities holds:

(a) A has finite type
(b) A has affine type
(c) A has indefinite type.

Moreover the type of At is the same as the type of A.

This section will be devoted to the proof of Theorem 15.1, which gives a
trichotomy on the set of indecomposable GCMs.
We begin with a lemma on inequalities.

Lemma 15.2 Let vi= �vi1� � � � � vin�∈�n for i=1� � � � �m. Then there exist
x1� � � � � xn ∈� with

∑n
j=1 vijxj >0 for i=1� � � � �m if and only if �1v

1+· · ·+
�mv

m=0��i≥0 implies �i=0 for i=1� � � � �m.

Proof. Suppose there exists a column vector x= �x1� � � � � xn�t satisfying vix>
0 for all i. Suppose �1v

1+· · ·+�mv
m=0 with all �i≥0. Then �1v

1x+· · ·+
�mv

mx=0. But vix>0 and �i≥0, thus we have �i=0 for all i.
Conversely suppose �1v

1+· · ·+�mv
m=0��i≥0 implies �i=0 for all i.

Let

S=
{

m∑
i=1

�iv
i  �i≥0�

m∑
i=1

�i=1

}
�

Define f � S→� by f�y�=�y� where �y�=√y21+· · ·+y2n. Then S is a
compact subset of �n and f is a continuous function from S to �. Thus f�S�
is a compact subset of �. Hence there exists x∈S with �x�≤�x′� for all
x′ ∈S. Clearly x 	=0 since the zero vector does not lie in S. We shall show
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vix>0 for all i as required. In fact we shall show that �y� x�>0 for all y∈S,
where �y� x�=∑yixi. This implies the required result since each vi lies in S.

Now S is a convex subset of �n. We assume y 	=x, then ty+�1− t�x∈S
for all t with 0≤ t≤1. By the choice of x we have

�ty+�1− t�x� ty+�1− t�x�≥ �x� x�

that is

t�y−x� y−x�+2�y−x�x�≥0

for 0<t≤1. This implies �y−x�x�≥0, that is �y� x�≥ �x� x�>0.

We make use of this lemma in the following proposition.

Proposition 15.3 Let M be an m×n matrix over �. Suppose

u≥0 and M tu≥0 imply u=0�

Then there exists v>0 with Mv<0.

Proof. Let M= (mij

)
and consider the following system of inequalities:

−
n∑

j=1
mijxj >0 i=1� � � � �m

xj >0 j=1� � � � � n�

We shall use Lemma 15.2 to show that these inequalities have a solution.
Thus we consider an equation of form

m∑
i=1

�i �−mi1� � � � �−min�+
n∑

j=1
�j�0� � � � �1� � � � �0�

j

=0

with �i≥0��j≥0 for all i� j. Then

m∑
i=1

�imij=�j�

Let u= ��1� � � � � �m�
t . Then M tu= ��1� � � � ��n�

t . Thus we have u≥0 and
M tu≥0. This implies that u=0. We also have M tu=0. Thus �i=0 and
�j=0 for all i� j. Hence Lemma 15.2 shows that the above inequalities have
a solution. Thus there exists v>0 with Mv<0.
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We now consider our three classes of GCM A. Let

SF = 
A A has finite type�

SA = 
A A has affine type�

SI = 
A A has indefinite type��

It is easy to see that no GCM can lie in more than one of these classes.

Lemma 15.4 SF∩SA=�� SF∩SI=�, SA∩SI=�.

Proof. If A∈SF∩SA then detA 	=0 and corankA=1, a contradiction.
If A∈SF∩SI there exists u>0 with Au>0. But Au≥0 and u≥0 imply

u=0, a contradiction.
If A∈SA∩SI there exists u>0 with Au=0. But Au≥0 and u≥0 imply

u=0, a contradiction.

We must therefore show that each indecomposable GCM lies in one of the
three classes.

Lemma 15.5 Let A be an indecomposable GCM. Then u≥0 and Au≥0
imply that u>0 or u=0.

Proof. Suppose u 	=0 and u≯0. Then we can reorder 1� � � � � n so that ui=0
for i=1� � � � � s and ui >0 for i= s+1� � � � � n. Let

A=
(
P Q

R S

)
s

n−s
s n−s

Now all entries of the block Q are ≤0 and if Q has an entry <0 then Au has
a negative coefficient, which is impossible. Thus Q=0. This implies R=O
by the definition of a GCM, thus A is decomposable, a contradiction.

Now let A be an indecomposable GCM and define KA by

KA= 
u  Au≥0��

KA is a convex cone. We consider its intersection with the convex cone

u  u≥0�. We shall distinguish between two cases:


u  u≥0�Au≥0� 	= 
0�


u  u≥0�Au≥0�= 
0��
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The first of these cases splits into two subcases, as is shown by the next
lemma.

Lemma 15.6 Suppose 
u  u≥0�Au≥0� 	= 
0�. Then just one of the follow-
ing cases occurs:

KA⊂ 
u  u>0�∪
0�
KA= 
u  Au=0� and KA is a 1-dimensional subspace of �n�

Proof. We know there exists u 	=0 with u≥0 and Au≥0. By Lemma 15.5
this implies that u>0. Suppose the first case does not hold. Then there exists
v 	=0 with Av≥0 such that some coordinate of v is ≤0. If v≥0 then v>0
by Lemma 15.5, thus some coordinate of v is <0.

We have Au≥0 and Av≥0, hence A�tu+�1− t�v�≥0 for 0≤ t≤1. Since
all coordinates of u are positive and some coordinate of v is negative there
exists t with 0<t<1 such that tu+�1− t�v≥0 and some coordinate of
tu+�1− t�v is 0. But then tu+�1− t�v=0 by a further use of Lemma 15.5.
Thus v is a scalar multiple of u. We also have

0=A�tu+�1− t�v�= tAu+�1− t�Av�
Since Au≥0�Av≥0 this implies that Au=0�Av=0.
Now let w∈KA. Then Aw≥0. Either w≥0 or some coordinate of w is

negative. If w≥0 then w>0 or w=0 by Lemma 15.5. Suppose w>0. Then
by the above argument with u replaced by w�v is a scalar multiple of w. Hence
w is a scalar multiple of u. Now suppose some coordinate of w is negative.
Then by the above argument with v replaced by w�w is a scalar multiple of u.
Thus in all cases w is a scalar multiple of u. Hence KA is the 1-dimensional
subspace�u. Thus we have shown that KA is a 1-dimensional subspace of�n.
We have also shown that if w∈KA then Aw=0. Thus KA= 
w  Aw=0�.
Thus if the first case does not hold the second case must hold. We note

finally that the two cases cannot hold together since in the first case KA

cannot contain a 1-dimensional subspace of �n.

We now identify the first case in Lemma 15.6 with the case of matrices of
finite type.

Proposition 15.7 Let A be an indecomposable GCM. Then the following
conditions are equivalent:

A has finite type


u  u≥0 and Au≥0� 	= 
0� and KA⊂ 
u  u>0�∪
0��
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Proof. Suppose A has finite type. Then there exists u>0 with Au>0.
Hence 
u  u≥0 and Au≥0� 	= 
0�. Also detA 	=0. Thus 
u  Au=0�
is not a 1-dimensional subspace of �n. Hence KA⊂ 
u  u>0�∪
0� by
Lemma 15.6.
Conversely suppose 
u  u≥0 and Au≥0� 	= 
0� and KA⊂ 
u  u>0�∪


0�. Then there cannot exist u 	=0 with Au=0. For this would give a
1-dimensional subspace contained in KA. Thus detA 	=0. Now there exists
u 	=0 with u≥0 and Au≥0. By Lemma 15.5 we have u>0. If Au>0�A has
finite type. So suppose to the contrary that some coordinates of Au are zero
and some are non-zero. We choose the numbering 1� � � � � n so that the first s
components of Au are 0 and the last n−s are positive. Let

A=
(
P Q

R S

)
s

n−s
s n−s

Now the block Q satisfies Q 	=O since A is indecomposable. We choose the
numbering so that the first row of Q is not the zero vector. We have

Au=
(
P Q

R S

)(
u1

u2

)
=
(
Pu1+Qu2

Ru1+Su2

)
�

Hence Pu1+Qu2=0 and Ru1+Su2>0. We also have u1>0� u2>0. Thus
Qu2≤0 and the first coordinate of Qu2 is <0. Hence Pu1≥0 and the first
coordinate of Pu1 is >0. Since Ru1+Su2>0 we can choose  >0 such that
R�1+ �u1+Su2>0.
We now consider, instead of our original vector u= (u1

u2

)
, the vector

(
�1+ �u1

u2

)
.

We have(
�1+ �u1

u2

)
>0

A

(
�1+ �u1

u2

)
=
(
Pu1+Qu2+ Pu1

Ru1+Su2+ Ru1

)
=
(

 Pu1

R�1+ �u1+Su2

)
�

The first coordinate and the last n−s coordinates of this vector are positive
and the remaining coordinates are ≥0. Thus

A

(
�1+ �u1

u2

)
≥0

and the number of non-zero coordinates in this vector is greater than that inAu.
We may now iterate this process, obtaining at each stage at least one more
non-zero coordinate than we had before. We eventually obtain a vector v>0
such that Av>0. Thus A has finite type.



342 The classification of generalised Cartan matrices

We next identify the second case in Lemma 15.6 with that of an
affine GCM.

Proposition 15.8 Let A be an indecomposable GCM. Then the following
conditions are equivalent:

(i) A has affine type
(ii) 
u  u≥0 and Au≥0� 	= 
0��KA= 
u  Au=0�, and KA is a 1-dimen-

sional subspace of �n.

Proof. Suppose A has affine type. Then there exists u>0 with Au=0. It
follows that 
u  u≥0 and Au≥0� 	= 
0�. Also �u∈KA for all �∈�. By
Lemma 15.6 we see that KA= 
w  Aw=0� and that KA is a 1-dimensional
subspace of �n.
Conversely suppose the three conditions of (ii) are satisfied.

Then corank A=1�

Also there exists u 	=0 with u≥0 and Au≥0. By Lemma 15.5 we have u>0.
So there exists u>0 with Au≥0. But KA= 
u  Au=0�. Hence there exists
u>0 with Au=0. Finally Au≥0 implies Au=0. Thus A has affine type.

Proposition 15.9 Let A be an indecomposable GCM. Then:

if A has finite type At has finite type
if A has affine type At has affine type.

Proof. To prove these results we shall make use of Proposition 15.3.
Suppose A has finite type. We show there does not exist v>0 with Av<0.

For if Av<0 then A�−v�>0 and so −v>0 or −v=0. Hence v<0 or v=0.
This contradicts v>0. We may now apply Proposition 15.3 to show there
exists u 	=0 with u≥0 and Atu≥0. So 
u  u≥0 and Atu≥0� 	= 
0�. By
Lemma 15.6 either

KAt ⊂ 
u  u>0�∪
0�
or KAt = 
u  Atu=0� and this is a 1-dimensional subspace. Now detA 	=0 so
detAt 	=0. Thus the latter case cannot occur. The former case must therefore
occur, so by Proposition 15.7 At has finite type.

Now suppose A has affine type. We again show there does not
exist v>0 with Av<0. For A�−v�>0 is impossible in the affine case.



15.1 A trichotomy for indecomposable GCMs 343

By Proposition 15.3 there exists u 	=0 with u≥0 and Atu≥0. So 
u  u≥0
and Atu≥0� 	= 
0�. By Lemma 15.6 we may again conclude that either

KAt ⊂ 
u  u>0�∪
0� or
KAt = 
u  Au=0� and this is a 1-dimensional subspace�

Now corankA=1 so corankAt=1. This shows that we cannot have the first
possibility. Thus the second possibility holds, and then by Proposition 15.8
we see that At has affine type.

We may now identify the case not appearing in Lemma 15.6 with that of
an indefinite GCM.

Proposition 15.10 Let A be an indecomposable GCM. Then the following
conditions are equivalent:

A has indefinite type


u  u≥0 and Au≥0�= 
0��

Proof. Suppose A has indefinite type. Then u≥0 and Au≥0 imply u=0.

Conversely suppose 
u  u≥0 and Au≥0�= 
0�. Then the same condition
holds for At , i.e. 
u  u≥0 and Atu≥0�= 
0�. This follows from Lemma 15.6
and Propositions 15.7, 15.8 and 15.9. But then Proposition 15.3 shows that
there exists v>0 with Av<0. Thus A has indefinite type.

We are now able to achieve our aim of proving Theorem 15.1. For each
indecomposable GCM A Lemma 15.6 shows that exactly one of the following
conditions holds:

(a) 
u  u≥0 and Au≥0� 	= 
0� and KA⊂ 
u  u>0�∪
0�.
(b) 
u  u≥0 and Au≥0� 	= 
0��KA= 
u  Au=0�, and KA is a 1-dimen-

sional subspace.

(c) 
u  u≥0 and Au≥0�= 
0�.

By Proposition 15.7 A satisfies (a) if and only if A has finite type. By
Proposition 15.8 A satisfies (b) if and only if A has affine type. By Propo-
sition 15.10 A satisfies (c) if and only if A has indefinite type. Thus we
have the required trichotomy for GCMs. Moreover Proposition 15.9 shows
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that the type of At is the same as the type of A. This completes the proof of
Theorem 15.1

Corollary 15.11 Let A be an indecomposable GCM. Then:

(a) A has finite type if and only if there exists u>0 with Au>0.

(b) A has affine type if and only if there exists u>0 with Au=0.

(c) A has indefinite type if and only if there exists u>0 with Au<0.

Proof. (a) Suppose u>0 and Au>0. A cannot have affine type as then Au≥0
would imply Au=0. A cannot have indefinite type as then u≥0 and Au≥0
would imply u=0. Thus A has finite type.
(b) Suppose u>0 and Au=0. A cannot have finite type since detA=0.

A cannot have indefinite type since then u≥0 and Au≥0 would imply
u=0. Thus A has affine type.

(c) Suppose u>0 and Au<0. Then A�−u�>0. A cannot have finite type
as this would imply −u>0 or −u=0. A cannot have affine type since
A�−u�>0 would then imply A�−u�=0. Thus A has indefinite type.

Remark 15.12 In proving the results of Section 15.1 we have assumed that
A is a GCM. However, we have not used the full force of this assumption.
Inspection of the proofs shows that we have nowhere assumed that Aii=2 or
that Aij ∈�. This remark will be useful in some subsequent applications.

15.2 Symmetrisable generalised Cartan matrices

In this section we shall consider a special type of GCM which plays a key role
in the theory of Kac–Moody algebras. These are the symmetrisable GCMs.
Before giving the definition we obtain some preliminary results.
Let A= (Aij

)
be a GCM with i� j∈ 
1� � � � � n� and let J be a subset of


1� � � � � n�. Let AJ =
(
Aij

)
� i� j∈ J . Then AJ is also a GCM, called a principal

minor of A.

Lemma 15.13 (i) Suppose A is an indecomposable GCM of finite type and
AJ is an indecomposable principal minor of A. Then AJ also has finite type.
(ii) Suppose A is an indecomposable GCM of affine type and AJ is a proper

indecomposable principal minor of A. Then AJ has finite type.
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Proof. (i) By passing to an equivalent GCM we may choose the numbering
so that J = 
1� � � � �m� for some m≤n. Let K= 
m+1� � � � � n�. Let

A=
(
P Q

R S

)
m

n−m
m n−m

Now there exists u>0 with Au>0. Let u= (uJ
uK

)
. Then

Au=
(
P Q

R S

)(
uJ
uK

)
=
(
PuJ+QuK
RuJ+SuK

)
�

Since Au>0 we have PuJ+QuK >0. However, QuK≤0 so PuJ >0. Thus
there exists uJ >0 with AJuJ >0. By Corollary 15.11 AJ has finite type.
(ii) As before we may assume J = 
1� � � � �m�. This time we have m<n. Let

A=
(
P Q

R S

)
m

n−m where P=AJ

m n−m
Since A has affine type there exists u>0 with Au=0. We have

Au=
(
P Q

R S

)(
uJ
uK

)
=
(
PuJ+QuK
RuJ+SuK

)
�

Hence PuJ+QuK=0. Now QuK≤0 so PuJ ≥0.
Suppose if possible that PuJ =0. Then QuK=0, and since uK >0

this implies that Q=O. But then R=O also and A is decomposable, a
contradiction. Hence we have uJ >0�PuJ ≥0�PuJ 	=0. This implies that
P=AJ cannot have affine type or indefinite type. Thus AJ has finite type.

We next describe our trichotomy in the special case in which the indecom-
posable GCM is symmetric.

Proposition 15.14 Suppose A is a symmetric indecomposable GCM. Then:

(a) A has finite type if and only if A is positive definite.
(b) A has affine type if and only if A is positive semidefinite of corank 1.
(c) A has indefinite type if and only if A satisfies neither of these conditions.

Proof. (a) Let A have finite type. Then there exists u>0 with Au>0.
Hence for all �≥0 we have �A+�I�u>0. Thus A+�I has finite type by
Corollary 15.11. (Note that A+�I need not be a GCM, but the results of
Section 15.1 can be applied to it by Remark 15.12.) Thus det �A+�I� 	=0
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when �≥0, that is det �A−�I� 	=0 when �≤0. Now the eigenvalues of the
real symmetric matrix A are all real. Thus all the eigenvalues of A must be
positive. Hence A is positive definite.
Conversely suppose A is positive definite. Then detA 	=0 so A has finite

or indefinite type. If A has indefinite type there exists u>0 with Au<0.
But then utAu<0, contradicting the fact that A is positive definite. Thus A
must have finite type.
(b) Let A have affine type. Then there exists u>0 with Au=0. Hence for

all �>0 we have �A+�I�u>0. Thus by Corollary 15.11 A+�I has
finite type when �>0. (We are again using Remark 15.12 here.) Thus
det�A+�I� 	=0 when �>0, that is det�A−�I� 	=0 when �<0. Thus all
eigenvalues of A are non-negative. But A has corank 1 so 0 occurs as
an eigenvalue with multiplicity 1, and the remaining eigenvalues are all
positive. Hence A is positive semi-definite of corank 1.
Conversely suppose A is positive semi-definite of corank 1. Then

detA=0 so A cannot have finite type. Suppose A has indefinite type.
Then there exists u>0 with Au<0. Thus utAu<0, which contradicts
the fact that A is positive semi-definite. Thus A must have affine type.

(c) This follows from (a) and (b).

In general a GCM need not be symmetric, but it may nevertheless satisfy
the weaker condition of being symmetrisable.

Definition A GCMA is symmetrisable if there exists a non-singular diagonal
matrix D and a symmetric matrix B such that A=DB.

Lemma 15.15 Let A be a GCM. Then A is symmetrisable if and only if

Ai1i2
Ai2i3

� � �Aiki1
=Ai2i1

Ai3i2
� � �Ai1ik

for all i1� i2� � � � � ik ∈ 
1� � � � � n�.

Proof. Suppose A is symmetrisable. Then A=DB with D=diag �d1� � � � � dn�

and B= (Bij

)
. Thus Aij=diBij . Hence

Ai1i2
� � �Aiki1

= di1
� � � dik

Bi1i2
� � � Biki1

Ai2i1
� � �Ai1ik

= di1
� � � dik

Bi2i1
� � � Bi1ik

and these are equal since B is symmetric.
Conversely suppose

Ai1i2
� � �Aiki1

=Ai2i1
� � �Ai1ik
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for all i1� � � � � ik. We may suppose A is indecomposable since the result in this
case implies it for all A. Thus for each i∈ 
1� � � � � n� there exists a sequence

1= j1� j2� � � � � jt= i
with

Aj1j2
	=0� Aj2j3

	=0� � � � � Ajt−1jt 	=0�

We choose a number d1 	=0 in �. We wish to define di by

di=
Ajtjt−1 � � �Aj2j1

Aj1j2
� � �Ajt−1jt

d1�

However, we must check that this definition of di depends only upon i and
not on the sequence chosen from 1 to i. So let

1=k1� k2� � � � � ku= i
be a second such sequence from 1 to i. We claim that

Ajtjt−1 � � �Aj2j1

Aj1j2
� � �Ajt−1jt

= Akuku−1 � � �Ak2k1

Ak1k2
� � �Aku−1ku

that is A1k2
Ak2k3

� � �Aku−1iAijt−1 � � �Aj21
=Ak21

Ak3k2
� � �Aiku−1Ajt−1i � � �A1j2

. This
is in fact one of the given conditions on the matrix A. Thus di ∈� is well
defined and di 	=0. Let D=diag �d1� � � � � dn�. Define Bij by Aij=diBij . We

show that Bji=Bij , that is
Aji

dj
= Aij

di
. If Aij=0 then Aji=0 also and the con-

dition is satisfied. So suppose Aij 	=0. Let 1= j1� j2� � � � � jt= i be a sequence
from 1 to i of the type described above. Then 1= j1� j2� � � � � jt� j is such a
sequence from 1 to j. These sequences may be used to obtain di and dj

respectively, and we have

dj=
Aji

Aij

di�

Thus Bji=Bij . Hence A=DB where D is diagonal and non-singular, and B

is symmetric. Thus A is symmetrisable.

Corollary 15.16 Let A be a symmetrisable indecomposable GCM. Then
A can be expressed in the form A=DB where D=diag �d1� � � � � dn� �B is
symmetric, with d1� � � � � dn >0 in � and Bij ∈�. Also D is determined by
these conditions up to a scalar multiple.

Proof. We choose any d1 ∈� with d1>0. Then Lemma 15.15 shows that
di ∈� and di >0 for each i. Thus by multiplying by a positive scalar
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we may assume each di ∈� with di >0. Also Bij=Aij/di lies in �. The
proof of Lemma 15.15 also shows that D is determined up to a scalar
multiple.

The following important result shows that indecomposable GCMs in the
first two classes of our trichotomy are symmetrisable.

Theorem 15.17 Let A be an indecomposable GCM of finite or affine type.
Then A is symmetrisable.

Proof. First suppose there is no set of integers i1� i2� � � � � ik with k≥3 such
that i1 	= i2� i2 	= i3� � � � � ik−1 	= ik� ik 	= i1 and

Ai1i2
	=0�Ai2i3

	=0� � � � �Aik−1ik 	=0�Aiki1
	=0�

Then Lemma 15.15 shows that A is symmetrisable.

Thus we suppose there is such a sequence i1� � � � � ik with k≥3 and we
choose such a sequence with minimal possible value of k. We thus have

Air is
	=0 if �r� s�∈ 
�1�2�� �2�3�� � � � � �k�1�� �2�1�� �3�2�� � � � � �1� k���

The minimality of k shows that Air is
=0 if �r� s� does not lie in the above

set. Otherwise there would be such a sequence with a smaller value of k.

Let J = 
i1� � � � � ik�. Then the principal minor AJ of A has form

AJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −r1 0 · · · 0 −sk
−s1 2 −r2 · 0
0 −s2 2 · · ·
· · · · · · ·
· · · · · · ·
· · · 2 · 0
0 · · · 2 −rk−1
−rk 0 · · · 0 −sk−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

with ri� si ∈� satisfying ri >0� si >0. In particular we see that AJ is inde-
composable. Now AJ must have finite or affine type by Lemma 15.13. Thus
there exists u>0 with AJu≥0. Let u= �u1� � � � � uk�. We define the k×k
matrix M by

M=diag
(
u−11 � � � � � u−1k

)
AJ diag �u1� � � � � uk� �
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Then Mij=u−1i �AJ �ij uj . Thus∑
j

Mij=u−1i
∑
j

�AJ�ij uj≥0�

In particular we have
∑

i�j Mij≥0. Now we have

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −r ′1 0 · · · 0 −s′k
−s′1 2 −r ′2 · 0
0 −s′2 2 · · ·
· · · · · · ·
· · · · · · · ·
· · · · · · 0
0 · · 2 −r ′k−1
−r ′k 0 · · · 0 −s′k−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

with r ′i =u−1i riui+1� s′i=u−1i+1siui. (We define uk+1=u1.)

We note that r ′i >0� s′i >0 and r ′i s
′
i= risi ∈�. We also have∑

i�j

Mij=2k−�r ′1+s′1�−· · ·−�r ′k+s′k� �

Now r ′i+s′i
2 ≥

√
r ′i s
′
i=√risi≥1 hence r ′i+s′i≥2. Since

∑
i�j Mij≥0 we deduce

that r ′i+s′i=2 and r ′i s
′
i=1. Hence risi=1 and, since ri� si are positive integers,

we have ri=1� si=1. It follows that

AJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · 0
0 −1 2 · · ·
· · · · · · ·
· · · · · · ·
· · · · · 0
0 · · 2 −1
−1 0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Let v= �1� � � � �1�. Then v>0 and AJv=0. Thus AJ has affine type by
Corollary 15.11. Lemma 15.13 shows that this can only happen when AJ =A.
Thus A is symmetric, in particular symmetrisable as required.

We are now able to prove the following basic description of our trichotomy.
It generalises the description previously obtained in Proposition 15.14 for
symmetric indecomposable GCMs.
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Theorem 15.18 Let A be an indecomposable GCM. Then:

(a) A has finite type if and only if all its principal minors have positive
determinant.

(b) A has affine type if and only if detA=0 and all proper principal minors
have positive determinant.

(c) A has indefinite type if and only if A satisfies neither of these two
conditions.

Proof. (a) Suppose A has finite type. Then A is symmetrisable by Theo-
rem 15.17, hence A=DB where D=diag �d1� � � � � dn� with di >0 and B

is symmetric, by Corollary 15.16. The matrix B need not necessarily be a
GCM, but Remark 15.12 shows that we can nevertheless define the type of B.
Moreover Corollary 15.11 shows that A and B have the same type. Thus B
is a symmetric indecomposable matrix of finite type, and so detB>0 by
Proposition 15.14. It follows that detA>0 also. Now all principal minors
of A also have finite type by Lemma 15.13. Thus these also have positive
determinant.
Conversely suppose that all principal minors of A have positive deter-

minant. Suppose there is a set of integers i1� � � � � ik with k≥3 such that
i1 	= i2� i2 	= i3� � � � � ik 	= i1 with

Ai1i2
Ai2i3

� � �Aiki1
	=0�

Choose such a sequence with minimal possible k and let J = 
i1� � � � � ik�.
Then the principal minor AJ of A has form

AJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · 0
0 −1 2 · · ·
· · · · · · ·
· · · · · · ·
· · · · · 0
0 · · 2 −1
−1 0 · · · 0−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

by the proof of Theorem 15.17. But then detAJ =0, a contradiction. Thus
there is no such sequence i1� � � � � ik. By Lemma 15.15 A is symmetrisable.
Hence A=DB where D=diag �d1� � � � � dn� with di >0 and B is symmetric.
Again B need not be a GCM but we can nevertheless define its type using
Remark 15.12 and, by Corollary 15.11, A and B have the same type. Now
the principal minors of the symmetric matrix B all have positive determinant
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and so B is positive definite. Thus B has finite type by Proposition 15.14, and
so A has finite type also.
(b) Now suppose A has affine type. Then detA=0. All proper principal

minors of A have finite type by Lemma 15.13 and so have positive
determinant by (a).
Suppose conversely that detA=0 and that all proper principal minors

of A have positive determinant. Suppose there is a set of integers i1� � � � � ik
with k≥3 such that i1 	= i2� � � � � ik 	= i1 with

Ai1i2
Ai2i3

� � �Aiki1
	=0�

Choose such a sequence with minimal k, and let J = 
i1� � � � � ik�. Then
the principal minor AJ has form

AJ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1
−1 2 −1 · 0
0 −1 2 · · ·
· · · · · · ·
· · · · · · ·
· · · · · 0
0 · · 2 −1
−1 0 · · · 0−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

as above. Since detAJ =0 we have AJ =A. But then A is affine since
Au=0 with u= �1� � � � �1�. Thus suppose there is no such sequence
i1� � � � � ik. Then A is symmetrisable by Lemma 15.15, and has form
A=DB whereD=diag �d1� � � � � dn�with di >0 and B is symmetric. Now
detB=0 and all proper principal minors of B have positive determinant.
This implies that the symmetric matrix B is positive semidefinite of corank
1. Hence B is of affine type by Proposition 15.14. Thus A has affine type
also, by Corollary 15.11.

(c) This follows directly from (a) and (b).

15.3 The classification of affine generalised Cartan matrices

In this section we shall determine explicitly which indecomposable GCMs
lie in each class of our trichotomy. We begin with indecomposable GCMs of
finite type.
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Theorem 15.19 Let A be an indecomposable GCM. Then A has finite type
if and only if A is a Cartan matrix. Thus the indecomposable GCMs of finite
type are those on the standard list 6.12.

Proof. We recall from Sections 6.1 and 6.2 that a GCM is a Cartan matrix if
and only if it satisfies the conditions:

(a) Aij ∈ 
0�−1�−2�−3� for all i 	= j
(b) Aij=−2 or −3 implies Aji=−1
(c) the quadratic form

Q �x1� � � � � xn�=2
n∑
i=1

x2i −
∑
i 	=j

√
nijxixj

is positive definite, where nij=AijAji.

Suppose A is a Cartan matrix. Then Aij=2��i��j���i��i� . Let D= diag �d1� � � � � dn�

where di=
√��i��i�. Then

(
DAD−1

)
ij
=2 ��i��j�√��i��i�

√��j��j� and so DAD−1 is

the matrix of the quadratic form Q �x1� � � � � xn�. Since Q is positive definite
det

(
DAD−1

)
>0 and so detA>0.

Now any principal minor AJ of the Cartan matrix A is also a Cartan matrix.
Hence detAJ >0 for all principal minors of A. Thus A has finite type by
Theorem 15.18 (a).

Now suppose conversely that A has finite type. Suppose i 	= j and consider
the 2×2 principal minor (

2 Aij

Aji 2

)
�

By Theorem 15.18 (a) the determinant of this minor is positive, hence
AijAji < 4. Since Aij and Aji are both non-positive integers such that Aij=0
if and only if Aji=0 we deduce that Aij ∈ 
0�−1�−2�−3� and that Aij ∈

−2�−3� implies Aji=−1.
Since A has finite type A is symmetrisable by Theorem 15.17. Thus A=

DB where D=diag �d1� � � � � dn��di >0, and B is symmetric. Although B

need not be a GCM we may define the type of B by using Remark 15.12.
Thus B is indecomposable of finite type, and so B is positive definite by
Proposition 15.14 (a). Let yi=

√
dixi. Then

Q �x1� � � � � xn�= 2
∑
i

x2i −
∑
i 	=j

√
nijxixj



15.3 The classification of affine generalised Cartan matrices 353

= 2
di

∑
i

y2i −
∑
i 	=j

1√
di

1√
dj

√ (
AijAji

)
yiyj

=∑
i

Biiy
2
i +

∑
i 	=j

Bijyiyj�

Since B is positive definite we see that Q �x1� � � � � xn� is positive definite.
Thus A is a Cartan matrix.

Having determined the indecomposable GCMs of finite type we next deter-
mine those of affine type. This will also determine those of indefinite type,
as those remaining.
To each GCM A we define an associated diagram ��A� called the Dynkin

diagram of A. This extends the definition of the Dynkin diagram of a Cartan
matrix given in Section 6.2. The vertices of ��A� are labelled 1� � � � � n where
A is an n×n matrix. Suppose i� j are distinct vertices of ��A�. We explain
how i� j are joined in ��A�. This depends on the pair

(
Aij�Aji

)
. We recall

that Aij and Aji lie in ��Aij≤0�Aji≤0 and Aij=0 if and only if Aji=0. The
rules are as follows.

(a) If AijAji=0 vertices i� j are not joined.
(b) If AijAji=1 vertices i� j are joined by a single edge.
(c) If AijAji=2� Aij=−1� Aji=−2 vertices i� j are joined by a double

edge with an arrow pointing towards j.
(d) If AijAji=3� Aij=−1� Aji=−3 vertices i� j are joined by a triple

edge with an arrow pointing towards j.
(e) If AijAji=4� Aij=−1� Aji=−4 vertices i� j are joined by a quadru-

ple edge with an arrow pointing towards j.
(f) If AijAji=4� Aij=−2� Aji=−2 vertices i� j are joined by a double

edge with two arrows pointing away from i� j.

i j

(g) If AijAji≥5 vertices i� j are joined by an edge with the numbers �Aij�� �Aji�
shown on it.

i j

Aji||Aij |,|

It is clear that the GCM A is determined by its Dynkin diagram ��A�.
Moreover A is indecomposable if and only if ��A� is connected.

We now consider a set of connected Dynkin diagrams called the affine list.
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15.20 The affine list of Dynkin diagrams

A1
~

A1
~ ′

A2
~

A3
~

A4
~

. . .. . .

B3
~

B4
~

B5
~

. . .. . .

B3
~ t B4

~ t B5
~ t

. . .. . .

C2
~

C3
~

C4
~

. . .. . .

C2
~ t C3

~ t C4
~ t

. . .. . .

. . .. . .

C4
~ ′C2

~ ′ C3
~ ′

D4
~

D5
~

D6
~

. . .. . .

E6
~

E7
~

E8
~
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F4
~

F4
~ t

G2
~ G2

~ t

We note that many, but not all, of the Dynkin diagrams on the affine list
appeared in Lemma 6.8. We also note that every proper connected subdiagram
of a Dynkin diagram on the affine list appears on list 6.11 of Dynkin diagrams
of finite type. We shall call this the finite list.

Proposition 15.21 Let A be a GCM whose Dynkin diagram lies on the affine
list. Then detA=0.

Proof. First suppose that ��A� has 2 vertices. Then either ��A�= Ã1 and

A=
(

2 −2
−2 2

)
or ��A�= Ã′1 and A=

(
2 −4
−1 2

)
. In either case detA=0.

Next suppose that ��A�= Ãl for l≥2. Then the sum of all the rows of A
is zero, and so detA=0.
In all other cases ��A� has a vertex, say 1, joined to just one other vertex,

say 2. Moreover we can choose these vertices so that they are joined by a
single or a double edge. In the case of a single edge we have

detA=2detB−detC

where B is obtained from A by removing row and column 1, and C is obtained
from B by removing row and column 2. This relation between determinants
is obtained as in the proof of Theorem 6.7. The connected components of
B and C are Cartan matrices of finite type, so their determinants are known
from the proof of Theorem 6.7. In all cases this gives detA=0.
In the case when vertices 1, 2 are joined by a double edge we obtain

detA=2detB−2detC

again as in the proof of Theorem 6.7. Again B�C have connected components
of finite type so we know their determinants, and in each case we obtain
detA=0.

Proposition 15.22 Let A be a GCM whose Dynkin diagram lies on the affine
list. Then A has affine type.
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Proof. By Proposition 15.21 we have detA=0. Also the Dynkin diagram of
any proper principal minor has connected components on the finite list. Thus
all proper principal minors have positive determinant. It follows that A has
affine type by Theorem 15.18 (b).

We shall now prove the converse.

Theorem 15.23 Let A be an indecomposable GCM. Then A has affine type
if and only if its Dynkin diagram ��A� lies on the affine list.

Proof. SupposeA has affine type. Then every proper indecomposable principal
minor of A has finite type, by Lemma 15.13 (ii). Thus all proper connected
subdiagrams of ��A� lie on the finite list, by Theorem 15.19.

If ��A� has only one vertex A has finite type, so there is no possible
affine A.
If ��A� has two vertices then

A=
(

2 −a
−b 2

)
where a�b are positive integers. Since detA=0 we have ab=4. The possi-
bilities are �a� b�= �1�4��4�1��2�2�. Thus ��A�= Ã1 or Ã

′
1.

Now suppose ��A� has at least three vertices. If ��A� contains a cycle
then the proof of Theorem 15.17 shows that ��A�= Ãl for some l≥2. Thus
we suppose that ��A� contains no cycle. Since all the connected subdiagrams
with two vertices lie on the finite list all edges of ��A� have one of the forms

Suppose ��A� has a triple edge Then ��A� must have exactly
three vertices, otherwise ��A� would have a proper connected subdiagram
with three vertices containing a triple edge, whereas there is no such diagram
on the finite list. Thus we have

A=
⎛⎝ 2 −1 0
−3 2 −a
0 −b 2

⎞⎠ or

⎛⎝ 2 −3 0
−1 2 −a
0 −b 2

⎞⎠
where a�b are positive integers. Thus detA=2�1−ab�. However, detA=0
and so a=1� b=1. Thus ��A�= G̃2 or G̃

t
2.

So we now suppose that ��A� has no triple edge. Now ��A� has at
most two double edges, as every proper connected subdiagram appears on
the finite list so has at most one. Suppose ��A� has two double edges.
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Then every edge which can be removed to give a connected subdiagram must
be a double edge. This implies that ��A� must be one of C̃l� C̃

t
l � C̃

′
l .

Thus we suppose that ��A� has just one double edge. If ��A� has a branch
point then no proper connected subdiagram can contain both a double edge
and a branch point, since the subdiagram lies on the finite list. This implies
that ��A� is B̃l or B̃

t
l.

Now suppose that ��A� has one double edge but no branch point. Then
��A� has form

a b

with a+b+2 vertices. We have a>0 and b>0 since ��A� is not on the
finite list. Also b≤2, otherwise there would be a proper subdiagram

and a≤2, otherwise there would be a proper subdiagram

Thus the possibilities are

�a� b�= �1�1�� �2�1�� �1�2�� �2�2��
The case �a� b�= �1�1� appears on the finite list so is not affine. The case
�a� b�= �2�2� is impossible, since it would give proper subdiagrams as above.
Thus �a� b�= �2�1� or (1, 2) and ��A� is F̃4 or F̃

t
4.

Thus we may now assume that ��A� has only single edges. Consider the
branch points of ��A�. Each branch point has at most four branches, otherwise
there would be a proper subdiagram

which does not appear on the finite list. If there is a branch point with
four branches then ��A�= D̃4, as otherwise there would again be a proper
subdiagram D̃4.
Thus we may assume that all branch points in ��A� have three branches.

There cannot be more than two branch points, as otherwise there would be a
proper connected subdiagram with two branch points which could not be on
the finite list.
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Suppose ��A� has 2 branch points. Then any proper connected subdiagram
has only one branch point, and this implies that ��A�= D̃l for some l≥5.
So suppose ��A� has just one branch point. Let the branch lengths be

l1� l2� l3 with l1≤ l2≤ l3 so that there are l1+ l2+ l3+1 vertices. We must
have l1≤2, otherwise there would be a proper subdiagram

which is not on the finite list. Suppose l1=2. Then we must have l2=2 and
l3=2, otherwise there would again be a proper subdiagram as above. Thus
��A�= Ẽ6.
Thus we may assume l1=1. Since l2=1 would give a diagram of finite

type we must have l2≥2. However, l2≤3 as otherwise there would be a
proper subdiagram

which is not on the finite list. Thus l2=2 or 3.
Suppose l1=1� l2=3. Then we must have l3=3, otherwise there would be

a proper subdiagram

which is again not on the finite list. Thus ��A�= Ẽ7.
We may now suppose that l1=1� l2=2. Since the diagrams with l3=2�3�4

are of finite type we must have l3≥5. But l3≤5 also, as otherwise there
would be a proper subdiagram

which is not on the finite list. Hence l3=5 and ��A�= Ẽ8.
Finally if ��A� has only single edges and no branch points then it lies on

the finite list so A cannot be affine.
Thus we have shown that whenever A is affine ��A� must appear on the

affine list. This, together with proposition 15.22, completes the proof.

A GCM A such that ��A� is on the affine list will be called an affine
Cartan matrix.
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Corollary 15.24 Let A be an indecomposable GCM. Then A has indefinite
type if and only if its Dynkin diagram ��A� does not appear on the finite list
or the affine list.

Proof. This follows from Theorems 15.1, 15.19 and 15.23



16
The invariant form, Weyl group,

and root system

We now turn to the study of the Kac–Moody algebra L�A� associated with a
GCM A.

16.1 The invariant bilinear form

We recall from Section 4.2 that when A is a Cartan matrix the corresponding
finite dimensional Lie algebra L�A� has a non-degenerate symmetric bilinear
form

�� � � L�A�×L�A�→�

which is invariant in the sense that

��xy�� z�=�x� �yz��
for x� y� z∈L�A�. The Killing form has these properties.

In the case of a GCM A we cannot define the Killing form on L�A� as in
the finite dimensional case. We can nevertheless ask whether there is a non-
degenerate, symmetric, invariant bilinear form on L�A�. This is not always the
case, but we shall show that such a form does exist when A is symmetrisable.
Thus suppose A is a symmetrisable GCM. Then A=DB where D is diago-

nal and B is symmetric. Let D=diag �d1� � � � � dn�. Let �H����
v� be a mini-

mal realisation of A, where �v= 
h1� � � � � hn� is a linearly independent subset
of H��= 
�1� � � � ��n� is a linearly independent subset of H∗��j �hi�=Aij

and dimH=2n− l where l= rank A.
Let H ′ be the subspace of H spanned by h1� � � � � hn and let H ′′ be a

complementary subspace of H ′ in H . Then we have

H=H ′ ⊕H ′′ dimH ′ =n� dimH ′′ =n− l�

360
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We define a bilinear form �� � � H×H→� by the rules:〈
hi�hj

〉=didjBij i� j=1� � � � � n

�hi� x�=�x�hi�=di�i�x� for x∈H ′′

�x� y�=0 for x� y∈H ′′�
This is evidently a symmetric bilinear form on H .

Proposition 16.1 This form on H is non-degenerate.

Proof. We have A=DB where D is diagonal and non-singular and B is
symmetric. We have rank B= l. We observe that the symmetric matrix B of
rank l has a non-singular l× l principal minor. If l=n we can take B itself
as the principal minor, so suppose l<n. Then, for some i, the ith row of B
is a linear combination of the remaining rows of B. Since B is symmetric
the ith column of B is a linear combination of the remaining columns of B.
Let B′ be the �n−1�×n matrix obtained from B by removing the ith row.
Then rankB′ = l. Let B′′ be the �n−1�×�n−1� matrix obtained from B′ by
removing the ith column. Then rankB′′ = l. Now B′′ is symmetric of degree
n−1 and rank l. Thus by induction B′′ has a non-singular l× l principal
minor, and this is the required principal minor of B.

It follows that the symmetrisable matrix A has a non-singular l× l principal
minor. For let BJ be non-singular where J is a subset of 
1� � � � � n� with
�J �= l. Then AJ =DJBJ where DJ =diag

{
dj� j∈ J

}
with each dj 	=0. Since

DJ is non-singular AJ is also non-singular.
We now consider the special case in which J = 
1� � � � � l�. Then A has

form

A=
(
A11 A12

A21 A22

)
l

n− l
l n− l

A11 non-singular�

By Proposition 14.2 we may extend the linearly independent sets h1� � � � � hn ∈
H��1� � � � ��n ∈H∗, to bases h1� � � � � h2n−l  �1� � � � ��2n−l such that �j �hi�=
Cij where

C=
⎛⎝A11 A12 O

A21 A22 I

O I O

⎞⎠ l

n− l
n− l

�

l n− l n− l
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Let

D=
(
D1 O

O D2

)
l

n− l �

l n− l
Then

C=
⎛⎝D1B11 D1B12 O

D2B21 D2B22 I

O I O

⎞⎠ �

The symmetric matrixM of the bilinear form
〈
hi�hj

〉
i� j∈ 
1� � � � �2n− l� is

M=
⎛⎝D1B11D1 D1B12D2 O

D2B21D1 D2B22D2 D2

O D2 O

⎞⎠ �

This matrix is non-singular since

detM=± �detD1�
2 �det D2�

2 detB11 	=0�

Now suppose A is any n×n symmetrisable GCM of rank l. Then A has
a non-singular l× l principal minor AJ for some J ⊂ 
1� � � � � n�. Let K be
the complementary subset of J in 
1� � � � � n� and L= 
n+1� � � � �2n− l�.
Then there exists a realisation h1� � � � � h2n−l  �1� � � � ��2n−l whose matrix
�j �hi�=Cij may be written symbolically in the form

C=
⎛⎝ AJ AJK O

AKJ AK I

O I O

⎞⎠ J

K

L

�

J K L

Let

D=
(
DJ O

O DK

)
J

K
�

J K

Then

C=
⎛⎝DJBJ DJBJK O

DKBKJ DKBK I

O I O

⎞⎠ �
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This time the symmetric matrix M of the bilinear form
〈
hi�hj

〉
for i� j∈


1� � � � �2n− l� is

M=
⎛⎝DJBJDJ DJBJKDK O

DKBKJDJ DKBKDK DK

O DK O

⎞⎠ �

Since detM=± �detDJ�
2 �detDK�

2 detBJ 	=0 the bilinear form is non-
degenerate on H .

Theorem 16.2 Suppose A is a symmetrisable GCM. Then the Kac–Moody
algebra L�A� has a non-degenerate symmetric invariant bilinear form.

Proof. We have L�A�=⊕
�∈Q

L�. For �=m1�1+· · ·+mn�n ∈Q we define the

height of � by ht�=m1+· · ·+mn. Then

L�A�=⊕
i∈�

Li

where Li is the direct sum of all L� with ht�= i. Since [L�L�

]⊂L�+� we
have

[
LiLj

]⊂Li+j . Thus L�A� may be considered in this way as a �-graded
Lie algebra.
We define, for each integer r≥0,

L�r�= ⊕
−r≤i≤r

Li�

Then we have

H=L�0�⊂L�1�⊂L�2�⊂· · ·

and
⋃

r≥0L�r�=L�A�.
We have already defined a symmetric bilinear form on H=L�0�. We shall
extend this definition to give a symmetric bilinear form on L�r� for r=
1�2�3� � � � thus eventually defining such a form on L�A�. We shall define
the form on L�r� by induction on r, assuming it is already defined on
L�r−1�.

We begin with the case r=1. We have

L�1�=
(

n⊕
i=1

�fi

)
⊕H⊕

(
n⊕
i=1

�ei

)
�
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We define a bilinear form �� � on L�1� which is uniquely determined by the
following rules:

�� � agrees with the form already defined on H〈
Li�Lj

〉=0 unless i+j=0

�ei� fi�=�fi� ei�=di〈
ei� fj

〉= 〈fj� ei〉=0 if i 	= j�

This bilinear form on L�1� is clearly symmetric. We show

��xy�� z�=�x� �yz��

for all x� y� z∈L�1�. In showing this we may assume x∈Li� y∈Lj� z∈Lk for
some i� j� z∈� with �i�� �j�� �k�≤1. We may assume i+j+k=0 as otherwise
both sides of our required equality are zero. The relation is known already
when i� j� k are all 0. Thus we may assume i� j� k are 1�−1�0 in some order.
There are six possible orders, but it is only necessary to check three of them
as the other three follow from them. Thus we show〈

�eih� � fj
〉= 〈

ei�
[
hfj

]〉
〈
�hei� � fj

〉= 〈
h�
[
eifj

]〉
〈[
hfj

]
� ei

〉= 〈
h�
[
fjei

]〉
for h∈H . Both sides are zero in these relations if i 	= j. If i= j the relations
are valid because

�hi�h�=di�i�h� for all h∈H�

This follows from the definition of the form �� � on H . Thus we have

��xy�� z�=�x� �yz�� for all x� y� z∈L�1��

Now suppose inductively that a symmetric bilinear form has already been
defined on L�r−1� and satisfies:〈
Li�Lj

〉=0 unless i+j=0 for �i�� �j�≤ r−1

��xy�� z�=�x� �yz�� for all x∈Li� y∈Lj� z∈Lk with �i�� �j�� �k�≤ r−1
and i+j+k=0�



16.1 The invariant bilinear form 365

We shall show this form can be extended to one on L�r� with analogous
properties. We extend the form to L�r� by defining〈

Li�Lj

〉=0 unless i+j=0 for �i�� �j�≤ r�
We must also define �x� y�=�y� x� for x∈Lr� y∈L−r . We assume r≥2.

Now we have L�A�=N−⊕H⊕N with H=L0�N
−=⊕i<0Li�N =⊕

i>0Li. The algebra N− is generated by f1� � � � � fn, thus each element of
N− can be written as a Lie word in f1� � � � � fn, so is a linear combination
of Lie monomials in f1� � � � � fn. An element of L−r is a linear combination
of Lie monomials in f1� � � � � fn such that the number of factors in each
Lie monomial is r. If r≥2 each Lie monomial is the Lie product of Lie
monomials of degree s� t say with s+ t= r. It follows that each element
y∈L−r can be written in the form

y=∑
j

[
cjdj

]
where cj ∈L−uj � dj ∈L−vj with uj >0� vj >0 and uj+vj= r. The expression
of y in this form need not be unique.
Given x∈Lr� y∈L−r we write y=∑j

[
cjdj

]
as above and wish to define

�x� y�=∑
j

〈[
xcj

]
�dj

〉
�

The right-hand side is known since
[
xcj

]
and dj lie in L�r−1�, so if there

is a form of the required type on L�r� it must satisfy the above relation in
order to be invariant. However, the right-hand side appears to depend on the
particular expression y=∑j

[
cjdj

]
for y which need not be unique. We must

therefore show that the right-hand side remains the same if a different such
expression for y is chosen.
In a similar way we can write x∈Lr in the form

x=∑
i

�aibi�

where ai ∈Lsi
� bi ∈Lti

and si >0� ti >0 with si+ ti= r. We shall show∑
i

�ai� �biy��=
∑
j

〈[
xcj

]
�dj

〉
�

This will imply that the right-hand side is independent of the given expres-
sion for y, and also that the left-hand side is independent of the given
expression for x. In fact it is sufficient to show〈

ai�
[
bi
[
cjdj

]]〉= 〈[[aibi] cj] �dj

〉
�
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Now 〈[[
aibi

]
cj
]
�dj

〉= 〈[[
aicj

]
bi
]
�dj

〉− 〈[[bicj]ai] �dj

〉
= 〈[

aicj
]
�
[
bidj

]〉− 〈[bicj] � [aidj

]〉
= 〈[

aicj
]
�
[
bidj

]〉− 〈[aidj

]
�
[
bicj

]〉
= 〈

ai�
[
cj
[
bidj

]]〉− 〈ai� [dj

[
bicj

]]〉
= 〈

ai�
[
bi
[
cjdj

]]〉
using the invariance of the form on L�r−1�. Hence our form �x� y� is now
well defined on L�r�, where it is bilinear and symmetric.

We must now check that

��xy�� z�=�x� �yz��
when x∈Li� y∈Lj� z∈Lk with �i�� �j�� �k�≤ r and i+j+k=0. This is known
already by induction unless at least one of �i�� �j�� �k� is equal to r.

It is impossible for all of �i�� �j�� �k� to be equal to r since i+j+k=0. We
suppose first that just one of �i�� �j�� �k� is r. Then the other two are non-zero.
If �i�= r then

�x� �yz��=��xy�� z�
by definition of the form on L�r�. Similarly if �k�= r this relation also holds
by definition. So suppose �j�= r. We may assume that y has the form y= �ab�
where a∈Ls� b∈Lt� s+ t= j and 0< �s�< �j��0< �t�< �j�. Then

��xy�� z� = ��x�ab��� z�
= ���bx�a�� z�+���xa�b�� z�
= ��bx�� �az��+��xa�� �bz��
= ��xb�� �za��+��xa�� �bz��
= �x� �b�za���+�x� �a�bz���
= �x� ��ab�z��
= �x� �yz��

using the invariance of the form on L�r−1�.

Now suppose that two of �i�� �j�� �k� are equal to r. Then i� j� k are r�−r�0
in some order. Thus one of x� y� z lies in H .
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Suppose x∈H . We may again assume y= �ab� where a∈Ls� b∈Lt� s+ t=
j� 0< �s�< �j�� 0< �t�< �j�.
Then

��xy�� z� = ��x�ab��� z�=���xa�b�� z�−���xb�a�� z�
= ��xa�� �bz��−��xb�� �az�� by definition of�� �on L�r�

= �x� �a�bz���−�x� �b�az��� by invariance on L�r−1�

= �x� ��ab�z��=�x� �yz���
If z∈H the result also holds by using the symmetry of the form.
Finally suppose y∈H . Then we may assume z= �ab� where a∈Ls�

b∈Lt� s+ t=k�0< �s�< �k��0< �t�< �k�. Then
�x� �yz�� = �x� �y�ab���=�x� �a�yb���+�x� ��ya�b��

= ��xa�� �yb��+��x�ya��� b� by definition of�� � on L�r�

= ���xa�y�� b�+��x�ya��� b� by invariance on L�r−1�

= ���xy�a�� b�
= ��xy�� �ab�� by definition of�� �on L�r�

= ��xy�� z��
We have therefore proved invariance when x∈Li� y∈Lj� z∈Lk with
�i�� �j�� �k�≤ r and i+j+k=0. It follows that invariance holds for all
x� y� z∈L�r�. By induction the form is therefore invariant on L�A�.
Thus we have now defined a symmetric invariant bilinear form on L�A�.

We show it is non-degenerate. Let I be the kernel of �� �, i.e. the set of
x∈L�A� such that �x� y�=0 for all y∈L�A�. Since the form is invariant I
is an ideal of L�A�. Since by Proposition 16.1 the form is non-degenerate on
restriction to H we have I∩H=O. But the Kac–Moody algebra L�A� has no
non-zero ideal I with I∩H=O. Hence I=O and the form is non-degenerate
on L�A�.

Note The proof of this theorem shows that any symmetric invariant bilinear
form on L�A� is uniquely determined by its restriction to H .

Definition The form constructed in Theorem 16.2 will be called the standard
invariant form on L�A�.

Corollary 16.3 For each i∈� the pairing Li×L−i→� given by x� y→
�x� y� is non-degenerate.
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Proof. Suppose x∈Li satisfies �x� y�=0 for all y∈L−i. Since
〈
Li�Lj

〉=0
unless i+j=0 we have �x� y�=0 for all y∈L�A�. Hence x=0.

Corollary 16.4
〈
L��L�

〉=0 unless �+�=0.

Proof. Suppose �+� 	=0 and let x∈L�� y∈L�. Choose h∈H with

��+���h� 	=0�

Then

��xh�� y�=�x� �hy��
implies

−��h��x� y�=��h��x� y�
that is

��+���h��x� y�=0�

Hence �x� y�=0.

Since the form �� � is non-degenerate onH it determines a bijectionH∗→H

given by �→h′� where

�h′��h�=��h� for all h∈H�

Corollary 16.5 (i) Suppose x∈L�� y∈L−�, Then �xy�=�x� y�h′�.
(ii) The pairing L�×L−�→� given by x� y→�x� y� is non-degenerate.
(iii) For each x∈L� with x 	=0 there exists y∈L−� with �xy� 	=0.

Proof. (i) Consider the element �xy�−�x� y�h′� ∈H . For all h∈H we have

��xy�−�x� y�h′��h� = ��xy��h�−�x� y� �h′��h�
= �x� �yh��−��h��x� y�
= 0�

Since the form is non-degenerate on H we deduce that �xy�−�x� y�h′�=0.
(ii) Since the form is non-degenerate on L�A� and

〈
L��L�

〉=0 unless
�=−� the pairing L�×L−�→� must be non-degenerate.

(iii) For each x∈L� with x 	=0 there exists y∈L−� with �x� y� 	=0. Hence
�xy� 	=0 by (i).

We now consider to what extent a non-degenerate symmetric invariant
bilinear form on L�A� is unique. The following proposition deals with this
question.
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Proposition 16.6 Suppose A is an indecomposable symmetrisable GCM and

� � is a non-degenerate symmetric invariant bilinear form on the Kac–Moody
algebra L�A�. Then there exists a non-zero �∈� such that


x� y�=��x� y� for all x� y∈L�A�′�
Thus such a form is determined on the subalgebra L�A�′ up to a non-zero
constant.

Proof. The argument of Corollary 16.4 shows that 
L��L��=0 whenever �+
� 	=0. In particular we have 
H�L��=0 whenever � 	=0. Since L�A�=H⊕∑

�	=0 L� it follows that 
� � is non-degenerate on restriction toH . The form 
� �

on L�A� is determined by its restriction to H and by the map L�×L−�→�
given by x� y→ 
x� y� for each �∈�. The argument of Corollary 16.5 shows
that, for x∈L�� y∈L−�, we have

�xy�= 
x� y�k′�
where k′� is the unique element of H satisfying 
k′��h�=��h� for all h∈H .
We therefore have

�L�L−��=�h′�=�k′�

for each �∈�. Thus there exists a non-zero �� ∈� with h′�=��k′�. This
implies that


h′��h�=�� �h′��h� for all h∈H
since both sides are equal to ����h�. Let �i��j be simple roots. Then we
have {

h′�i � h
′
�j

}
=��i

〈
h′�i � h

′
�j

〉
and so by the symmetry of the forms

��i

〈
h′�i � h

′
�j

〉
=��j

〈
h′�i � h

′
�j

〉
�

If Aij 	=0 then �h′�i � h′�j� 	=0 and we have ��i =��j . If the GCM A is inde-
composable this shows that there exists � 	=0 in � such that ��i =� for all
simple roots �i. Thus{

h′�i � h
}=� 〈h′�i � h〉 for all h∈H�

Now for any �∈� h′� is a linear combination of the h′�i . Hence


h′��h�=� �h′��h� for all h∈H�
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Thus ��=� for all �∈�. Using the equations

�xy�= 
x� y�k′�=�x� y�h′�
for x∈L�� y∈L−� we deduce that


x� y�=��x� y� for x∈L�� y∈L−��
Now L�A�′ was defined as the subalgebra of L�A� generated by e1� � � � � en,

f1� � � � � fn. We recall from Proposition 14.21 that L�A�′ = �L�A�L�A��. It
follows that L�A�′ ∩H is generated by �L�L−��=�h′� for all �∈�. It follows
that


h′� h�=� �h′� h� for all h�h′ ∈L�A�′ ∩H

x� y�=��x� y� for all x∈L�� y∈L−�

But L�A�′ = �L�A�′ ∩H�⊕∑�	=0 L� also by Proposition 14.21. Thus we see
that


x� y�=��x� y� for all x� y∈L�A�′�

Corollary 16.7 L�A�′ ∩H is the subspace of H spanned by h1� � � � � hn.

Proof. We saw in the proof of Proposition 16.6 that L�A�′ ∩H is the subspace
generated by the elements h′� for all �∈�. Each h′� is a linear combination
of h1� � � � � hn and so the result follows.

Corollary 16.8 Any non-degenerate symmetric invariant bilinear form on a
finite dimensional simple Lie algebra is a constant multiple of the Killing
form.

Proof. Since L�A� is simple we have L�A�′ = �L�A�L�A��=L�A�. Thus the
given form is a constant multiple of the Killing form on the whole of L�A�.

Important comment on notation. In the case when L�A� has finite type
the standard invariant form is not the same as the Killing form. It is a constant
multiple of the Killing form.
In our development of the theory of finite dimensional simple Lie algebras

we have used the notation �� � to denote the Killing form. In the theory of Kac–
Moody algebras the Killing form does not exist in general, but the standard
invariant form exists whenever the Kac–Moody algebra is symmetrisable.
In the subsequent development the notation �� � will denote the standard
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invariant form of a symmetrisable Kac–Moody algebra. This will be so even
in the case of finite dimensional simple Lie algebras, i.e. �� � will subsequently
denote the standard invariant form rather than the Killing form.

16.2 The Weyl group of a Kac–Moody algebra

Lemma 16.9 Let x∈L�A� and J be the ideal of L�A� generated by x. Then
J =��L�A��x.

Proof. The adjoint representation of L�A� gives a Lie algebra homomor-
phism L�A�→ �End L�A��. By Proposition 9.3 there is an associative algebra
homomorphism

��L�A��→End L�A��

A subspace K of L�A� satisfies �L�A��K�⊂K if and only if ��L�A��K⊂
K. Now we have �L�A�� J�⊂ J . Hence ��L�A��J ⊂ J . Since x∈ J we have
��L�A��x⊂ J .
On the other hand ��L�A�����L�A��x�=��L�A��x, thus

�L�A����L�A��x�⊂��L�A��x�

Hence ��L�A��x is an ideal of L�A� containing x. Hence ��L�A��x⊃ J .
Thus we must have equality.

Proposition 16.10 In L�A� we have, for i 	= j� �ad ei�
1−Aij ej=0 and

�ad fi�
1−Aij fj=0.

Proof. We shall show �ad fi�
1−Aij fj=0. The other relation holds similarly.

Let x= �ad fi�1−Aij fj ∈N−. We shall show �ek� x�=0 for all k=1� � � � � n.
Suppose this is so. Then the set of all y∈L�A� with �yx�=0 is a subalge-
bra containing e1� � � � � en, so contains N . Thus �N�x�=O and so ��N�x=
�x. Since L�A�=N−⊕H⊕N we have ��L�A��=��N−���H���N� by the
PBW basis theorem. Hence

��L�A��x=��N−���H���N�x=��N−���H�x�

Since �H�N−�⊂N− we have ��H�N−⊂N− and ��H�x⊂N−. Thus
��L�A��x⊂��N−�N−⊂N−�

Let J =��L�A��x. This is the ideal of L�A� generated by x, by Lemma 16.9.
We have J ⊂N− so J ∩H=O. This implies J =O by definition of L�A�.
Thus x=0.
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Thus in order to obtain the required result x=0 it is sufficient to show[
ek� �ad fi�

1−Aij fj

]
=0 when i 	= j�

We first suppose k 	= i and k 	= j. Then[
ek� �ad fi�

t fj
]= [

ek�
[
fi� �ad fi�

t−1 fj
]]

=
[[
ek� fi

]
� �ad fi�

t−1 fj
]
+
[
fi�

[
ek� �ad fi�

t−1 fj
]]

=
[
fi�

[
ek� �ad fi�

t−1 fj
]]

�

Repeating we obtain, for each t,[
ek� �ad fi�

t fj
]= �ad fi�t [ek� fj]=0�

Next suppose k= j. Then[
ej� �ad fi�

t fj
]= �ad fi�t [ej� fj]= �ad fi�t hj

as above. If 1−Aij≥2 then this shows that �ej� �ad fi�
1−Aij fj�=0. If

1−Aij=1 then Aij=0 so �fi� hj�=Ajifi=0. Thus �ej� �ad fi�
1−Aij fj�=0 in

this case also.
Finally we suppose k= i. Then[
ei� �ad fi�

t fj
]= [

ei�
[
fi� �ad fi�

t−1 fj
]]

=
[[
ei� fi

]
� �ad fi�

t−1 fj
]
+
[
fi�

[
ei� �ad fi�

t−1 fj
]]

=
[
hi� �ad fi�

t−1 fj
]
+
[
fi�

[
ei� �ad fi�

t−1 fj
]]

=− (�t−1��i+�j

)
�hi� �ad fi�

t−1 fj+
[
fi�

[
ei� �ad fi�

t−1 fj
]]

= (−2�t−1�−Aij

)
�ad fi�

t−1 fj+
[
fi�

[
ei� �ad fi�

t−1 fj
]]

�

Repeating, we obtain(−2�t−1�−Aij

)
�ad fi�

t−1 fj+
(−2�t−2�−Aij

)
�ad fi�

t−1 fj+· · ·
+ (−Aij

)
�ad fi�

t−1 fj=−t
(
t−1+Aij

)
�ad fi�

t−1 fj�

We now put t=1−Aij . Then we have[
ei� �ad fi�

1−Aij fj

]
=0�

This completes the proof in all cases.
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Using this result of Proposition 16.10 we may deduce, as in Proposi-
tion 7.17, that the maps ad ei and ad fi are locally nilpotent. Then the proof
of Proposition 3.4 shows that exp ad ei and expad �−fi� are automorphisms
of L�A�. Let

ni= expad ei ·expad �−fi� ·expad ei ∈ AutL�A��

Proposition 16.11 ni�H�=H . For x∈H we have

ni�x�=x−�i�x�hi�

Proof. Let x∈H . Then

exp ad ei ·x= �1+ad ei� x=x+ �eix�=x−�i�x�ei

exp ad �−fi� ·�x−�i�x�ei�=
(
1−ad fi+

�ad fi�
2

2

)
�x−�i�x�ei�

=x−�i�x�ei− �fix�+�i�x� �fiei�+ 1
2 ad fi ��fix�+�i�x�hi�

=x−�i�x�ei−�i�x�fi−�i�x�hi+ 1
2�i�x� ·2fi

=x−�i�x�ei−�i�x�hi

exp ad ei �x−�i�x�ei−�i�x�hi�= �1+ad ei� �x−�i�x�ei−�i�x�hi�

=x−�i�x�ei−�i�x�hi+ �eix�−�i�x� �eihi�

=x−�i�x�ei−�i�x�hi−�i�x�ei+2�i�x�ei

=x−�i�x�hi�

This gives the required result.

Proposition 16.12 The map si � H→ H induced by ni satisfies s2i =1,
si �hi�=−hi, si�x�=x when �hi� x�=0.

Proof. This follows from si�x�=x−�i�x�hi together with �i �hi�=2 and
�hi� x�=di�i�x�.

The maps si � H→ H are called fundamental reflections. The group W

of non-singular linear transformations of H generated by s1� � � � � sn is called
the Weyl group W of L�A�.

Proposition 16.13 The bilinear form �� � on H is invariant under W .
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Proof. Let x� y∈H . Then

�six� siy�=�x−�i�x�hi� y−�i�y�hi�
=�x� y�−�i�x� �hi� y�−�i�y� �x�hi�+�i�x��i�y� �hi�hi�
=�x� y�−�i�x�di�i�y�−�i�y�di�i�x�+�i�x��i�y� ·2di

=�x� y��

We may also define an action of W on H∗ by

�w��x=� (w−1x) for w∈W� �∈H∗� x∈H�
This action is compatible with the isomorphism H∗→H given by �→h′�
where �h′�� x�=��x� for all x∈H . For suppose w���=� for �� �∈H∗.
Then

�w�h′�� � x� =
〈
h′��w

−1�x�
〉=� (w−1�x�)

= �w��x=��x�= 〈h′�� x〉
for all x∈H . Thus w�h′��=h′�.

Proposition 16.14 The action of si on H∗ is given by

si���=�−��hi��i�

Proof. Let x∈H . Then

�si��x=�
(
s−1i x

)=��six�=��x−�i�x�hi�

=��x�−��hi��i�x�= ��−��hi��i� x�

In fact the Weyl group acts on the root system � of L�A�.

Proposition 16.15 If �∈��w∈W then w���∈�. Moreover dimL�=
dimLw���.

Proof. The proof of Proposition 7.21 also applies in our present situation.

We shall now determine the order of the product sisj of two distinct
fundamental reflections.
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Theorem 16.16 Suppose i 	= j. Then the order of sisj ∈W is:

2 if AijAji =0
3 if AijAji =1
4 if AijAji =2
6 if AijAji =3
) if AijAji ≥4�

Proof. The Weyl group W acts faithfully on H∗. Let K be the 2-dimensional
subspace of H∗ given by K=��i+��j . We have

si ��i�=−�i� si
(
�j

)=�j−Aij�i

sj ��i�= �i−Aji�j� sj
(
�j

)=−�j�

Thus the subgroup
〈
si� sj

〉
of W acts on K. We obtain a 2-dimensional repre-

sentation of
〈
si� sj

〉
given by

si→
(−1 −Aij

0 1

)
sj→

(
1 0
−Aji −1

)
sisj→

(−1+AijAji Aij

−Aji −1
)
�

Consider the order of this 2×2 matrix representing sisj . Its characteristic
polynomial is ∣∣∣∣�+1−AijAji −Aij

Aji �+1

∣∣∣∣=�2+(2−AijAji

)
�+1�

The discriminant of this polynomial is

D= (2−AijAji

)2−4=AijAji

(
AijAji−4

)
�

Thus there are two equal eigenvalues if AijAji=0 or 4, two distinct complex
eigenvalues if AijAji=1�2 or 3, and two distinct real eigenvalues if AijAji >4.

Suppose AijAji=0. Then sisj→ �−1 0
0 −1 � and the matrix has order 2.

Suppose AijAji=1. Then the characteristic polynomial is �2+�+1 so the
eigenvalues are !�!2 where != e2(i/3. Thus the matrix is similar to

(
! 0
0 !2

)
and so has order 3.
Suppose AijAji=2. The characteristic polynomial is then �2+1=

��− i� ��+ i�. Thus the matrix is similar to � i 0
0 −i � and so has order 4.

Suppose AijAji=3. The characteristic polynomial is �2−�+1=
��+!� (�+!2

)
. Thus the matrix is similar to

(−! 0
0 −!2

)
and so has order 6.
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Suppose AijAji=4. The characteristic polynomial is �2−2�+1= ��−1�2.
The eigenvalues are 1, 1, so the matrix is similar to

(
1 �
0 1

)
with � 	=0. This

matrix has infinite order.
Now suppose AijAji >4. Then the eigenvalues are real and their product is

1. They are also positive and unequal, so have form �� �−1 where �>1. Thus

the matrix is similar to
(
� 0
0 �−1

)
so has infinite order.

We have so far considered the action of sisj on the 2-dimensional subspace
K of H∗. We now consider the action of sisj on the whole of H∗. Let

K′ ={�∈H∗  � �hi�=0� �
(
hj
)=0

}
�

Then dimK′ =dimH∗−2. Let �∈K∩K′. Then �=��i+%�j and

��hi�= 2�+%Aij=0

�
(
hj
)= �Aji+2%=0�

Now
∣∣∣ 2 Aij

Aji 2

∣∣∣=4−AijAji. Thus if AijAji 	=4 we have �=0�%=0 so K∩K′ =
O. Then H=K⊕K′. Now sisj acts trivially on K′ since, for �∈K′, we have

sisj���= si
(
�−� (hj)�j

)= si���=�−��hi��i=��
Thus the order of sisj on H∗ is equal to the order of sisj on K provided
AijAji 	=4. If AijAji=4 the order of sisj on K is infinite, so sisj has infinite
order on H∗.

We now define l�w� and n�w� for w∈W in the same way as when L�A� is
finite dimensional. l�w� is the minimal length of w as a product of generators
s1� � � � � sn, and n�w� is the number of �∈�+ with w���∈�−. Then the
proof of Theorem 5.15 also applies in our present situation and shows that W
satisfies the deletion condition. Also the proof of Corollary 5.16 applies in
our situation and shows that l�w�=n�w�. Finally the proof of Theorem 5.18
applies and shows that W is generated by s1� � � � � sn as a Coxeter group. Thus
we have:

Theorem 16.17 The Weyl group W of the Kac–Moody algebra L�A� is a
Coxeter group generated by s1� � � � � sn with relations

s2i = 1(
sisj

)2 = 1 if AijAji=0(
sisj

)3 = 1 if AijAji=1(
sisj

)4 = 1 if AijAji=2(
sisj

)6 = 1 if AijAji=3�



16.3 The roots of a Kac–Moody algebra 377

16.3 The roots of a Kac–Moody algebra

Let A be a GCM and L�A� the corresponding Kac–Moody algebra. Then

L�A�=H⊕∑
�∈�

L�

where �= 
� 	=0  L� 	=O�. � is the set of roots of L�A�. We recall that
�=�+∪�− where �+=�∩Q+ and �−=�∩Q−. These are the positive
and negative roots. �= 
�1� � � � ��n� is a subset of �+ called the set of
fundamental roots. The multiplicity of the root � is defined as dimL�. We
know from Proposition 14.19 that the fundamental roots �1� � � � ��n have
multiplicity 1. We also know from Proposition 16.15 that the Weyl group W

acts on � and preserves multiplicities.

Definition �∈� is called a real root if there exist �i ∈� and w∈W such
that �=w��i�.
�∈� is called an imaginary root if � is not real.

We note that if � is a real root so is −�. For let �=w��i�. Then −�=
wsi ��i�. It follows that if � is an imaginary root so is −�.

Proposition 16.18 Let � be a real root. Then � has multiplicity 1. Also, for
k∈�� k� is a root if and only if k=±1.

Proof. Since �=w��i� and �i has multiplicity 1, Proposition 16.15 implies
that � has multiplicity 1. We also know from Proposition 14.19 that if k>1
then k�i is not a root. Since k�=w�k�i� � k� is also not a root.

We now consider the imaginary roots. Let �+im be the set of positive
imaginary roots.

Proposition 16.19 If �∈�+Im and w∈W then w���∈�+Im.

Proof. We know that W acts both on � and on the set �Re of real roots.
Hence W acts on the set �Im of imaginary roots. We must show that an
element w∈W cannot change the sign of an imaginary root. Let

�=
n∑
i=1

ki�i ki≥0�

Now at least two coefficients ki must be positive. Otherwise � would be
a multiple of some �i and hence equal to �i. But then � would be real,
a contradiction. Now si���=�−��hi��i, thus si��� contains at least one
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fundamental root with positive coefficient. Hence si���∈�+Im. Since w∈W
is a product of fundamental reflections si we have w���∈�+Im.
We now introduce the fundamental chamber in the context of Kac–Moody

algebras. We recall that in Section 12.3 the fundamental chamber was defined
for finite dimensional semisimple Lie algebras. In the present context we
begin with a GCM A and take a real minimal realisation �H�����

v� as in
Remark 14.20. We then define the fundamental chamber as

C= 
�∈H∗�  � �hi�>0 for i=1� � � � � n� �

Its closure is

C̄= 
�∈H∗�  � �hi�≥0 for i=1� � � � � n� �

Proposition 16.20 Suppose �∈�+Im. Then there exists w∈W with w���

∈−C̄.

Proof. Consider the set of all elements w��� for w∈W . These are all positive
imaginary roots by Proposition 16.19. Let � be such a root for which ht�
is as small as possible. Let �=∑ki�i. Then si���=�−��hi��i. Since
ht si���≥ht� we have ��hi�≤0. This holds for all i, thus �∈−C̄.

Proposition 16.21 Let �∈���=∑n
i=1 ki�i and supp �= 
i  ki 	=0�. Then

supp � is connected.

Proof. We may assume �∈�+. Let supp �= J ⊂ 
1� � � � � n�. Suppose if
possible that J is disconnected, that is J = J1∪J2 with J1� J2 non-empty and
Aij=0 for all i∈ J1� j∈ J2.
We shall show that

[
ei ej

]=0 for all i∈ J1� j∈ J2. We first show the weaker
condition [[

eiej
]
fk
]=0 for i∈ J1� j∈ J2� k=1� � � � � n�

We have [[
eiej

]
fk
]= [ei [ejfk]]+[�eifk� ej] �

If k 	∈ 
i� j� then �eifk�=0 and
[
ejfk

]=0�

If k= i then [[
eiej

]
fk
]= [hiej]=Aijej=0�

If k= j then [[
eiej

]
fk
]= [eihj]=−Ajiei=0�

Thus in all cases
[[
eiej

]
fk
]=0 for all k.
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Write x= [eiej]. The ideal of L�A� generated by x is ��L�A��x
as in Lemma 16.9. Since L�A�=N⊕H⊕N− we have ��L�A��=
��N���H�� �N−�. Now N− is generated by f1� � � � � fn and �x fi�=0 for
each i, thus � �N−� x=�x. Since �HN�⊂N we have ��H�N ⊂N and so
��H�� �N−� x⊂N since x∈N . Finally ��N���H�� �N−� x⊂��N�N ⊂N .
Thus ��L�A��x is an ideal of L�A� intersecting H in O. By definition of
L�A� this ideal must be O. In particular we have x=0. Thus

[
ei ej

]=0 for
all i∈ J1� j∈ J2.
We use this fact to obtain the required contradiction. Since �∈�+ we

have L� 	=O and L�⊂N . The elements of L� are Lie words in e1� � � � � en
of weight �, and so are linear combinations of Lie monomials in
e1� � � � � en of weight �. Thus there exists a non-zero Lie monomial m in
e1� � � � � en of weight �. We show that any such Lie monomial must be 0
since it contains factors ei both with i∈ J1 and with i∈ J2. We can write
m= �m1 m2� where m1�m2 are shorter Lie monomials. If either m1 or m2

involves factors ei both with i∈ J1 and with i∈ J2 we have m1=0 or m2=0
by induction. Otherwise all factors ei of m1 have i∈ J1 and all factors ei of
m2 have i∈ J2, or vice versa. But then �m1 m2�=0 since

[
ei ej

]=0 for all
i∈ J1� j∈ J2. Thus m=0 and we have the required contradiction.

In order to understand the imaginary roots it will by Proposition 16.20 be
sufficient to understand the positive imaginary roots which lie in −C̄, the
negative of the closure of the fundamental chamber. Such roots satisfy the
conditions:

�∈Q+�� 	=0� supp� is connected��∈−C̄�
It is a remarkable fact that, conversely, any element � satisfying these condi-
tions is a positive imaginary root. Before being able to prove this we need a
lemma.

Lemma 16.22 (i) Suppose �∈��� 	=±�i, satisfies �−�i�� and �+�i�
�. Then ��hi�=0.
(ii) Suppose �∈��� 	=−�i, satisfies �+�i��. Then ��hi�≥0.

Proof. (i) Since �∈�we have L� 	=O. Let x∈L� with x 	=0. Let

ni= expad ei ·expad �−fi� ·expad ei ∈AutL�A��
We show that nix∈Lsi���

. For �hx�=��h�x for all h∈H , hence �nih�nix�=
��h�nix. Now ni�H�=H by Proposition 16.11 and so

�h′� nix�=�
(
n−1i h′

)
nix for all h′ ∈H�
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We have n−1i h′ = s−1i h′ = sih′ also by Proposition 16.11. Thus �h′� nix�=
��sih

′�nix= �si�� �h′�nix for all h′ ∈H . Hence nix∈Lsi���
.

Now ad ei ·x∈L�+�i and so ad ei ·x=0 since �+�i�� and �+�i 	=0.
Thus expad ei ·x=x. Also ad fi ·x∈L�−�i so ad fi ·x=0 since �−�i��
and �−�i 	=0. Thus expad �−fi� ·x=x. Hence nix=x. Since x∈L� and
nix∈Lsi���

we deduce si���=�. But si���=�−��hi��i and so ��hi�=0.
(ii) Again let x be a non-zero element of L�. As before expad ei ·x=x since

�+�i�� and �+�i 	=0. We have

expad �−fi� x=x−ad fi ·x+
�ad fi�

2

2! x−· · ·± �ad fi�
p

p! x

where �ad fi�
p+1 x=0, since ad �−fi� is locally nilpotent. Thus

nix= expad ei ·expad �−fi� ·x=
∑
t≥0

�ad ei�
t

t! �x−ad fix+· · · � �

Now �ad ei�
t+1 �ad fi�

t x=0 for each positive integer t, since �+�i��
and �+�i 	=0. Hence �ad ei�

k �ad fi�
t x=0 for all k≥ t+1. It follows by

considering the above expression for nix that

nix∈L�⊕L�−�i⊕· · ·⊕L�−p�i �

However, nix∈Lsi���
as in (i). Thus si���=�−��hi��i=�−k�i for

some k with 0≤k≤p. Hence ��hi�≥0.

We now define

K={�∈Q+� � 	=0� supp� is connected� �∈−C̄} �
Proposition 16.23 K⊂�+im.

Proof. Let �∈K. Then �=∑n
i=1 ki�i with each ki≥0 and ki >0 for some i.

Also supp�= 
i  ki 	=0�.
We define a set ) of roots by

) =
{
�∈�+  �=

n∑
i=1

mi�i with mi≤ki for each i

}
�

) is a finite non-empty set of positive roots, since it contains at least one
fundamental root. We choose a root �∈) such that ht� is as large as
possible. We aim to show that �=� and hence that �∈�. We shall show
first that supp�= supp�.
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Suppose if possible that supp� 	= supp�. Since supp� is connected there
exist j∈ supp�−supp� and j′ ∈ supp� such that Ajj′ 	=0. Let �=∑n

i=1mi�i.
Then mj=0. Now �−�j �� since mj=0 and �+�j �� by the maximality
of ht�. By Lemma 16.22 (i) we have �

(
hj
)=0. But

�
(
hj
)= ∑

i∈supp�
mi�i

(
hj
)= ∑

i∈supp�
miAji <0

since mi >0�Aji≤0 and Ajj′ <0. This contradicts �
(
hj
)=0. Thus supp�=

supp�.

Now we have �=∑n
i=1 ki�i��=

∑n
i=1mi�i with mi≤ki. Let

J = 
i∈ supp�  ki=mi� �

We aim to show that J = supp� and so that �=�.
Suppose if possible that J 	= supp�. Let i∈ supp�−J . Then mi <ki. Hence

�+�i�� by the maximality of ht�. Thus ��hi�≥0 by Lemma 16.22 (ii).

Let M be a connected component of supp�−J . Then ��hi�≥0 for all
i∈M . Let �′ =∑i∈M mi�i. Then

�′ �hi�= ��hi�−
∑

j∈supp�−M
mj�j �hi�

= ��hi�−
∑

j∈supp�−M
mjAij�

If i∈M then ��hi�≥0�mj >0 (since supp�= supp�) and Aij≤0. Hence
�′ �hi�≥0. Since supp� is connected there exists i′ ∈M and j′ ∈ supp�−M
with Ai′j′ 	=0. Then

�′ �hi′�=��hi′�−
∑

j∈supp�−M
mjAi′j

We have �′ �hi′�≥0 as before; however, in fact we have �′ �hi′�>0. The
strict inequality holds since mj′ >0 and Ai′j′ <0.

Let AM be the principal minor
(
Aij

)
with i� j∈M . Let u be the column

vector with entries mj for j∈M . Since

�′ �hi�=
∑
j∈M

Aijmj for i∈M

we have u>0�AMu≥0�AMu 	=0. Now we recall that if the indecomposable
GCM AM is of affine type then AMu≥0 implies AMu=0. Also if AM is of
indefinite type then AMu≥0 and u≥0 imply u=0. Thus AM cannot have
affine type or indefinite type. Hence AM has finite type.
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Now let �=∑i∈M �ki−mi��i. We have ki−mi >0 for all i∈M . We recall
that

�−�= ∑
i∈supp�−J

�ki−mi��i�

Thus for i∈M we have

��−�� �hi�=
∑

j∈supp�−J

(
kj−mj

)
Aij=

∑
j∈M

(
kj−mj

)
Aij=� �hi�

sinceM is a connected component of supp�−J . Thus � �hi�=��hi�−��hi�
for all i∈M . Now ��hi�≤0 since �∈K and ��hi�≥0 since i∈M . Thus
� �hi�≤0 for all i∈M .
Now let u be the column vector with entries ki−mi for i∈M . Then we

have u>0 and AMu≤0. Since AM has finite type AM�−u�≥0 implies−u>0
or −u=0, that is u<0 or u=0. This is a contradiction since u>0. This
contradiction shows that J = supp� and hence that �=�. Thus �∈�. Since
�∈Q+ we have �∈�+. Thus �∈K implies �∈�+. Now �∈K implies
2�∈K, so 2�∈�+. By Proposition 16.18 this implies that �∈�+Im. This
completes the proof.

This remarkable proof, due to V. Kac, enables us to determine the set of
all positive imaginary roots, and hence the set of all imaginary roots.

Theorem 16.24 The set of positive imaginary roots of L�A� is given by

�+Im=∪w∈Ww�K�
where

K={�∈Q+  � 	=0� supp� is connected��∈−C̄} �
The set of all imaginary roots is �+Im∪

(−�+Im).
Proof. This follows from Propositions 16.19, 16.20, 16.21 and 16.23.

Corollary 16.25 Let �∈�+Im. Then k�∈�+Im for all positive integers k.

Proof. This follows from Theorem 16.24 and the fact that �∈K implies
k�∈K.

We next consider the real and imaginary roots of L�A� when A is sym-
metrisable. Then L�A� has an invariant bilinear form �� � described in Sec-
tion 16.1. This form is non-degenerate on restriction to H , so determines
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an isomorphism H∗→H under which �→h′�, where ��x�=�h′�� x� for all
x∈H . We can then transfer the bilinear form to H∗ by defining

�����= 〈h′��h′�〉 �
In particular we can define ����� for �∈�.

Proposition 16.26 Suppose A is a symmetrisable GCM. Then if � is a real
root of L�A� we have �����>0. If � is an imaginary root then �����≤0.

Proof. The form �� � onH isW -invariant by Proposition 16.13, so the induced
form on H∗ is also W -invariant. By definition of the form on H we have

�hi� x�=di�i�x� for all x∈H�
Hence di�i ∈H∗ corresponds to hi ∈H under our map H∗→H . Thus

��i��i�=
1

d2
i

�hi�hi�=
2
di

�

In particular ��i��i�>0. Now each real root has form w��i� for some w∈W
and some i. Hence

�w��i� �w ��i��=��i��i�>0�

Now consider the imaginary roots. Let �∈K. Then �=∑ki�i with each
ki≥0 and ��hi�≤0 for each i. Thus

�����=∑ki ����i�=
∑

ki ·
1
di

� �hi�≤0

since ki≥0�di >0�� �hi�≤0. Every positive imaginary root has form w���

for some w∈W��∈K, thus

�w����w����=�����≤0�

For the negative imaginary roots we have

�−w����−w����=�w����w����≤0�

We next obtain information about the imaginary roots in the three cases of
our trichotomy.

Theorem 16.27 Let A be an indecomposable GCM.

(i) If A has finite type then L�A� has no imaginary roots.
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(ii) Suppose A has affine type. Then there exists u>0 with Au=0. The
vector u is determined to within a scalar multiple. Thus there is a unique
such u whose entries are positive integers with no common factor. Let
u= �a1� � � � � an�. Let �=a1�1+· · ·+an�n. Then the imaginary roots of
L�A� are the elements k� for k∈�� k 	=0.

(iii) Suppose A has indefinite type. Then there exists �∈�+Im such that �=∑n
i=1 ki�i with ki >0 and ��hi�<0 for all i=1� � � � � n.

Proof. (i) If A has finite type L�A� is a finite dimensional simple Lie algebra
by Theorem 15.19. Thus each root of L(A) is real by Proposition 5.12.
(ii) Suppose A has affine type. We first consider the imaginary roots in K.

Let �∈K satisfy �=∑n
i=1 ki�i. Let v be the column vector �k1� � � � � kn�.

Then we have v≥0 and Av≤0, since ��hi�≤0 for each i. But in affine
type A�−v�≥0 implies A�−v�=0. Thus v 	=0 and Av=0.
We also have u>0 and Au=0. Since A has corank 1, v is a multiple

of u. Since the coefficients of u have no common factor v=ku for some
k∈� with k>0. Thus �=k�.
Now every positive imaginary root has form w��� for some �∈K, by

Theorem 16.24. We have

si���=�−��hi��i=�

since ��hi�=0 follows from Au=0. It follows that w���=� for each
w∈W . Thus the only positive imaginary roots are the elements k� with
k∈�� k>0. Hence the only imaginary roots are the k� with k∈�� k 	=0.

(iii) Suppose A has indefinite type. Then there exists u>0 with Au<0.
Suppose u= �k1� � � � � kn�. Let �=

∑n
i=1 ki�i. Then �∈K and ��hi�<0

for all i. Thus � is a positive imaginary root of the required kind.

A significant consequence of the last result is as follows.

Corollary 16.28 If A is an indecomposable GCM of affine or indefinite type
then the dimension of L�A� is infinite.

Proof. In both cases L�A� has an imaginary root �. Thus it has infinitely
many imaginary roots k� for k∈�� k 	=0, by Corollary 16.25. Since L�A�=
H⊕∑�∈� L��dimL�A� must be infinite.
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We next consider which of the imaginary roots of L�A� when A is sym-
metrisable satisfy �����=0.

Proposition 16.29 Let A be symmetrisable and � be an imaginary root of
L�A�. Then �����=0 if and only if there exists w∈W such that the support
of w��� has a diagram of affine type.

Proof. First suppose �����=0. We may assume without loss of generality
that �∈�+. Thus there exists w∈W with w���∈K, by Theorem 16.24. Let
�=w���. Then ��hi�≤0 for all i. Let J be the support of � and �=∑i∈J ki�i.
Then J is connected. Now

�����=∑
i∈J

ki ����i�=
∑
i∈J

ki
di

� �hi� �

Now ki >0�di >0 and ��hi�≤0 for all i∈ J . Since we also have �����=
�w����w����=�����=0 we deduce that ��hi�=0 for all i∈ J . Hence∑

j∈J kj�j �hi�=0, that is
∑

j∈J Aijkj=0. Let u be the column vector with
entries kj for j∈ J . Then u>0 and AJu=0. Since AJ is an indecomposable
GCM this implies that AJ has affine type, by Corollary 15.11.
Conversely suppose � is a positive imaginary root whose support J has a

diagram of affine type. Then L� 	=O and so L�A� contains a non-zero Lie
monomial in e1� � � � � en of weight �. The letters ei in this Lie monomial all
have i∈ J . Thus the Lie monomial lies in L�AJ� and so � is a root of L�AJ�.
If � were a real root of L�AJ� it would have form w��i� for some w∈W �AJ�

and i∈ J , and so � would be a real root of L�A�. Thus � is an imaginary root
of L�AJ�. Since L�AJ� has affine type, �=k� where � is the element for
L�AJ� defined in Theorem 16.27 (ii). Let �=∑i∈J ai�i. Then

�����=∑
i∈J

ai ����i�=
∑
i∈J

ai
di

� �hi�=0

since ��hi�=0 for all i∈ J . Thus �����=0 also. Finally if � is any root of
L�A� satisfying w���=� for some w∈W , we have �����=0 also.
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Kac–Moody algebras of affine type

17.1 Properties of the affine Cartan matrix

We now consider the Kac–Moody algebras L�A� where A is a GCM of affine
type. Let A be an n×n matrix of rank l. Then we know that n= l+1. We
shall number the rows and columns of A by the integers 0�1� � � � � l. There
exists a unique vector a= �a0� a1� � � � � al� whose coordinates are positive
integers with no common factor such that

A

⎛⎜⎜⎜⎝
a0

a1
���

al

⎞⎟⎟⎟⎠=
⎛⎜⎜⎜⎝

0
0
���

0

⎞⎟⎟⎟⎠ �

The possible Dynkin diagrams of such matrices A were obtained on the affine
list 15.20. We shall choose the numbering of the vertices in such a way that
node 0 is the one in black in the diagram below. We also show in each
diagram the integer ai associated to each vertex.

17.1 The integers a0� a1� � � � � al.

1 1

A1
~

2 1

A1
~ ′

1

1

1

A2
~

A3
~

A4
~

11

1

1

1

1

1

1

1

386
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B3

2
1

1

2

B4

22
1

1

2

B5

22 22
1

1~ ~ ~

2

B 3 B 4

1

1

1 22
1

1

1

B 5

22 12
1

1
~ ~ ~

t t t

C2

2 11

C3

2 2 11

C4

2 2 2 11

~ ~ ~

C 2

1 11

C 3

1 1 11

C 4

1 1 1 11

~ ~ ~t t t

2 12 2 2 12 2 2 2 12

C 2
~′ C 3

~′ C 4
~′

D4

2

D5 D6

1 1

1

1

1

2 2 2 22

1

1

1

1

1

1

1

~ ~ ~

E6

1 2

2

1

3 2 1

~

E7

1 2

2

3 4 3 2 1

~
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E8

1 2

3

3 4 5 6 4 2

~

F4

1 2 3 4 2

F4

1 2 3 2 1

~ ~t

G2

1 2 1

G2

1 2 3

~~
t

There exists also a unique vector �c0� c1� � � � � cl� whose coordinates are pos-
itive integers with no common factor such that

�c0� c1� � � � � cl�A= �0�0� � � � �0��

In fact the vector �c0� c1� � � � � cl� for A is the same as the vector
�a0� a1� � � � � al� for the transpose At . Thus the vector �c0� c1� � � � � cl� may
also be read off from the diagrams in the list 17.1.

Proposition 17.2 (i) c0=1.
(ii) a0=1 unless A has type C̃ ′l or Ã

′
1. In these cases a0=2.

Proof. This is clear from 17.2

Let �H����v� be a minimal realisation of A. Then dimH=2n− l=
l+2. �v= 
h0� h1� � � � � hl� is a linearly independent subset of H and �=

�0��1� � � � ��l� is a linearly independent subset of H∗. These exists an ele-
ment d∈H such that

�0�d�=1 �i�d�=0 for i=1� � � � � l�

d is called a scaling element.

Proposition 17.3 h0� h1� � � � � hl� d is a basis of H .



17.1 Properties of the affine Cartan matrix 389

Proof.We must show that d is not a linear combination of h0� h1� � � � � hl. Sup-
pose if possible that d=∑l

i=0 kihi. Then �j�d�=
∑l

i=0 ki�j �hi�=
∑l

i=0 kiAij .
Hence

l∑
i=0

ki �Ai0� � � � �Ail�= �1�0� � � � �0��

In particular, omitting the first column of A,

l∑
i=0

ki �Ai1� � � � �Ail�= �0� � � � �0��

However, we also have

l∑
i=0

ci �Ai1� � � � �Ail�= �0� � � � �0��

Since the �l+1�× l matrix
(
Aij

)
, 0≤ i≤ l, 1≤ j≤ l has rank l, this implies

that �k0� � � � � kl� is a scalar multiple of �c0� � � � � cl�. But this would imply that

�k0� k1� � � � � kl�A= �0�0� � � � �0�
a contradiction.

We now define an element �∈H∗ determined uniquely by

� �h0�=1 � �hi�=0 for i=1� � � � � l ��d�=0�

Proposition 17.4 �0��1� � � � ��l� � is a basis of H∗.

Proof. The �l+2�×�l+2� matrix obtained by applying these elements of H∗

to the basis of H in Proposition 17.3 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 ∗ · · · ∗ 1
∗ 0
· A0 ·
· ·
· ·
∗ 0
1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
1
���

l

l+1

0 1 · · · l l+1

where A0 is a Cartan matrix of finite type. Thus detA0 	=0 and so the deter-
minant of the above matrix is also non-zero. Hence �0��1� � � � ��l� � must be
a basis of H∗.
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We know that any indecomposable GCM of affine type is symmetrisable.
We shall now express the affine Cartan matrix A in an explicit way as the
product of a diagonal matrix D with positive diagonal entries and a symmetric
matrix B. The diagonal entries of D are rational, but not necessarily integral.

Proposition 17.5 We have A=DB where D=diag �d0�d1� � � � � dl� and B is
symmetric, where di=ai/ci.

Proof. By Theorem 15.17 there exists a diagonal matrixD with positive diago-
nal entries and a symmetric matrix B such that A=DB. Let c= �c0� c1� � � � � cl�
and at= �a0� a1� � � � � al�. Then Aa=0 so DBa=0, and hence Ba=0. Thus
atB=0. Also cA=0 so �cD�B=0. Since B has corank 1 cD must be a scalar
multiple of at . In fact we can choose D so that cD=at , that is di=ai/ci.

Now we have a non-degenerate bilinear form on H defined as in Proposi-
tion 16.1. This form satisfies〈

hi�hj
〉=didjBij=ajc−1j Aij for i� j=0�1� � � � � l

�h0�d�=d0�0�d�=a0

�hi�d�=0 for i=1� � � � � l

�d�d�=0�

This standard invariant form on H defines a bijection H∗→H given by
�→h′� where ��x�=�h′�� x� for all x∈H .

Proposition 17.6 Under this bijection betweenH andH∗, hi ∈H corresponds
to aic

−1
i �i ∈H∗ for i=0�1� � � � � l and d∈H corresponds to a0�∈H∗.

Proof. For j=0�1� � � � � l we have

ajc
−1
j �j �hi�=djAij=

〈
hj�hi

〉
for i=0�1� � � � � l

ajc
−1
j �j�d�=dj�j�d�=

〈
hj�d

〉
thus ajc

−1
j �j ∈H∗ corresponds to hj ∈H . We also have

a0� �hi�=�d�hi� for i=0�1� � � � � l

a0��d�=�d�d�
thus a0�∈H∗ corresponds to d∈H .
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We may transfer the standard bilinear form from H to H∗ using this
bijection. The form on H∗ is then given by〈

�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=a−10

��i���=0 i=1� � � � � l

�����=0�

We note in particular that

Aij=
2
〈
�i��j

〉
��i��i�

�

Corollary 17.7 Under the given bijection between H and H∗, hi ∈H corre-
sponds to 2�i

��i��i� ∈H∗.

Proof. This follows from Proposition 17.6.

We now define an element c∈H by c=∑l
i=0 cihi. Under the bijection

H→H∗ c corresponds to �. For �=∑l
i=0 ai�i and hi corresponds to aic

−1
i �i

by Proposition 17.6.

Proposition 17.8 The element c lies in the centre of L�A�. In fact the centre
is 1-dimensional and consists of all scalar multiples of c.

Proof. For each simple root �j we have �j�c�=
∑l

i=0 ci�j �hi�=
∑l

i=0 ciAij=0.
It follows that ��c�=0 for all �∈�. Now L�A�=H⊕∑�∈� L�. Thus each
element of L�A� has form h+∑x� where h∈H , x� ∈L� and finitely many
x� are non-zero. Thus[

c�h+∑
�

x�

]
=∑

�

��c�x�=0�

Hence c lies in the centre of L�A�.
Now let h+∑� x� be any element of the centre of L�A�. Then we have[

x�h+∑
�

x�

]
=0 for all x∈H�

Thus
∑

� ��x�x�=0 for all x∈H . This implies ��x�x�=0 for all x∈H . Now
for each �∈� there exists x∈H with ��x� 	=0. Hence x�=0. This shows
that the centre of L�A� lies in H .
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So let h∈H lie in the centre of L�A�. By Proposition 17.3 we have

h=
l∑

i=0
�ihi+�d for �i� �∈��

Let x∈L�j
. Then �hx�=�j�h�x. Hence �j�h�=0 for each j=0�1� � � � � l.

Thus
l∑

i=0
�i�j �hi�+��j�d�=0

that is
l∑

i=0
�iAij=0 for j=1� � � � � l

and
l∑

i=0
�iAi0=−��

However, we have
∑l

j=0Aijaj=0, hence Ai0=−a−10

∑l
j=1Aijaj . Thus∑l

i=0 �iAij=0 for j=1� � � � � l implies
∑l

i=0 �iAi0=0. Thus we deduce
that �=0, and so h=∑l

i=0 �ihi. This in turn gives
∑l

i=0 �iAij=0 for
j=0�1� � � � � l. This implies that ��0� �1� � � � � �l� is a scalar multiple of
�c0� c1� � � � � cl� since A is an �l+1�×�l+1� matrix of rank l. Thus h is a
multiple of c. Thus the centre of L�A� is the 1-dimensional subspace spanned
by c.

c is called the canonical central element of L�A�.

Summary

We will find it convenient to summarise in one place the properties of the
various elements discussed in this section:

(a) h0� h1� � � � � hl, d are a basis of H .
(b) c= c0h0+· · ·+clhl is the canonical central element.
(c) �0��1� � � � ��l, � are a basis of H∗.
(d) �=a0�0+· · ·+al�l is the basic imaginary root.
(e) The standard invariant form on H is given by〈

hi�hj
〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=a0

�hi�d�=0 i=1� � � � � l

�d�d�=0�
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(f) The standard invariant form on H∗ is given by〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=a−10

��i���=0 i=1� � � � � l

�����=0�

(g) The action of H∗ on H is given by

�j �hi�=Aij i� j=0�1� � � � � l

�0�d�=1

�i�d�=0 i=1� � � � � l

� �h0�=1

� �hi�=0 i=1� � � � � l

��d�=0�

(h) The properties of the central element c.

�hi� c�=0 i=0�1� � � � � l

�d� c�=a0

�c� c�=0

�j�c�=0 j=0�1� � � � � l

��c�=1�

(i) The properties of the imaginary root �.〈
�j��

〉=0 j=0�1� � � � � l

�����=1

�����=0

��hi�=0 i=0�1� � � � � l

��d�=a0

��c�=0�
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(j) Properties of the standard bijection H→H∗.

hi→aic
−1
i �i i=0�1� � � � � l

d→a0�

c→��

17.2 The roots of an affine Kac–Moody algebra

Let A0 be the matrix obtained from the affine Cartan matrix A by removing
the row and the column 0. Then A0 is an l× l Cartan matrix of finite type.
By list 17.1 we see that A0 is given in each case by the following list.

The underlying Cartan matrix A0

A A0

Ãl l≥1 Al

Ã′1 A1

B̃l l≥3 Bl

B̃t
l l≥3 Cl

C̃l l≥2 Cl

C̃ t
l l≥2 Bl

C̃ ′l l≥2 Cl

D̃l l≥4 Dl

Ẽl l=6�7�8 El

F̃4 F4

F̃ t
4 F4

G̃2 G2

G̃t
2 G2

Let �0 be the set of roots of the finite dimensional Lie algebra L
(
A0
)
. �0

has a fundamental system �0= 
�1� � � � ��l�. Let W
0 be the Weyl group of

�0. Then W 0 is generated by the fundamental reflections s1� � � � � sl.
Now we know that the imaginary roots of L�A� are the elements k� with

k∈� and k 	=0, by Theorem 16.27 (ii). (However, we do not yet know the
multiplicities of these roots.) Thus we shall now consider the real roots of
L�A�. These have the form w��i� for some w∈W and i=0�1� � � � � l. We con-
sider the squared lengths ����� of the roots �∈�Re. Since �w��i� �w ��i��=
��i��i� the length of any real root is equal to the length of some fundamental
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root. The relative lengths of the fundamental roots may be obtained from list
17.1 using the formulae

Aij=2

〈
�i��j

〉
��i��i�〈

�j��j

〉
��i��i�

= Aij

Aji

�

Proposition 17.9 (a) If A is an affine Cartan matrix of types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8

all the fundamental roots have the same length.
(b) If A has types B̃l� B̃

t
l� C̃l� C̃

t
l � F̃4� F̃

t
4 there are fundamental roots of two

different lengths. The ratio �����/����� where � is short and � is
long is 2.

(c) If A has type G̃2 or G̃t
2 there are fundamental roots of two different

lengths with �����/�����=3.
(d) If A has type Ã′1 there are fundamental roots of two different lengths with
�����/�����=4.

(e) If A has type C̃ ′l there are fundamental roots of three different lengths,
say �����, with �����/�����=2 and �����/�����=2.

Proof. This is clear from list 17.1.

We shall denote by �Re�s the set of short real roots, by �Re�l the set of long
real roots and by �Re�i the set of real roots of intermediate length. The latter
set is non-empty only when A has type C̃ ′l for some l. If all real roots have
the same length we use the convention �Re=�Re�s.

We now aim to characterise the set �Re�s. We consider the possible values
of ����� for �∈Q. Let �=∑l

i=0 ki�i. Then �����=
∑

i�j kikj
〈
�i��j

〉
. Now〈

�i��j

〉∈� for all i� j. Thus there exists d∈� with d>0 such that
〈
�i��j

〉∈
1
d
� for all i� j. Thus if �����>0 then �����≥ 1

d
. Hence there exists m>0

such that m=min ����� for all �∈Q with �����>0.

Proposition 17.10 If �∈Q satisfies �����=m then �∈Q+ or �∈Q−.

Proof. Suppose if possible there exists �∈Q with �����=m but � 	∈Q+
and � 	∈Q−. Then �=�−� where ���∈Q+�� 	=0� � 	=0 and supp � ∩
supp�=�. Hence

�����=�����+�����−2 �����
and �����≤0 since supp � ∩ supp�=�. Hence �����≥�����+�����.
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Now all proper connected principal minors of A have finite type. Thus,
considering the connected components of supp�, we have �=�1+· · ·+�r

with supp�i connected for each i�
〈
�i��j

〉=0 for i 	= j, and ��i��i�>0. Thus

�����=��1��1�+· · ·+��r��r�>0�

Hence �����≥m. Similarly �����≥m. But then �����≥2m, a contradic-
tion. Hence �∈Q+ or �∈Q−.

Proposition 17.11 Let A be an indecomposable GCM of finite or affine type.
Then the set �Re�s of short real roots of L�A� is given by

�re�s= 
�∈Q  �����=m� �

Proof. Suppose �∈Q satisfies �����=m. We show �∈�Re. By Proposi-
tion 17.10 �∈Q+ or �∈Q−. We may suppose �∈Q+. Consider the set


w���  w∈W�∩Q+�
We choose an element �=∑ki�i in this set with ht� minimal. Then
�����=m, so

∑
i ki ��i���=m. Since ki≥0 and m>0 there exists i with

��i���>0. Thus ��hi�=2 ��i�����i��i� >0. Now si���=�−��hi��i so ht si���<
ht�. By minimality of ht� we must have si���∈Q−. But �∈Q+� si���∈Q−
imply �= r�i for some r ∈� with r>0. Since

�r�i� r�i�= r2 ��i��i�≥ r2m
we have r=1. Thus �=�i and ��i��i�=m. Hence �∈�Re�s and so �∈�Re�s

also.
Conversely if �∈�Re�s then �=w��i� for some w∈W and some i, and
�����=��i��i�. However, we have seen that the short fundamental roots
have ��i��i�=m. Thus �����=m also.

We aim next to characterise the set �Re�l of long real roots. In order to do
this we compare the roots of L�A� and L�At�. Here A can be any GCM.

Proposition 17.12 If �H����v� is a minimal realisation of the GCM A then
�H∗��v��� is a minimal realisation of At.

Proof. Let A be an n×n matrix of rank l. Then dimH=2n− l��v=

h1� � � � � hn� is a linearly independent subset of H��= 
�1� � � � ��n� is a
linearly independent subset of H∗, and �j �hi�=Aij .
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We now replace H by its dual space H∗. We still have dimH∗ =2n− l�
�H∗�∗ can be identified with H by means of the formula

h���=��h� for h∈H��∈H∗�
Since

hj ��i�=�i

(
hj
)=Aji

we see that �H∗��v��� is a minimal realisation of At .

Now suppose A is symmetrisable. Then we have an isomorphism between
H and H∗ induced by our standard invariant form. Under this isomorphism
hi corresponds to 2�i

��i��i� =di�i. For each real root �∈�Re we define the

corresponding coroot h� ∈H to be the element of H corresponding to 2�
����� ∈

H∗. The element h� can also be described by using the Weyl group. Since
the W -actions on H and H∗ are compatible with the above isomorphism, if
�=w��i� then h�=w�hi�. For hi corresponds to

2�i
��i��i� and �����=��i��i�.

Thus the coroots h� for �∈�Re for L�A� may be interpreted as the real roots
for L�At�. Moreover we have

�h��h��=
〈

2�
����� �

2�
�����

〉
= 4
����� �

Hence � is a short root for L�A� if and only if h� is a long root for L�At�.
The fact that short roots give long coroots and long roots give short coroots
is very useful. We shall apply this to characterise �Re�l in the case when A is
of finite or affine type.

Proposition 17.13 Let A be an indecomposable GCM of finite or affine type.
Then the set �Re�l of long real roots of L�A� is given by

�Re�l=
{
�=∑ki�i ∈Q  �����=M�ki

��i��i�
����� ∈� for all i

}
where M=max 
�����  �∈�Re�.

Proof. We first show the long real roots satisfy the given conditions. Let
�∈�Re�l. Then �����=M . Let �=∑ki�i. Then

2�
����� =

∑
ki
��i��i�
�����

2�i

��i��i�



398 Kac–Moody algebras of affine type

and so

h�=
∑

ki
��i��i�
����� hi�

This expresses a root for L�At� as a linear combination of fundamental roots,
thus the coefficients ki

��i��i�
����� lie in �.

Conversely suppose �∈Q satisfies the given conditions. Then h� ∈
∑

�hi
and �h��h��=4/M . Now 4/M is the minimum possible value of ����� for
all real roots � of L�At�. Thus by Proposition 17.11 h� is a short root of
L�At�. Hence � is a long root of L�A�.

We next wish to characterise the set �Re�i of intermediate roots of L�A�
when A has type C̃ ′l . We first need a lemma.

Lemma 17.14 (a) Suppose A is an indecomposable GCM of finite or affine
type. Then the set of all �=∑ki�i ∈Q satisfying ki

��i��i�
����� ∈� for all i is

invariant under W .
(b) If �=∑ki�i ∈Q satisfies ki

��i��i�
����� ∈� for all i then �∈Q+ or �∈Q−.

Proof. (a) Suppose � satisfies our condition. It is sufficient to show that
sj��� satisfies it also. Now sj���=�−�

(
hj
)
�j . Thus it is sufficient to show

that

(
kj−�

(
hj
)) ��j��j�
����� ∈�

that is �
(
hj
) ��j��j�
����� ∈�. Now we have

�
(
hj
) 〈�j��j

〉
����� =

∑
i

ki�i

(
hj
) 〈�j��j

〉
�����

=∑
i

ki�j �hi�
��i��i�
����� =

∑
i

Aijki
��i��i�
����� ∈�

as required.
(b) Suppose the result is false. Then �=�−� where ���∈Q+�� 	=0� � 	=0

and supp � ∩ supp�=�. Then

�����=�����+�����−2�����≥�����+������
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Now �=∑i∈supp� ki�i so

�����=∑
i

k2i ��i��i�+
∑
i<j

2kikj
〈
�i��j

〉
and

�����
����� =

∑
i

ki

(
ki
��i��i�
�����

)
+∑

i<j

Aijkj

(
ki
��i��i�
�����

)
�

Hence ���������� ∈�. Similarly we have ���������� ∈�.
Now all proper connected principal minors of A have finite type. Thus

we have �=�1+· · ·+�r with supp�i connected for each i�
〈
�i��j

〉=0
for i 	= j, and ��i��i�>0. Thus

�����=∑
i

��i��i�>0�

Similarly we can show �����>0. Thus �����>0 also. But now we
have ���������� ∈� so �����≥�����, and ���������� ∈� so �����≥�����. Hence
�����≥�����+�����≥2�����, a contradiction.

We now suppose A is a GCM of affine type C̃ ′l . The diagram of A is

210 l–2 l–1 l

Let m′ be defined by ��i��i�=m′ for i=1� � � � � l−1. Thus m′ is the squared
length of the intermediate roots.

Lemma 17.15 Suppose A has type C̃ ′l . Suppose �=∑l
i=0 ki�i ∈Q satisfies

�����=m′. Then ki
��i��i�
����� ∈� for all i.

Proof. The required condition is obvious for all i 	=0 since ��i��i�=m′ for
i=1� � � � � l−1 and ��l��l�=2m′. We must therefore show k0

��0��0�
����� ∈�, that

is that k0 is even.
Now �=k0�0+

∑l
i=1 ki�i, thus

����� = k20 ��0��0�+2k0k1 ��0��1�+
〈

l∑
i=1

ki�i�
l∑

i=1
ki�i

〉

= k20 ��0��0�+k0k1A10 ��1��1�+
l∑

i=1
k2i ��i��i�+

l∑
i�j=1
i<j

kikjAij ��i��i� �
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Thus �����∈k20 ��0��0�+�m′. But �����=m′ so k20 ��0��0�∈�m′.
Since ��0��0�= 1

2m
′ we have k20/2∈� and so k0 is even, as required.

We can now characterise �Re�i.

Proposition 17.16 Suppose A is a GCM of type C̃ ′l . Then

�Re�i= 
�∈Q  �����=m′� �

Proof. Let �∈Q satisfy �����=m′. By Lemma 17.15 �=∑l
i=0 ki�i with

ki
��i��i�
����� ∈� for each i. By Lemma 17.14 (b) �∈Q+ or �∈Q−. We may

assume �∈Q+.
Consider the set


w���  w∈W�∩Q+�
We choose an element �=∑l

i=0 k
′
i�i in this set with ht� minimal. Then

�����=m′ and so
∑l

i=0 k
′
i ��i���=m′. Since m′>0 and k′i≥0 there exists

i with ��i���>0. Thus ��hi�=2 ��i�����i��i� >0. Now si���=�−��hi��i so
ht si���<ht�. By the minimality of ht�� si��� 	∈Q+. But si���∈Q+ or Q−

by Lemma 17.14 (a) and (b). Thus �∈Q+ and si���∈Q−. Hence �= r�i for
some r ∈� with r>0. Thus �����= r2 ��i��i�=m′. However, ��i��i�≥
1
2m
′ thus r=1. Thus �=�i ∈�Re�i. It follows that �∈�Re�i also.

We are now able to obtain explicitly the set �Re of all real roots of each
affine Kac–Moody algebra individually. We recall that �0 is the root system
of the Lie algebra L

(
A0
)
of finite type obtained by removing vertex 0 from

the diagram of A. We denote by �0
s ��

0
l the set of short and long roots in �0.

If all roots of �0 have the same length we write �0
s =�0.

Theorem 17.17 The real roots of the affine Kac–Moody algebra L�A� are
as follows.
(a) If A is one of the types Ãl� B̃l� C̃l� D̃l� Ẽ6� Ẽ7� Ẽ8� F̃4� G̃2 then �Re={
�+r�  �∈�0� r ∈�}.
(b) If A is one of the types B̃t

l� C̃
t
l � F̃

t
4 then

�Re�s =
{
�+r�  �∈�0

s � r ∈�
}

�Re�l =
{
�+2r�  �∈�0

l � r ∈�
}
�

(c) If A is of type G̃t
2 then

�Re�s =
{
�+r�  �∈�0

s � r ∈�
}

�Re�l =
{
�+3r�  �∈�0

l � r ∈�
}
�
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(d) If A is of type C̃ ′l then

�Re�s =
{
1
2 ��+�2r−1���  �∈�0

l � r ∈�
}

�Re�i =
{
�+r�  �∈�0

s � r ∈�
}

�Re�l =
{
�+2r�  �∈�0

l � r ∈�
}
�

(e) If A is of type Ã′1 then

�Re�s =
{
1
2 ��+�2r−1���  �∈�0� r ∈�}

�Re�l =
{
�+2r�  �∈�0� r ∈�} �

Proof. (i) Suppose first that A is not of type C̃ ′l or Ã
′
1. Then �0

s ⊂�Re�s. Let
�∈�0

s . Then �����=m. Hence for r ∈� we have ��+r���+r��=m since
�����=0 and �����=0. By Proposition 17.11 this implies �+r�∈�Re�s.

Conversely suppose �=∑l
i=0 ki�i ∈�Re�s. We have a0=1, thus �=�0+∑l

i=1 ai�i. Hence �−k0�=
∑l

i=1 �ki−k0ai��i. Thus ��−k0���−k0��=
�����=m. Again by Proposition 17.11 we deduce �−k0�∈�0

s . Let
�=�−k0�. Then �=�+k0� for �∈�0

s � k0 ∈�.
Thus the short roots in � have the required form. We now consider the

long roots. We have �0
l ⊂�Re�l.

Let �∈�0
l . Then �����=M and so ��+s���+s��=M for all s∈�.

Let �=∑l
i=1 ki�i. By Proposition 17.13 we have ki

��i��i�
����� ∈� for i=1� � � � � l.

The same proposition shows that �+s�∈�Re�l if and only if sai
��i��i�
����� ∈�

for i=0�1� � � � � l. Now ��i��i�= 2ci
ai
, thus the condition is 2ci

����� s∈� for
i=0�1� � � � � l. We note that ��0��0�=2 since a0=1.
First suppose that �0 is a long root, that is that we are in case (a). Then
�����=2 and so 2cis

����� = cis∈�. Hence �+s�∈�Re�l for all s∈�.
Conversely suppose �=∑l

i=0 ki�i ∈�Re�l. Then

�−k0�=
l∑

i=1
�ki−k0ai��i

and we have ��−k0���−k0��=�����=M . Since �∈�Re�l we have
ki
��i��i�
����� ∈� for i=0�1� � � � � l. We have k0ai

��i��i�
����� ∈� also since ��i��i�= 2ci

ai

and �����=2. Hence �−k0�∈�0
l by Proposition 17.13. Thus �=�+k0�

for some �∈�0
l and k0 ∈�.

Next suppose that �0 is a short root, i.e. that we are in case (b) or (c). Let
�����
��0��0� =p. Then p=2 in case (b) and p=3 in case (c). Thus

2ci
����� s= ci

s

p
since �����=2p�
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Since c0=1 this lies in � for all i=0�1� � � � � l if and only if s is divisible
by p. Thus by Proposition 17.13 �+pr�∈�Re�l for all r ∈�.
Conversely suppose �=∑l

i=0 ki�i ∈�Re�l. Then

�−k0�=
l∑

i=1
�ki−k0ai��i�

We have ��−k0���−k0��=�����=M . Since �∈�Re�l we have ki
��i��i�
����� ∈�

for i=0�1� � � � � l. In particular k0
��0��0�
����� = k0

p
∈�. We show k0ai

��i��i�
����� ∈�

for i=1� � � � � l. For k0ai
��i��i�
����� = k0

p
ci ∈� since ��i��i�= 2ci

ai
and �����=2p.

Thus by Proposition 17.13 �−k0�∈�0
l . Let �=�−k0�. Then �=�+pr�

for some �∈�0
l � r ∈�.

We have thus proved the required result in cases (a), (b) and (c).
(ii) We now suppose that A has type C̃ ′l . Then we have �0

s ⊂�Re�i and �
0
l ⊂

�Re�l. First suppose �∈�0
s . Then �����=m′ and so ��+r���+r��=m′.

By Proposition 17.16 �+r�∈�Re�i for all �∈�0
s � r ∈�.

Conversely suppose �=∑l
i=0 ki�i ∈�Re�i. Then ki

��i��i�
����� ∈� for

i=0�1� � � � � l by Lemma 17.15, in particular k0
��0��0�
����� = k0

2 ∈�. Now

�− k0
2
�=

l∑
i=1

(
ki−

k0
2
ai

)
�i�

We have
〈
�− k0

2 ���− k0
2 �

〉=m′ and so by Proposition 17.11 �− k0
2 �∈

�0
s . Let �=�− k0

2 �. Then �=�+ k0
2 �=�+r� for some �∈�0

s � r ∈�.
We now turn from the intermediate roots to the long roots. Suppose

�∈�0
l . Then �����=M and ��+s���+s��=M for s∈�. Let �=∑l

i=1 ki�i. Then ki
��i��i�
����� ∈� for i=1� � � � � l. Now

�+s�=
l∑

i=1
ki�i+

l∑
i=0

sai�i�

We wish to know for which s∈� we have

sai
��i��i�
����� ∈� for all i=0�1� � � � � l�

Now ��0��0�= 2c0
a0
=1, thus �����=4. Hence sai

��i��i�
����� = ciS

2 . Since
c0=1 this lies in � for all i=0�1� � � � � l if and only if s is even. Thus
by Proposition 17.13 �+2r�∈�Re�l for all �∈�0

l � r ∈�.
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Conversely suppose �=∑l
i=0 ki�i ∈�Re�l. Then ki

��i��i�
����� ∈� for i=

0�1� � � � � l, in particular k0
��0��0�
����� = k0

4 ∈�. Now

�− k0
2
�=

l∑
i=1

(
ki−

k0
2
ai

)
�i

satisfies
〈
�− k0

2 ���− k0
2 �

〉=M . Also k0
2 ai

��i��i�
����� = k0

4 ci ∈�. Thus by

Proposition 17.13 we have �− k0
2 �∈�0

l . Let �=�− k0
2 �. Then �=

�+2r� for some �∈�0
l � r ∈�.

We now consider the short roots of �. There is no root of �0 of the
same length as the short roots of �Re. The squared length of the short
roots of �Re is one half that of the long roots of �0. So suppose �∈�0

l .
We consider elements of form 1

2 ��+s�� where s∈�. We consider which
of these elements lie in Q. Since the long roots of �0 have form

± 
�l�2�l−1+�l� � � � �2�1+· · ·+2�l−1+�l�

and �=2�0+2�1+· · ·+2�l−1+�l we see that 1
2 ��+s��∈Q if and

only if s is odd. Thus we consider elements ofQ of form 1
2 ��+�2r−1���

with r ∈�. We have

� 12 ��+�2r−1���� 1
2 ��+�2r−1����= 1

4�����=m�
By Proposition 17.11 this implies that 1

2 ��+�2r−1���∈�Re�s.
Conversely suppose �=∑l

i=0 ki�i ∈�Re�s. Then ki
��i��i�
����� ∈� for i=

0�1� � � � � l. Then 2�−k0�=
∑l

i=1 �2ki−k0ai��i. We have �2�−k0��
2�−k0��=4�����=4.
This is the squared length of the elements of �0

l . We also have

k0ai ��i��i�
�2��2�� =

k0
2
ci ∈� for i=1� � � � � l

since k0 ∈� and ci=2 for i=1� � � � � l. By Proposition 17.13 we have
2�−k0�∈�0

l . Let �=2�−k0�. Then �= 1
2 ��+k0��. Since �∈Q�

k0 is odd. Thus

�= 1
2 ��+�2r−1��� for some �∈�0

l � r ∈��
(iii) Finally we suppose that A has type Ã′1. The diagram of A is

0 1

with a0=2� a1=1� c0=1� c1=2. We also have

��0��0�=1� ��1� �1�=4�
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Now�0⊂�Re�l. Let �∈�0. Then ��+s���+s��=M . We can write
�=k1�1. Then �+s�=2s�0+�k1+s��1. We have k1

��1��1�
����� ∈� and

we consider which s∈� have the property that sai
��i��i�
����� ∈� for i=0�1.

Since sai
��i��i�
����� = sci

2 and c0=1 this lies in � for i=0�1 if and only if
s is even. By Proposition 17.13 we deduce that �+2r�∈�Re�l for all
�∈�0� r ∈�.
Conversely suppose �=k0�0+k1�1 lies in �Re�l. Then �− k0

2 �=(
k1− k0a1

2

)
�1. We have

〈
�− k0

2 ���− k0
2 �

〉=M . Also k0
��0��0�
����� = k0

4 ∈�.
By Proposition 17.11 we have �− k0

2 �∈�0. Let �=�− k0
2 �. Then �=

�+ k0
2 �=�+2r� for some �∈�0� r ∈�.

We now consider the short roots. Suppose �∈�0 and consider the ele-
ment 1

2 ��+s�� for s∈�. Since �=±�1 and �=2�0+�1 this element
lies in Q if and only if s is odd. We have〈

1
2 ��+�2r−1���� 1

2 ��+�2r−1���
〉= 1

4�����=1�

This is the squared length of the short roots of�Re�s. By Proposition 17.11
1
2 ��+�2r−1���∈�Re�s for all r ∈�.
Conversely suppose �=k0�0+k1�1 ∈�Re�s. Then

�− k0
2
�=

(
k1−

k0a1

2

)
�1�

We have �2�−k0��2�−k0��=4�����=4. This is the squared length
of the roots in �0. So by Proposition 17.11 we have 2�−k0�∈�0.
Let �=2�−k0�. Then �= 1

2 ��+k0��. Since �∈Q k0 must be odd.
Hence �= 1

2 ��+�2r−1��� for some �∈�0� r ∈�. This completes the
proof.

17.3 The Weyl group of an affine Kac–Moody algebra

Let A be an affine Cartan matrix and W the Weyl group of L�A�. Then
W =�s0� s1� � � � � sl�. The subgroup W 0=�s1� � � � � sl� is the Weyl group of
the finite dimensional simple Lie algebra L

(
A0
)
. In order to investigate

the structure of W we introduce the element �=�−a0�0=
∑l

i=1 ai�i. This
element � lies in Q0=Q (

A0
)
.

Proposition 17.18 (i) If the affine Cartan matrix A is not of type
B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2 then � is the highest root of �0.

(ii) If A is of type B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2 then � is the highest short root of �0.
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Proof. We first show that �∈�0. We have ��� ��=��−a0�0� �−a0�0�=
a2
0 ��0��0�=2a0. First suppose a0=1 and �0 is a long root. Then ��� ��=
��0��0�=2. Also

ai
��i��i�
��� �� = ci ∈��

Thus �∈�0
l by Proposition 17.13

Next suppose a0=2. Then ��� ��=4 ��0��0�=4. Thus � has the same
squared length as a long root. Also ai

��i��i�
����� = ci

2 . This lies in � for i=1� � � � � l
since ci=2 for such values of i. Hence �∈�0

l by Proposition 17.13.
Finally suppose a0=1 and �0 is a short root. This occurs for the cases

in (ii). Then ��� ��=��0��0�. Hence �∈�0
s by Proposition 17.11.

Thus we have shown �∈�0 in all cases. We also have

����i� = ��−a0�0��i�=−a0 ��0��i�

= −a0A0i ��0��0�
2

=−c0A0i=−A0i�

Thus ����i�≥0 for i=1� � � � � l. Hence �∈ C̄0, the closure of the fundamental
chamber for �0. This implies that � is the highest root of �0 in the cases in
(i) and the highest short root of �0 in the cases in (ii), by Proposition 12.9.

Now let s� be the reflection corresponding to the root �. Then s� � H
0→H0

is given by s��h�=h−��h�h�.

Lemma 17.19 The coroot h� is given by h�= 1
a0
�c−h0�.

Proof. Since �=∑l
i=1 ai�i we have 2�

����� =
∑l

i=1 ai
��i��i�
�����

2�i
��i��i� , hence

h�=
l∑

i=1
ai
��i��i�
��� �� hi=

l∑
i=1

2cihi
2a0

= 1
a0

l∑
i=1

cihi=
1
a0

�c−h0� �

Now the affine Weyl group W is generated by W 0 and s0, so is also
generated by W 0 and s0s�. We consider the action of s0s� on H .

Proposition 17.20 Let h∈H . Then

s0s��h�=h+��h�h�−
(�h��h�+ 1

2 �h��h����h�
)
c�
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Proof.

s0s��h�= s0 �h−��h�h��=h−�0�h�h0−��h� �h�−�0 �h��h0�

= h−�0�h� �c−a0h��−��h�h�+��h��0 �h�� �c−a0h��

= h+�a0�0�h�−��h�−a0��h��0 �h���h�+���h��0 �h��−�0�h�� c�

Now �0 �h��=�0

(
1
a0
�c−h0�

)
=− 2

a0
. Thus

s0s��h�= h+�a0�0�h�+��h��h�−
(

2
a0

��h�+�0�h�

)
c

= h+��h�h�−
1
a0

���h�+��h�� c

= h+��h�h�−
(�h��h�+ 1

2 �h��h����h�
)
c

since �h��h�= 2��h�
����� = 1

a0
��h� and �h��h��=

〈
2�
����� �

2�
�����

〉
= 4
����� = 2

a0
. We

define th� � H→H by

th� �h�=h+��h�h�−
(�h��h�+ 1

2 �h��h����h�
)
c�

Thus we have s0s�= th� . Hence W is generated by W 0 and th� .

More generally, for any x∈H0 we define tx � H→H by

tx�h�=h+��h�x−
(�x�h�+ 1

2�x�x���h�
)
c�

Proposition 17.21 (i) txty= tx+y for all x� y∈H0.
(ii) wtxw

−1= tw�x� for all w∈W 0� x∈H0.

Proof. The linear map tx � H→H is uniquely determined by the properties

tx�h�= h−�x�h�c when ��h�=0

tx�d�= d+a0x− 1
2a0�x�x�c

since ��hi�=0 and ��d�=a0. If ��h�=0 then

txty�h�= tx�h−�y�h�c�=h−�x�h�c−�y�h��c−�x� c�c�
= h−�x+y�h�c since �x� c�=0

= tx+y�h��



17.3 The Weyl group of an affine Kac–Moody algebra 407

Also

txty�d�= tx
(
d+a0y− 1

2a0�y� y�c
)

= d+a0x− 1
2a0�x�x�c+a0�y−�x� y�c�− 1

2a0�y� y��c−�x� c�c�
= d+a0�x+y�−a0

(
1
2�x�x�+�x� y�+ 1

2�y� y�
)
c

= d+a0�x+y�−a0 · 12�x+y� x+y�c
= tx+y�d��

Thus txty= tx+y for all x� y∈H0.

Now let w∈W 0, and h∈H satisfy ��h�=0. Then

wtxw
−1�h�=w (

w−1�h�− 〈x�w−1�h�〉 c)
since �

(
w−1�h�

)= �w���h�=��h�=0. Thus

wtxw
−1�h�=h−�w�x��h�c= tw�x��h�

since w�c�= c. Also w�d�=d for all w∈W 0 and so

wtxw
−1�d�= wtx�d�=w

(
d+a0x− 1

2�x�x�a0c
)

= d+a0w�x�− 1
2�w�x��w�x��a0c

= tw�x��d��

Hence wtxw
−1= tw�x�.

LetM be the additive subgroup (i.e. lattice) ofH0 generated by the elements
w�h�� for all w∈W 0. Let t�M�= 
tm  m∈M�.

Proposition 17.22 W = t�M�W 0 where t�M� is normal inW and t�M�∩W 0=
1. Thus W is a semidirect product of t�M� and W 0.

Proof.We know that th� ∈W , hence wth�w
−1= tw�h�� ∈W for all w∈W 0. Thus

t�M� is a subgroup of W . Since W is generated by W 0 and th� �W is generated
by t�M� and W 0. But W 0 lies in the normaliser of t�M� by Proposition 17.21
(ii). Thus W = t�M�W 0. Finally t�M�∩W 0=1 since t�M� is a free abelian
group whereas W 0 is finite.

The lattice M⊂H0
� will be important in understanding the affine Weyl

group W . We shall now identify it in each case.
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Proposition 17.23 (i) If A is an affine Cartan matrix not of types B̃t
l� C̃

t
l �

F̃ t
4� G̃

t
2 then M=∑l

i=1�hi.
(ii) If A has type B̃t

l� C̃
t
l � F̃

t
4� G̃

t
2 then

M= ∑
�i short

�hi+
∑

�i long

p�hi

where p is the ratio of the squared lengths of the long and short roots
(p=3 for G̃t

2 and p=2 in the other cases).

Proof. By Proposition 17.18 � is a long root in the cases in (i) and a short
root in the cases in (ii). Thus h� is a short coroot in (i) and a long coroot in
(ii). Thus M is generated by all short coroots in (i) and by all long coroots
in (ii). Now it follows from Proposition 8.18 that the set of all short coroots
generates the coroot lattice

∑l
i=1�hi. But the set of all long coroots generates

the sublattice with basis hi for hi long (i.e. �i short) and phi for hi short (i.e.
�i long). The result follows.

We have been considering an action of the affine Weyl group W by linear
transformations of the vector space H of dimension l+2. However, we now
show that there is a simpler action of W by affine transformations on the
real vector space H0

� of dimension l. We recall that the group of affine
transformations of a vector space is generated by the group of non-singular
linear transformations and the group of translations.
We first define H��1= 
h∈H�  ��h�=1�. The space H��1, although not

a subspace of H�, is invariant under W . For

��w�h��= (w−1�) �h�=��h�
since w���=�. Now we have a decomposition

H�=H0
�⊕��c+�d�

into subspaces of dimension l and 2 which are mutually orthogonal.
For �hi� c�=0 and �hi�d�=0 for i=1� � � � � l. Since ��hi�=0 for i=
1� � � � � l� ��c�=0 and ��d�=a0 the elements of H� which lie in H��1 are
those of form

l∑
i=1

�ihi+�c+
1
a0

d �i ∈���∈��

Now h∈H��1 implies h+�c∈H��1 for �∈�. Since w�c�= c for all w∈
W�W acts on the quotient space H��1/�c. Also we have a bijective map

H��1/�c→H0
�
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given by

�c+
l∑

i=1
�ihi+

1
a0

d→
l∑

i=1
�ihi

and this bijection may be used to define an action of W on H0
�.

Proposition 17.24 The action of W = t�M�W 0 on H0
� is as follows. The

W 0-action on H0
� is that previously considered. For m∈M , h∈H0

� we have
tm�h�=h+m. Thus tm acts on H0

� as translation by m. Hence W acts on H0
�

as a group of affine transformations.

Proof. If w∈W 0 then w�c�= c and w�d�=d. This implies that the w-action
on H0

� defined above is the usual w-action. If m∈M , h∈H��1 then tm�h�=
h+m+�c for some �∈�. This induces an action of tm on H0

� given by
tm�h�=h+m. Thus tm acts on H0

� as translation by m.

Corollary 17.25 The action of W on H0
� is faithful.

Proof. Suppose tmw�w∈W 0, acts trivially on H0
�. Then tmw�0�=0. This

implies m=0, that is tm=1. Hence w∈W 0 acts trivially on H0
�. Since W 0

acts faithfully on H0
� this implies w=1.

Corollary 17.26 s0 acts on H0
� as the reflection in the affine hyperplane

L��1=
{
h∈H0

�  ��h�=1
}
�

Proof. For h∈H0
� we have

s0�h�= th� s��h�=h−��h�h�+h�=h+�1−��h��h��
This is the reflection in L��1.

For each �∈�0 and k∈� let L��k be the affine hyperplane given by

L��k=
{
h∈H0

�  ��h�=k} �
Thus the generators s0� s1� � � � � sl of the affine Weyl group W act on H0

� as
the reflections in the hyperplanes L��1�L�1�0

� � � � �L�l�0
respectively.

We now introduce a collection of affine hyperplanes whose corresponding
affine reflections will lie in W .
Let 
= 
L��k  �∈�0� k∈�, p divides k if � is a long root and A is

one of B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2�. Here as usual p=2 in the first three cases and p=3

for G̃t
2.
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Let s��k be the reflection in L��k. Then s��k�h�=h+�k−��h��h�. For
h+�h+�k−��h��h��

2
∈L��k

and h+�k−��h��h� differs from h by a multiple of h�. Thus s��k= tkh�s�.
Proposition 17.27 The reflection s��k ∈W for all L��k ∈
. In fact s��k= s�−k�.
Proof. The reflection s�−k� � H�→H� is given by

s�−k��h�=h−��−k���h�h�−k��
Thus the restriction of s�−k� to H��1 is given by

s�−k��h�=h−���h�−k�h�−k��
Since �∈H∗ corresponds to c∈H under our bijection between H and H∗ we
have h�−k�=h�− 2k

�����c. Thus the action of s�−k� on H��1/�c is s�−k��h�=
h−���h�−k�h� and the action on H0

� is given by the same formula. Thus
s�−k�= s��k on H0

�. Moreover we know from Theorem 17.17 that s�−k� ∈W
whenever L��k ∈
.
We note that L��1�L�1�0

� � � � �L�l�0
all lie in 
. For by Proposition 17.18 �

is a short root when A has one of the types B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2.

Definition The connected components of the set H0
�−

⋃
L��k∈
L��k are called

alcoves.

Proposition 17.28 The set

A={h∈H0
�  �i�h�>0 for i=1� � � � � l� ��h�<1

}
is an alcove.

Proof. We show A∩L��k=� for all L��k ∈
. Let h∈A∩L��k. We may
assume �∈ (�0

)+
. Suppose � is a long root. Then 0<��h�≤��h�<1 by

Proposition 12.9 and so h cannot lie in L��k for k∈�. So suppose � is a short
root. If � is a short root we again have 0<��h�≤��h�<1, so h cannot lie
in L��k with k∈�. Thus suppose � is a long root. Then ��h�≤�l�h� where
�l is the highest root of �0. Let �l=

∑l
i=1 bi�i. Then we have

�l =
l∑

i=1
bi�i is the highest root of �0

� =
l∑

i=1
ai�i is the highest short root of �0�
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By considering the coroot of the highest root, or by a case-by-case check,
one may show

bi=
{
ai if �i is long

pai if �i is short.

In particular bi≤pai for all i. Hence
0<��h�≤�l�h�≤p��h�<p�

Thus h cannot lie in L��k with k∈� divisible by p.

Thus A lies in an alcove. But

Ā=A∪L�1�0
∪· · ·∪L�l�0

∪L��1�

This shows that A cannot be properly contained in an alcove, since
L�1�0

� � � � �L�l�0
�L��1 lie in 
. Thus A is an alcove.

Let � be the set of alcoves. We show that W acts on �. Since W is
generated by s1� � � � � sl� s� it is sufficient to prove the following lemma.

Lemma 17.29 (i) si
(
L��k

)=Lsi����k
for i=1� � � � � l.

(ii) s�
(
L��k

)=Ls0����k+��h��. Also if L��k ∈
 then Ls0����k+��h�� ∈
.

Proof. (i) Let h∈H0
�. Then h∈L��k if and only if ��h�=k, and this is

equivalent to �si���� �si�h��=k, that is si�h�∈Lsi����k
. Thus si

(
L��k

)=Lsi����k
.

(ii) s��h�= s0th� �h�= s0 �h+h��= s0�h�+s0 �h��. Thus ��h�=k if and only
if �s0���� �s0�h��=k, that is �s0���� �s0�h�+s0 �h���=k+��h��. It fol-
lows that s�

(
L��k

)=Ls0����k+��h��.
Now suppose L��k ∈
. Then k is divisible by p if � is a long

root and A∈{B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2

}
. If we are not in this special case then

Ls0����k+��h�� ∈
 since ��h��∈�. So suppose A is one of the above
four possibilities and � is a long root. We know p divides k and must
show p divides ��h��. Now h�= 1

a0
�c−h0�. We have a0=1 in the

given cases and ��c�=0, thus ��h��=−��h0�. Let �=
∑l

i=1 ki�i. Then
��h0�=

∑l
i=1 ki�i �h0�=

∑l
i=1A0iki. There is precisely one i∈ 
1� � � � � l�

with A0i 	=0. For this i�A0i=−2 in type C̃ t
l and A0i=−1 in the other cases.

In the latter cases �i is a short root. Thus

ki
��i��i�
����� =

ki
p
∈��
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This shows that p divides
∑l

i=1A0iki, and so p divides ��h�� in all cases.
Thus Ls0����k+��h�� ∈
.

Corollary 17.30 If w∈W�A′ ∈� then w�A′�∈�.

Proof. This follows from the definition of alcoves, together with the fact that
the elements of W permute the affine hyperplanes in 
.

We define Li=L�i�0
for i=1� � � � � l and L0=L��1. Thus L0�L1� � � � �Ll

are the walls bounding the alcove A and s0� s1� � � � � sl are the reflections in
L0�L1� � � � �Ll respectively.
Given w∈W we say that Li separates the alcoves A and w�A� if these

alcoves lie on opposite sides of Li.

Lemma 17.31 Li separates A and w�A� if and only if l�w�= l �siw�+1.

Proof. First suppose w′ ∈W has the property that w′�A� lies on the same side
of Li as A but w′sj�A� lies on the opposite side of Li to A. Then w

′�A��w′sj�A�
lie on opposite sides of Li so A� sj�A� lie on opposite sides of w′−1 �Li�. This
implies w′−1 �Li�=Lj so Li=w′

(
Lj

)
. Hence si=w′sjw′−1 and w′sj= siw′.

Now suppose w∈W is such that w�A� is on the opposite side of Li to A.
Let w= si1 � � � sir be a reduced expression for w. Then there exists q≥1 such
that si1 � � � siq−1�A� lies on the same side of Li as A but si1 � � � siq �A� lies on the
opposite side of Li. Then we have

si1 � � � siq−1siq = sisi1 � � � siq−1
as above. Hence

siw= sisi1 � � � sir = si1 � � � siq−1siq+1 � � � sir
and so l �siw�<l�w�.

If w�A� is on the same side of Li as A then siw�A� is on the opposite side.
Hence l �si ·siw�<l �siw�, that is l �siw�>l�w�.

Theorem 17.32 The map w→w�A� is a bijection between the elements of
the affine Weyl group W and the set � of alcoves.

Proof. Given any alcove A′ ∈� we can find a sequence of alcoves

A=A1�A2� � � � �Ar =A′
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such that Ai is obtained from Ai−1 by reflection in a common wall. Such
reflections lie in W by Proposition 17.27. Hence A′ =w�A� for some w∈W .
Thus the map w→w�A� is surjective.

Next suppose w�A�=w′�A�. Then w′−1w�A�=A. We show w′−1w=1. If
this is not so then

w′−1w= siw′′ with l
(
w′−1w

)= l (siw′−1w)+1

for some i. By Lemma 17.31 Li separates A and w′−1w�A�. This is a contra-
diction so w′−1w=1 and w=w′.

Theorem 17.33 The closure Ā of A is a fundamental region for the action
of the affine Weyl group W on H0

�, i.e. each W -orbit on H0
� intersects Ā in

exactly one point.

Proof. Each point in H0
� lies in the closure A′ of some alcove A′. By Theo-

rem 17.32 A′ =w�A� for some w∈W . Thus the W -orbit of the given point
intersects Ā.

Now suppose x� y∈ Ā satisfy y=w�x� for w∈W . We shall show x=y
by induction on l�w�. If l�w�=0 then w=1 so x=y. So suppose l�w�>0.
Then w= siw′ with l �siw�<l�w�. By Lemma 17.31 Li separates A and w�A�.
Thus Ā∩w�Ā�⊂Li. Now y∈ Ā∩w�Ā� hence y∈Li. Thus si�y�=y. But then
si�y�=w′�x� so y=w′�x�. Since l �w′�< l�w� we deduce x=y by induction.

Remark 17.34 We may also define an action of the affine Weyl group W

on H∗ in a way which is compatible with the bijection H→H∗ determined
by the standard invariant form �� � on H . Under this bijection the element
h� ∈H corresponds to 1

a0
�∈H∗.

For each �∈ (H0
)∗

we may define t� � H∗→H∗ by

t����=�+��c��−������+ 1
2�������c����

Then we have s0s�= t�1/a0�� on H∗. Moreover we have t�t�= t�+� and
wt�w

−1= tw��� for w∈W 0. It follows that we have a semidirect decomposi-
tion W = t �M∗�W 0 where t �M∗� is the set of t� for �∈M∗ and M∗ is the

sublattice of
(
H0

�

)∗
spanned by w

(
1
a0
�
)
for all w∈W 0.
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The lattice M∗ is given explicitly as follows.

M∗ =
l∑

i=1
��i for types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8

M∗ = ∑
�i long

��i+
∑

�i short

p��i for types B̃l� C̃l� F̃4� G̃2

M∗ =
l∑

i=1
��i for types B̃t

l� C̃
t
l � F̃

t
4� G̃

t
2

M∗ = ∑
�i long

1
2��i+

∑
�i short

��i for type C̃ ′l

M∗ = 1
2��1 for type Ã′1�

Now the affine Weyl group W acts on the subset

H∗��1= 
�∈H∗�  ��c�=1�

and this induces an action on the orbit space H∗��1/��. However, there is a
natural bijection between this orbit space and

(
H0

�

)∗
. This defines a W -action

on
(
H0

�

)∗
. The W0-action on

(
H0

�

)∗
is just as before, and the remaining

generator s0 of W acts as the reflection in the affine hyperplane

L∗h��1/a0 =
{
�∈ (H0

�

)∗
 � �h��=1/a0

}
�

The element t���∈M∗, acts on
(
H0

�

)∗
as translation by �, thus W acts on(

H0
�

)∗
as a group of affine transformations.

We may also introduce alcove geometry in
(
H0

�

)∗
. We define a set 
∗ of

affine hyperplanes in
(
H0

�

)∗
as follows.


∗ ={L∗h��k  �∈�0� k as below
}

where L∗h��k=
{
�∈ (H0

�

)∗
 � �h��=k

}
. The number k runs through the set

given as follows.

For types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8 k∈��
For types B̃l� C̃l� F̃4� G̃2 k∈� if � is long

k∈p� if � is short.

For types B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2 k∈��

For type C̃ ′l k∈ 1
2� if � is long

k∈� if � is short�

For type Ã′1 k∈ 1
2��
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Then the elements of the affine Weyl group W permute the set 
∗ of affine
hyperplanes. The connected components of

H0
�−

⋃
L∗∈
∗

L∗

are called the alcoves of H0
�. The set A∗ given by

A∗ ={�∈ (H0
�

)∗
 � �hi�>0 for i=1� � � � � l� � �h��<1/a0

}
is an alcove called the fundamental alcove. The group W acts on the alcoves
and the map w→w�A∗� is a bijective correspondence between elements of
W and alcoves. Moreover the closure A∗ is a fundamental region for the
W -action on

(
H0

�

)∗
.

We omit the proofs of these facts, which are entirely analogous to the
corresponding results for the W -action on H , or may be deduced from these.



18
Realisations of affine Kac–Moody algebras

18.1 Loop algebras and central extensions

Let A0 be an indecomposable Cartan matrix of finite type. We have A0= (A0
ij

)
for i� j=1� � � � � l. Let L0=L (A0

)
be the finite dimensional simple Lie algebra

with Cartan matrix A0. We may construct an �l+1�×�l+1� affine Cartan
matrix A from A0 by adding an additional row and column, labelled by 0, as
follows. Let �=∑l

i=1 ai�i be the highest root of L
0 and h�=

∑l
i=1 cihi be the

coroot of �. We then define A by:

Aij=A0
ij if i� j∈ 
1� � � � � l�

Ai0=−
l∑

j=1
ajA

0
ij if i∈ 
1� � � � � l�

A0j=−
l∑

i=1
ciA

0
ij if j∈ 
1� � � � � l�

A00=2�

Proposition 18.1 A is an affine Cartan matrix. The type of A is as follows.

Type of A0 �Al�Bl�Cl�Dl�E6�E7�E8�F4�G2

Type of A � Ãl� B̃l� C̃l� D̃l� Ẽ6� Ẽ7� Ẽ8� F̃4� G̃2

Proof. We have

A

⎛⎜⎜⎜⎝
a0

a1
���

al

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
���

0

⎞⎟⎟⎟⎠ where a0=1�

416
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For
∑l

j=0Aijaj=Ai0+
∑l

j=1Aijaj . If i 	=0 this is 0 by definition. If i=0 we
have

l∑
j=0

A0jaj=2+
l∑

j=1
A0jaj=2−

l∑
i=1

l∑
j=1

ciA
0
ijaj�

However,
∑l

i=1
∑l

j=1 ciA
0
ijaj=

(∑l
j=1 aj�j

) (∑l
i=1 cihi

)=� �h��=2, thus∑l
j=0A0jaj=0.

A similar argument shows that

�c0c1 � � � cl�A= �00 � � �0� where c0=1�

Now A is determined by A0 and the relations

A

⎛⎜⎜⎜⎝
a0

a1
���

al

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
0
0
���

0

⎞⎟⎟⎟⎠ � �c0c1 � � � cl�A= �0 � � �0��

But the affine Cartan matrix A of type L̃0, where L0 is Al, Bl, Cl, Dl, E6, E7,
E8, F4�G2 gives A0 when row and column 0 are removed, and satisfies the
above two relations, by Proposition 17.18 and Lemma 17.19. Thus our given
matrix A is the affine Cartan matrix of type L̃0.

Definition An affine Cartan matrix A is of untwisted type if it is one of

Ãl� B̃l� C̃l� D̃l� Ẽ6� Ẽ7� Ẽ8� F̃4� G̃2�

Since any affine Cartan matrix A of untwisted type can be constructed as
above from a Cartan matrix A0 of finite type by the addition of an extra row
and column, it seems natural to ask whether the affine Kac–Moody algebra
L�A� can be constructed in some way from the finite dimensional simple Lie
algebra L0=L (A0

)
. We shall now describe a method of doing this.

Let �
[
t� t−1

]
be the ring of Laurent polynomials

∑
i∈� �iti for �i ∈� with

finitely many �i 	=0. Let



(
L0
)=�

[
t� t−1

]⊗�L
0�

Then 

(
L0
)
may be made into a Lie algebra in a unique way satisfying

�p⊗x�q⊗y�=pq⊗ �xy�
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for p�q∈� [
t� t−1

]
, x� y∈L0. This Lie algebra 


(
L0
)
is called the loop

algebra of L0.
We now wish to construct a 1-dimensional central extension of 


(
L0
)
.

Lemma 18.2 Let L be a Lie algebra over � and L̃ be the set of elements
x+�c with x∈L and �∈�. Let " � L×L→� be a bilinear map satisfying

"�y� x�=−"�x� y� for x� y∈L
"��xy�� z�+"��yz�� x�+"��zx�� y�=0 for x� y� z∈L�

(" is called a 2-cocycle on L.) Then the Lie multiplication

�x+�c� y+�c�= �xy�+"�x� y�c
makes L̃ into a Lie algebra.

Proof. This is elementary. The two relations satisfied by " give anticommu-
tativity and the Jacobi identity on L̃.

We note that L̃ is a 1-dimensional central extension of L, i.e. there is a
surjective homomorphism

� � L̃→L

given by ��x+�c�=x, such that dim�ker ��=1 and ker � lies in the centre of L̃.
We apply this idea to construct a 1-dimensional central extension of 


(
L0
)

by taking a 2-cocycle on 

(
L0
)
. Let �� � be the invariant bilinear form on L0

satisfying �h��h��=2. Since an invariant bilinear form is determined up to a
scalar multiple on L0, this condition determines it uniquely. In fact this form
on L0 is the restriction to L0 of the standard invariant form on L=L�A�,
since for the standard form we have ��� ��=2 as in Proposition 17.18, hence

�h��h��=
〈

2�
��� �� �

2�
��� ��

〉
= 4
��� �� =2�

We next define a bilinear form

�� �t � 

(
L0
)×


(
L0
)→�

[
t� t−1

]
by �p⊗x�q⊗y�t=pq�x� y�. We define the residue function

Res � �
[
t� t−1

]→�

by Res
(∑

�it
i
)= �−1.
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Lemma 18.3 The function " �

(
L0
)×


(
L0
)→� defined by

"�a�b�=Res
〈
da
dt

� b

〉
t

is a 2-cocycle on 

(
L0
)
.

Proof. To show that " is anticommutative it is sufficient to verify that

"
(
ti⊗x� tj⊗y)=−" (tj⊗y� ti⊗x) �

Now

"
(
ti⊗x� tj⊗y)= Res

〈
iti−1⊗x� tj⊗y〉

t

= Res
(
iti+j−1�x� y�)

=
{
i�x� y� if i+j=0

0 if i+j 	=0�

The anticommutativity follows.
We also need

"
([
ti⊗x� tj⊗y] � tk⊗z)+ "

([
tj⊗y� tk⊗z] � ti⊗x)

+ "
([
tk⊗z� ti⊗x] � tj⊗y)=0�

Now we have

"
([
ti⊗x� tj⊗y] � tk⊗z)=" (ti+j⊗ �xy�� tk⊗z)
=Res��i+j�ti+j−1⊗ �xy�� tk⊗z�t
=Res

(
�i+j�ti+j+k−1��xy�� z�)

=
{
�i+j���xy�� z� if i+j+k=0

0 if i+j+k 	=0.

If i+j+k 	=0 the required property is clear. If i+j+k=0 the required
sum is

−k��xy�� z�− i��yz�� x�−j��zx�� y�
=−k��xy�� z�− i��xy�� z�−j��xy�� z�
=0

since the form is symmetric and invariant.
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We may therefore construct the 1-dimensional central extension 
̃
(
L0
)
of



(
L0
)
given by


̃
(
L0
)=


(
L0
)⊕�c

whose Lie multiplication is given by

�a+�c�b+�c�= �a� b�0+"�a�b�c
where a�b∈
 (L0

)
and �a� b�0 is the Lie product of a�b in 


(
L0
)
.

We next wish to adjoin to 
̃
(
L0
)
an element d which acts on 
̃

(
L0
)
as a

derivation.

Lemma 18.4 The map �� 
̃
(
L0
)→ 
̃

(
L0
)
given by ��a+�c�= t dadt for a∈



(
L0
)
��∈�, is a derivation.

Proof. Since �a+�c�b+�c�= �a� b�0+"�a�b�c we must show that

t
d
dt
�a� b�0=

[
t
da
dt

� b+�c
]
+
[
a+�c� tdb

dt

]
that is

t

[
da
dt

� b

]
0

+ t
[
a�

db
dt

]
0

= t

[
da
dt

� b

]
0

+"
(
t
da
dt

� b

)
c+

[
a� t

db
dt

]
0

+"
(
a� t

db
dt

)
c

that is "
(
t dadt � b

)+" (a� t dbdt )=0. It is sufficient to prove this when a=p⊗x�
b=q⊗y with p�q∈� [

t� t−1
]
� x� y∈L0. Then

"

(
t
da
dt

� b

)
+"

(
a� t

db
dt

)
= "

(
t
dp
dt
⊗x�q⊗y

)
+"

(
p⊗x� tdq

dt
⊗y

)
= "

(
p⊗x� tdq

dt
⊗y

)
−"

(
q⊗y� tdp

dt
⊗x

)
= Res

〈
dp

dt
⊗x� tdq

dt
⊗y

〉
t

−Res
〈
dq
dt
⊗y� tdp

dt
⊗x

〉
t

= Res
(
t
dp
dt

dq
dt
�x� y�

)
−Res

(
t
dp
dt

dq
dt
�x� y�

)
= 0�

We now define 
̂
(
L0
)
by


̂
(
L0
)= 
̃

(
L0
)⊕�d
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and make 
̂
(
L0
)
into a Lie algebra by defining the Lie product as

�a+�d�b+�d�= �a� b�+���b�−���a��
This is clearly skew-symmetric, and the Jacobi identity follows from the fact
that � is a derivation. In particular we have[(

ti⊗x)+�c+�d� (tj⊗y)+�′c+�′d]
= (ti+j⊗ �xy�)+�j (tj⊗y)−�′i (ti⊗x)+�i�−ji�x� y�c

for x� y∈L0, �����′��′ ∈�.

18.2 Realisations of untwisted affine Kac–Moody algebras

We aim to show that 
̂
(
L0
)
is isomorphic to the affine Kac–Moody algebra

L�A�. Thus L�A� can be constructed from L0=L (A0
)
by the following

procedure. First form the loop algebra 

(
L0
)
. Then form the 1-dimensional

central extension 
̃
(
L0
)
. Finally extend this Lie algebra by a derivation to

give 
̂
(
L0
)
.

Theorem 18.5 Let L0=L (A0
)
be a finite dimensional simple Lie algebra

and let A be the untwisted affine Cartan matrix obtained from A0 as in
Section 18.1. Then L�A� is isomorphic to 
̂

(
L0
)
.

Proof. We shall define elements e0� e1� � � � � el  f0� f1� � � � � fl  h0� h1� � � � � hl
in 
̂

(
L0
)
with the aim of using Proposition 14.15 to show that our Lie algebra

is isomorphic to L�A�.
Let E1� � � � �El  F1� � � � � Fl  H1� � � � �Hl be corresponding generators of

L0. We define

ei=1⊗Ei� fi=1⊗Fi� hi=1⊗Hi

for i=1� � � � � l. Then �eifi�=hi for each i. We must also define e0� f0� h0 ∈

̂
(
L0
)
.

We consider the root spaces L0
��L

0
−� where � is the highest root of L0.

We have dimL0
�=dimL0

−�=1, and the map L0
�×L0

−�→� given by the
invariant bilinear form �� � on L0 defined in Section 18.1 is non-degenerate.
Let !0 be the automorphism of L0 satisfying !0 �Ei�=−Fi�!

0 �Fi�=−Ei.
Then !0

(
L0
�

)=L0
−�. We claim it is possible to choose elements F0 ∈L0

��

E0 ∈L0
−� such that !0 �F0�=−E0 and �F0�E0�=1. First choose any non-zero

element F ′0 ∈L0
� and let E′0=−!0 �F ′0�. Let �F ′0�E′0�=�. Then we have � 	=0.
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Now let F0=�F ′0 and E0=�E′0 for �∈� with � 	=0. Then we have E0=
−!0 �F0� and �F0�E0�=�2�. By a suitable choice of �∈� we can ensure
that �2�=1.
We now define e0= t⊗E0 and f0= t−1⊗F0. Let H

0 be the subspace of L0

spanned by h1� � � � � hl and

H= (1⊗H0
)⊗�c⊕�d�

We define h0 ∈H by

h0= �1⊗�−H���+c�
Then we have

�e0f0�=
[
t⊗E0� t

−1⊗F0

]= �1⊗ �E0F0��+�E0�F0�c�
But

�E0F0�=�E0�F0�H ′−�=H ′−�=H−�=−H�

by Corollary 16.5, since ��� ��=2. Thus

�e0f0�= �1⊗�−H���+c=h0�

We also define elements �0��1� � � � ��l ∈H∗. We have elements
�1� � � � ��l ∈

(
H0

)∗
and we extend these toH∗ by saying that �i�c�=�i�d�=0

for i=1� � � � � l. We also define �∈H∗ similarly, saying that ��c�=��d�=0.
Let �∈H∗ be the element defined by

��x�=0 for x∈H0� ��c�=0� ��d�=1�

We then define �0 ∈H∗ by �0=−�+�.
We now show that �H����v� is a realisation of A where �=


�0��1� � � � ��l� and �v= 
h0� h1� � � � � hl�. � is linearly independent since
�1� � � � ��l are linearly independent and �0�d� 	=0��i�d�=0 for i=1� � � � � l.
�v is linearly independent since h1� � � � � hl are linearly independent and h0

involves c whereas hi does not for i=1� � � � � l.
We show that �j �hi�=Aij for i� j∈ 
0�1� � � � � l�. This is clear if i 	=0� j 	=0.

Also for i 	=0 we have

�0 �hi�=−� �hi�+��hi�=−� �hi�=−
l∑

j=1
aj�j �hi�=−

l∑
j=1

Aijaj=Ai0�

Similarly for j 	=0 we have

�j �h0�=�j �−h�+c�=−�j �h��=−
l∑

i=1
ci�j �hi�=−

l∑
i=1

ciAij=A0j �
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Finally �0 �h0�= �−�+�� �−h�+c�=� �h��=2. Thus �H����v� is a real-
isation of A.
We next verify the relations

�eifi�=hi[
eifj

]=0 if i 	= j
�xei�=�i�x�ei for x∈H
�xfi�=−�i�x�fi for x∈H

where i=0�1� � � � � l. These relations certainly hold when i 	=0 and j 	=0. We
have shown above that �e0f0�=h0. For i 	=0 we have

�eif0�=
[
1⊗Ei� t

−1⊗F0

]= t−1⊗ �EiF0�=0

since F0 ∈L0
� and � is the highest root of L0. Similarly for j 	=0 we have[

e0fj
]= [t⊗E0�1⊗Fj

]= t⊗[E0Fj

]=0�

Now let x=x0+�c+�d∈H where x0 ∈H0 and ���∈�. Then
�0�x�=−��x�+��x�=−� �x0�+�

since ��c�=��d�=0� � �x0�=��c�=0� ��d�=1. Also

�xe0�= �x0+�c+�d� t⊗E0�= �t⊗ �x0E0��+��t⊗E0�

=−� �x0� �t⊗E0�+��t⊗E0�

= �0�x�e0�

Similarly one shows �xf0�=−�0�x�f0. Thus the required relations are all
satisfied.
We show next that e0� e1� � � � � el� f0� f1� � � � � fl and H generate 
̂

(
L0
)
.

Let M be the subalgebra of 
̂
(
L0
)

generated by this subset. Since
E1� � � � �El�F1� � � � � Fl generate L0� e1� � � � � el� f1� � � � � fl generate 1⊗L0.
Thus 1⊗L0⊂M .
Let I0={x∈L0  t⊗x∈M}

. Since e0= t⊗E0 we have E0 ∈ I0 so I0 	=0.
Also if x∈ I0� y∈L0 then �xy�∈ I0 since

t⊗ �xy�= �t⊗x�1⊗y�∈M�

Thus I0 is a non-zero ideal of L0. Since L0 is simple we have I0=L0. Thus
t⊗x∈M for all x∈L0. We may now use the relation[

t⊗x� tk−1⊗y]= tk⊗ �xy�
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to deduce by induction on k that tk⊗x∈M for all x∈L0 and all k>0. In an
analogous way, starting with f0= t−1⊗F0 we can show t−k⊗x∈M for all
x∈L0 and all k>0. Now


̂
(
L0
)=H+(1⊗L0

)+∑
k>0

(
tk⊗L0

)+∑
k<0

(
tk⊗L0

)
hence M= 
̂

(
L0
)
.

It remains to show that 
̂
(
L0
)
has no non-zero ideal J with J ∩H=0. Let

L= 
̂
(
L0
)=H⊕ ∑

�i���	=�0�0�

(
ti⊗(L0

)
�

)
summed over i∈���∈ (H0

)∗
with �i��� 	= �0�0�. We claim that this is the

weight space decomposition of L with respect to H . For let h∈H�x∈ (L0
)
�
.

Then h=h0+�c+�d with h0 ∈H0����∈�. Thus[
h� ti⊗x]= [

h0+�c+�d� ti⊗x
]= (ti⊗ �h0x�

)+�i (ti⊗x)
= �� �h0�+�i�

(
ti⊗x)

= ���h�+ i��h�� (ti⊗x)
= ��+ i���h� (ti⊗x)

since ��h�=��h0� � ��h�=�. Thus ti⊗x is a weight vector with weight
�+ i�. Thus we have

L=L0⊕
∑

���i�	=�0�0�
L�+i�

where L0=H and L�+i�= ti⊗
(
L0
)
�
.

Let J be a non-zero ideal of L with J ∩H=O. By Lemma 14.12 we have

J = �L0∩J�⊕
∑

���i�	=�0�0�
�L�+i�∩J� �

Since L0∩J =O we have L�+i�∩J 	=O for some ��� i�. Let ti⊗x∈ J for
x∈ (L0

)
�
with x 	=0. Then there exists y∈ (L0

)
−� with �x� y� 	=0. Thus[

ti⊗x� t−i⊗y]= �xy�+ i�x� y�c
lies in J ∩H , and hence

�xy�+ i�x� y�c=0�

Since �xy�∈H0 and �x� y� 	=0 we must have i=0. But this implies �xy�=0,
whereas we have

�xy�=�x� y�h′� 	=0
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by Corollary 16.5. This gives us the required contradiction. Thus J ∩H=O
implies J =O.
We have now verified all the conditions of Proposition 14.15. We may

therefore deduce that 
̂
(
L0
)
is isomorphic to L�A�.

We can deduce from this theorem the multiplicities of the imaginary roots
of L�A�. These multiplicities were not obtained in Chapter 17. We recall from
Theorem 16.27 (ii) that the imaginary roots of L�A� have form k� where
k∈� and k 	=0.

Corollary 18.6 Let A be an indecomposable affine GCM of untwisted type.
Then the multiplicity of each imaginary root k��k 	=0, is l= rank A.

Proof. We use the realisation L�A�= 
̂
(
L0
)
. The weight space decomposition

of 
̂
(
L0
)
shows that the root space for the root k� is tk⊗H0. The multiplicity

of k� is the dimension of this root space, which is dimH0= l.
We now make some comments on the isomorphism between L�A� and


̂
(
L0
)
which we have obtained. Firstly the standard invariant form on L�A�

maps under this isomorphism to the form on 
̂
(
L0
)
given as follows:〈

ti⊗x� tj⊗y〉=0 if j 	=−i� for x� y∈L0〈
ti⊗x� t−i⊗y〉=�x� y�〈
ti⊗x� c〉=0〈
ti⊗x�d〉=0

�c� c�=0

�d�d�=0

�c�d�=1�

For it is readily checked that the form defined in this way on 
̂
(
L0
)
is invari-

ant. Moreover we also see that the above form on the subspace
(
1⊗H0

)⊕
�c⊕�d of 
̂

(
L0
)
agrees with the standard invariant form on the subspace H

of L�A� under our isomorphism between these subspaces. However, the proof
of Theorem 16.2 shows that a symmetric invariant bilinear form on L�A� is
uniquely determined by its restriction to H . Thus the above form on 
̂

(
L0
)

corresponds to the standard invariant form on L�A�.
We also observe that the element c∈ 
̂ (L0

)
corresponds to the canonical

central element in L�A� under the isomorphism. For we have

h0= �1⊗−H��+c in 
̂
(
L0
)
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and hence
∑l

i=0 cihi= c in 
̂
(
L0
)
. It follows that the image of c under the

isomorphism is the canonical central element of L�A�.
Also, since �0�d�=1��i�d�=0 for i=1� � � � � l the element d∈ 
̂ (L0

)
corresponds under the isomorphism to an analogous scaling element d

for L�A�.

18.3 Some graph automorphisms of affine algebras

We now wish to find realisations of the remaining affine Kac–Moody alge-
bras L�A� where A has type B̃t

l� C̃
t
l � F̃

t
4� G̃

t
2� Ã

′
1 or C̃ ′l . These are called the

twisted affine Kac–Moody algebras. We shall obtain realisations for them as
fixed point subalgebras of certain automorphisms of untwisted Kac–Moody
algebras. Before doing so, however, we consider the graph automorphisms of
the untwisted algebras which fix the vertex 0 and therefore arise from graph
automorphisms of the corresponding finite dimensional simple Lie algebras.
The graph automorphisms of the finite dimensional simple Lie algebras were
considered in Section 9.5. We recall from Theorem 9.19 that if � is a graph
automorphism of the finite dimensional simple Lie algebra L�A� then L�A��

is isomorphic to the simple Lie algebra L
(
A1
)
where A1 is obtained from A

as follows.

A : A2k A2k−1 Dk+1 D4 E6

Order of � : 2 2 2 3 2
A1 : Bk Ck Bk G2 F4

We shall now prove an analogous result to Theorem 9.19 for affine algebras.

Theorem 18.7 Let A be an affine Cartan matrix of type Ã2k−1� D̃k+1� D̃4 or Ẽ6

and let � be a graph automorphism of the Kac–Moody algebra L�A� which
fixes vertex 0 and has order 2, 2, 3, 2 respectively. Let A0 be the corresponding
finite Cartan matrix and A1 be the finite Cartan matrix associated with A0 as
above. Let Ã1 be the untwisted affine Cartan matrix obtained from A1. Then
L�A�� is isomorphic to L

(
Ã1
)
.

Specifically we have

L
(
Ã2k−1

)� � L
(
C̃k

)
L
(
D̃k+1

)� � L
(
B̃k

)
L
(
D̃4

)� � L
(
G̃2

)
L
(
Ẽ6

)� � L
(
F̃4

)
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Proof. The algebra L
(
A0
)
has a Cartan decomposition

L
(
A0
)=H0⊕ ∑

�∈�0

L0
��

Thus L�A� has a corresponding decomposition

L�A�=H0⊕�c⊕�d⊕∑
k 	=0

(
tk⊗H0

)+∑
k��

(
tk⊗L0

�

)
�

Similarly we have decompositions

L
(
A1
)= H1⊕ ∑

�∈�1

L1
�

L
(
Ã1
)= H1⊕�c⊕�d⊕∑

k 	=0

(
tk⊗H1

)⊕∑
k��

(
tk⊗L1

�

)
�

Consider the graph automorphism � � L�A�→L�A�. We have

�
(
H0

)=H0� �
(
tk⊗H0

)= tk⊗H0� �
(
tk⊗L0

�

)= tk⊗L0
�����

��c�= c� ��d�=d�
Hence

L�A�� = (H0
)�⊕�c⊕�d⊕∑

k 	=0

(
tk⊗(H0

)�)+∑
k�S

(
tk⊗(L0

S

)�)
where S is an equivalence class of roots in �0 and L0

S=
∑

�∈S L0
� (cf. Propo-

sition 9.18). Now the isomorphism L
(
A0
)�→L

(
A1
)
of Theorem 9.19 gives

rise to bijective maps(
H0

)�→H1(
L0
S

)�→L1
� where �∈�1 corresponds to S

tk⊗(H0
)�→ tk⊗H1

tk⊗(L0
S

)�→ tk⊗L1
��

These maps, together with c→ c�d→d, determine a bijective map
� � L�A��→L

(
Ã1
)
. We wish to show this map is an isomorphism.

Under this bijection � the subalgebra
(
H0

)�⊕�c⊕�d maps to H1⊕�c⊕
�d and both are abelian. The action of

(
H0

)�
on tk⊗(H0

)�
and tk⊗(L0

S

)�
agrees with the action of H1 on tk⊗H1 and tk⊗L1

� respectively. The element
c lies in the centre on both sides. The action of d on tk⊗(H0

)�
and tk⊗(L0

S

)�
(i.e. multiplication by k) agrees with the action of d on tk⊗H1 and tk⊗L1

�

respectively. Thus it is sufficient to compare the multiplication of the root
spaces on both sides. These multiplications are trivially preserved by � unless
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we take two roots whose sum is 0. So suppose x� y∈ (H0
)�

and x1� y1 are the
corresponding elements of H1. We have[

tk⊗x� t−k⊗y]=k�x� y�0c[
tk⊗x1� t−k⊗y1

]=k �x1� y1�1 c
where �� �0 is the standard invariant form on L

(
A0
)
and �� �1 the standard

invariant form on L
(
A1
)
.

Also if x∈ (L0
S

)�
� y∈ (L0

−S
)�

and x1� y1 are the corresponding elements of
L1
��L

1
−� then we have[

tk⊗x� t−k⊗y]= �xy�+k�x� y�0c[
tk⊗x1� t−k⊗y1

]= �x1y1�+k �x1� y1�1 c�
Thus to show that � is an isomorphism it is sufficient to show that the
isomorphism L

(
A0
)�→L

(
A1
)
preserves the standard invariant form, that is

if x→x1� y→y1 then �x� y�0=�x1� y1�1. Since any two symmetric invariant
bilinear forms on a finite dimensional simple Lie algebra are proportional it
is sufficient to check this for just one non-zero value. To do this we choose
a 1-element orbit �i� of � on 
1� � � � � l�. Such a 1-element orbit exists in all
the cases being considered. Then we have an element hi ∈L

(
A0
)�

mapping
to an element hi ∈L

(
A1
)
. We have

�hi�hi�0=2 and �hi�hi�1=2di=2ai/ci�

A glance at the values of ai� ci for L
(
A1
)
for i coming from 1-element orbits

of � shows that ai= ci in these cases, so di=1. Hence �hi�hi�0=�hi�hi�1
and it follows that the isomorphism L

(
A0
)�→L

(
A1
)
preserves the standard

invariant forms. This completes the proof.

Note The reader will have noticed that the case L
(
Ã2k

)�
has not been included

in this theorem. The above proof breaks down in this case because � has no
1-element orbit on 
1� � � � � l�. The diagrams of A0�A1 are as shown.

1 2 k

2k 2k – 1 k + 1

A0 A1

1 2 k

In fact, if we take the �-orbit �k� k+1� on 
1� � � � �2k�, then the isomorphism
L
(
A0
)�→L

(
A1
)
of Theorem 9.19 maps

2 �hk+hk+1�∈L
(
A0
)�

to hk ∈L
(
A1
)
�



18.4 Realisations of twisted affine algebras 429

We have

�hk�hk�0=2� �hk+1� hk+1�0=2� �hk�hk+1�0=−1�
Thus

�2 �hk+hk+1� �2 �hk+hk+1��0=8�

On the other hand

�hk�hk�1=2
ak
ck
=2dk=4�

Thus

�2 �hk+hk+1� �2 �hk+hk+1��0 	= �hk�hk�1
and so the isomorphism between L�A2k�

� and L�Bk� does not preserve the
standard invariant form. It does not therefore lead to an isomorphism between
L
(
Ã2k

)�
and L

(
B̃k

)
in the manner described in Theorem 18.7.

18.4 Realisations of twisted affine algebras

In order to obtain realisations of the twisted Kac–Moody algebras L�A�

where A has types B̃t
l� C̃

t
l � F̃

t
4� G̃

t
2� Ã

′
1� C̃

′
l we must consider the fixed point

subalgebras of so-called twisted graph automorphisms.
Let L0=L (A0

)
be a finite dimensional simple Lie algebra and � � L0→L0

be a graph automorphism of L0. Then � extends to a graph automorphism of

̂
(
L0
)=


(
L0
)⊕�c⊕�d given by

�
(
ti⊗x)= ti⊗��x� for x∈L0

��c�= c� ��d�=d�
Suppose � has order m and let �= e2(i/m. Then we may define an automor-
phism $ of 
̂

(
L0
)
by

$
(
ti⊗x)=�−iti⊗��x� for x∈L0

$�c�= c� $�d�=d�
$ is called a twisted graph automorphism of 
̂

(
L0
)
, and also has order m.

In fact m=2 or 3 in the cases which can arise. We shall consider the fixed
point subalgebras 
̂

(
L0
)$
. In order to do so we first obtain more information

about the action of � on L0.
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Proposition 18.8 (i) Let L0 be a simple Lie algebra of type A2l−1�Dl+1 or
E6 and � be a graph automorphism of L0 of order 2. Let

(
L0
)
−1 be the

eigenspace of � on L0 with eigenvalue −1. Then
L0= (L0

)�⊕(L0
)
−1

and
(
L0
)
−1 is an irreducible

(
L0
)�
-module.

(ii) Let L0 have type D4 and � be a graph automorphism of L0 of order 3.
Let

(
L0
)
!
�
(
L0
)
!2 be the eigenspaces of � with eigenvalues !�!2 where

!= e2(i/3. Then

L0= (L0
)�⊕(L0

)
!
⊕(L0

)
!2

and
(
L0
)
!
�
(
L0
)
!2 are both irreducible

(
L0
)�
-modules.

Proof. Let x∈ (L0
)�
� y∈ (L0

)
 
where  is an eigenvalue of � . Then

��xy�= ���x����y��= �xy��
Thus �xy�∈ (L0

)
 
and so

(
L0
)
 
is an

(
L0
)�
-module.

Suppose first that � has order 2. Let ����� be a 2-element orbit of � on
�0 and E��E� ∈L0 be root vectors such that � �E��=E�. Then E�−E� ∈(
L0
)
−1 and the weight spaces of

(
L0
)
−1 are spanned by such elements for all

2-element orbits �����. The roots ���∈ (H0
)∗

have the same restriction to((
H0

)�)∗
and ����H0�

�
�
∗ is the weight of E�−E�. The highest weight of the(

L0
)�
-module

(
L0
)
−1 is obtained from the highest 2-element orbit �����. Let

us choose the labellings

1 2

l

l + 12l – 22l – 1

l – 1
1 2

l

l + 1

l – 1

1 2

3

6 5

4

for the Dynkin diagrams of A2l−1�Dl+1�E6. Then the highest 2-element
orbits are

��1+�2+· · ·+�2l−2� �2+· · ·+�2l−2+�2l−1� for A2l−1

��1+�2+· · ·+�l−1+�l� �1+�2+· · ·+�l−1+�l+1� for Dl+1

��1+2�2+2�3+�4+�5+�6� �1+2�2+�3+�4+�5+2�6� for E6�
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In these three cases the subalgebra
(
L0
)�

has type Cl�Bl or F4 respectively
by Theorem 9.19. We choose the labellings

l – 11 2 l l – 11 2 l l 2 3 4

for these Dynkin diagrams. Thus the highest weights for the
(
L0
)�
-modules(

L0
)
−1 are

�1+2�2+· · ·+2�l−1+�l for Cl

�1+�2+· · ·+�l−1+�l for Bl

�1+2�2+3�3+2�4 for F4�

Using the equation �i=
∑

j Aji!j we see that these highest weights are !2

for Cl, !1 for Bl and !4 for F4.
Now dim

(
L0
)
−1=dimL0−dim

(
L0
)�

and this is 2l2− l−1= (2l2)−1 for
Cl, 2l+1 for Bl, and 26 for F4. However, we also have

dimL�!2�=
(
2l
2

)
−1 inCl

dimL�!1�=2l+1 inBl

dimL�!4�=26 inF4

by Weyl’s dimension formula. Thus in each case dim
(
L0
)
−1 is the dimension

of the irreducible module with the appropriate highest weight. Thus
(
L0
)
−1

is isomorphic to this irreducible
(
L0
)�
-module.

Now suppose � has order 3. Then L0 has type D4. Let ������� be a
3-element orbit of � on �0 and E��E��E� be root vectors such that � �E��=
E���

(
E�

)=E� . Then we have

E�+!2E�+!E� ∈
(
L0
)
!

E�+!E�+!2E� ∈
(
L0
)
!2

where!= e2(i/3, and the weight spaces of the
(
L0
)�
-modules

(
L0
)
!
and

(
L0
)
!2

are spanned by such vectors for all 3-element orbits. We choose the labelling

1

2

3

4

for the Dynkin diagram of D4. The highest 3-element orbit of � on �0 is then

��1+�2+�3� �1+�2+�4� �1+�3+�4� �
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The subalgebra
(
L0
)�

has type G2, for which we take the labelling

1 2

Thus the highest weights of the G2-modules
(
L0
)
!

and
(
L0
)
!2 are both

�1+2�2. Now in G2 we have �1+2�2=!2 and dimL�!2�=7. However,
we also have

dim
(
L0
)
!
=dim

(
L0
)
!2 = 1

2

(
dimL0−dim

(
L0
)�)=7�

Thus the G2-modules
(
L0
)
!
and

(
L0
)
!2 are both irreducible and isomorphic

to L�!2�.

Theorem 18.9 Let L0 be a simple Lie algebra of type A2l−1�Dl+1�E6 or D4

and let � be a graph automorphism of L0 of order 2, 2, 2, 3 respectively. Let
$ be the corresponding twisted graph automorphism of 
̂

(
L0
)
. Then the fixed

point subalgebra 
̂
(
L0
)$
is isomorphic to a twisted affine Kac–Moody algebra.

Explicitly we have


̂
(
Ã2l−1

)$�L (B̃t
l

)

̂
(
D̃l+1

)$�L (C̃ t
l

)

̂
(
Ẽ6

)$�L (F̃ t
4

)

̂
(
D̃4

)$�L (G̃t
2

)
�

Proof. The method of proof is broadly similar to that of Theorem 18.5 giving
the realisations of the untwisted affine Kac–Moody algebras. The basic idea
is to show that the given subalgebra of $-invariant elements satisfies the
conditions of Proposition 14.15, and is therefore isomorphic to the appropriate
twisted affine Kac–Moody algebra.
We have


̂
(
L0
)=∑

k∈�

(
tk⊗L0

)⊕�c⊕�d�

If � has order 2 we have


̂
(
L0
)$=∑

k∈�

(
t2k⊗(L0

)�)⊕∑
k∈�

(
t2k+1⊗(L0

)
−1
)⊕�c⊕�d

whereas if � has order 3


̂
(
L0
)$= ∑

k∈�

(
t3k⊗(L0

)�)⊕∑
k∈�

(
t3k+1⊗(L0

)
!

)⊕∑
k∈�

(
t3k+2⊗(L0

)
!2

)
⊕�c ⊕ �d�
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Let E1� � � � �Ek�F1� � � � � Fk�H1� � � � �Hk be standard generators of L
0. We wish

to define analogous elements

e0� e1� � � � � el� f0� f1� � � � � fl� h0� h1� � � � � hl in 
̂
(
L0
)$
�

We pick a representative �0 ∈�0 of the highest 2- or 3-element �-orbit on �0.
Specifically we have

�0=�1+�2+· · ·+�2l−2 inA2l−1

�0=�1+�2+· · ·+�l inDl+1

�0=�1+2�2+2�3+�4+�5+�6 inE6�

The elements ei� fi� hi are then chosen as follows.
Type A2l−1

1 2

l

l + 12l – 22l – 1

l – 1

e1=1⊗�E1+E2l−1� � � � � � el−1=1⊗�El−1+El+1� � el=1⊗El

f1=1⊗�F1+F2l−1� � � � � � fl−1=1⊗�Fl−1+Fl+1� � fl=1⊗Fl

h1=1⊗�H1+H2l−1� � � � � � hl−1=1⊗�Hl−1+Hl+1� � hl=1⊗Hl

e0= t⊗
(
F�0−F���0�

)
� f0= t−1⊗

(
E�0−E���0�

)
h0=1⊗

(
−H�0−H���0�

)
+2c�

Type Dl+1

1 2 l

l + 1

l – 1

e1=1⊗E1� � � � � el−1=1⊗El−1� el=1⊗�El+El+1�

f1=1⊗F1� � � � � fl−1=1⊗Fl−1� fl=1⊗�Fl+Fl+1�

h1=1⊗H1� � � � � hl−1=1⊗Hl−1� hl=1⊗�Hl+Hl+1�

e0= t⊗
(
F�0−F���0�

)
� f0= t−1⊗

(
E�0−E���0�

)
h0=1⊗

(
−H�0−H���0�

)
+2c�
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Type E6

1 2

3

6 5

4

e1 = 1⊗E1� e2=1⊗E2� e3=1⊗�E3+E6� � e4=1⊗�E4+E5�

f1 = 1⊗F1� f2=1⊗F2� f3=1⊗�F3+F6� � f4=1⊗�F4+F5�

h1 = 1⊗H1� h2=1⊗H2� h3=1⊗�H3+H6� � h4=1⊗�H4+H5�

e0 = t⊗
(
F�0−F���0�

)
� f0= t−1⊗

(
E�0−E���0�

)
h0 = 1⊗

(
−H�0−H���0�

)
+2c�

Type D4

1

2

3

4

e1 = 1⊗E1� e2=1⊗�E2+E3+E4�

f1 = 1⊗F1� f2=1⊗�F2+F3+F4�

h1 = 1⊗H1� h2=1⊗�H2+H3+H4�

e0 = t⊗
(
F�0+!2F���0�+!F�2��0�

)
f0 = t−1⊗

(
E�0+!E���0�+!2E�2��0�

)
h0 = 1⊗

(
−H�0−H���0�−H�2��0�

)
+3c�

Let H⊂ 
̂
(
L0
)

be given by H= (1⊗H0
)⊕�c⊕�d. We define maps

�0��1� � � � ��l � H
�→�. We have roots �i ∈H∗ and such roots in the same

�-orbit have the same restriction to H� . We define �1� � � � ��l ∈ �H��∗ to be
the restrictions of the corresponding roots in H∗. We also define �0 ∈ �H��∗

by �0=−�0+�.
Let 
̂

(
L0
)�L�A� as in Theorem 18.5. We wish to show that 
̂

(
L0
)$�

L�A′� where A′ is the affine Cartan matrix of type given below:

A � Ã2l−1 D̃l+1 Ẽ6 D̃4

A′ � B̃t
l C̃ t

l F̃ t
4 G̃t

2
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We shall first show that �H�����v� is a realisation of A′ where

�v= 
h0� h1� � � � � hl�⊂H�� �= 
�0��1� � � � ��l�⊂ �H��∗ �

We know from Theorem 9.19 that �j �hi�=A′ij for i� j∈ 
1� � � � � l�. This
l× l matrix is non-singular and so h1� � � � � hl and �1� � � � ��l are linearly
independent. The element h0 involves c whereas h1� � � � � hl do not, thus
h0� h1� � � � � hl are linearly independent. We have �i�d�=0 for i=1� � � � � l
but �0�d� 	=0, thus �0��1� � � � ��l are linearly independent. We must show
that

�j �h0�=A′0j j=1� � � � � l

�0 �hi�=A′i0 i=1� � � � � l

�0 �h0�=2�

We recall the integers ai� ci associated with the affine Cartan matrix A′, which
are as follows.

a0� a1� � � � � al c0� c1� � � � � cl

1

1

2 2 2 2 2 1 1

1

2 2 2 2 2 2

11 1 1 1 1 1 21 2 2 2 2 1

1 2 3 2 1 2 4 3 2 1

1 2 1 3 2 1

We then note that the following significant equations hold in each of the cases
being considered:

l∑
i=0

ai�i = �

l∑
i=0

cihi =mc where m is the order of ��

We then have

�0 �hi�=−
l∑

j=1
aj�j �hi�=−

l∑
j=1

A′ijaj=A′i0a0=A′i0
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for i=1� � � � � l since a0=1 in the cases being considered. Similarly

�j �h0�=−
l∑

i=1
ci�j �hi�=−

l∑
i=1

ciA
′
ij= c0A′0j=A′0j

for j=1� � � � � l. Also

�0 �h0�=
(−�0+�)(1⊗( H�0−H���0�−· · ·

)
+mc

)
=�0 �H�0�=2�

We also note that A′ is an �l+1�×�l+1� matrix of rank l and that dimH� =
l+2. Thus we have shown that �H�����v� is a realisation of A′.
We next verify the relations necessary for applying Proposition 14.15. We

first show that [
hiej

]=A′ijej [
hifj

]=−A′ijfj
for i� j∈ 
0�1� � � � � l�. These are known for i� j∈ 
1� � � � � l� by Theorem 9.19.
So we must check[

h0ej
]=A′0jej� [

h0fj
]=−A′0jfj j=1� � � � � l

�hie0�=A′i0e0� �hif0�=−A′i0f0 i=1� � � � � l

�h0e0�=2e0� �h0f0�=−2f0�
For j=1� � � � � l we have

[
h0ej

]=− l∑
i=1

ci
[
hiej

]=(− l∑
i=1

ciA
′
ij

)
ej=A′0jej

and similarly for i=1� � � � � l we have
[
h0fj

]=−A′0jfj . Also
�hie0�=

[
hi� t⊗

(
F�0+ −1F���0�+· · ·

)]
= t⊗−�0 �hi�

(
F�0+ −1F���0�+· · ·

)
=−�0 �hi� e0=

(
−

l∑
j=1

aj�j �hi�

)
e0=

(
−

l∑
j=1

A′ijaj

)
e0

= A′i0e0�

Similarly we have �hif0�=−A′i0f0. We also have

�h0e0�=
[
1⊗(−H�0−H���0�−· · ·

)
� t⊗(F�0+ −1F���0�+· · ·

)]
= 2t⊗(F�0+ −1F���0�+· · ·

)=2e0�

Similarly we have �h0f0�=−2f0.
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Finally we have relations

�cei�=0=�i�c�ei i=1� � � � � l

�cfi�=0=−�i�c�fi i=1� � � � � l

�dei�=0=�i�d�ei i=1� � � � � l

�dfi�=0=−�i�d�fi i=1� � � � � l

�de0�= e0=�0�d�e0

�df0�=−f0=−�0�d�f0

Since H$= (1⊗(H0
)�)⊕�c⊕�d we have now verified all relations neces-

sary for applying Proposition 14.15.
We next show that the elements e0� e1� � � � � el, f0� f1� � � � � fl together with

H$ generate 
̂
(
L0
)$
. We know that e1� � � � � el� f1� � � � � fl generate

(
L0
)�

by
Theorem 9.19. Since


̂
(
L0
)$=∑

k∈�

(
t2k⊗(L0

)�)⊕∑
k∈�

(
t2k+1⊗(L0

)
−1
)⊕�c⊕�d

when � has order 2 and


̂
(
L0
)$ =∑

k∈�

(
t3k⊗(L0

)�)⊕∑
k∈�

(
t3k+1⊗(L0

)
!

)⊕∑
k∈�

(
t3k+2⊗(L0

)
!2

)⊕�c⊕�d

when � has order 3, it is sufficient to show that the subspaces
(
t2k⊗(L0

)�)
for k 	=0 and t2k+1⊗(L0

)
−1 lie in the subalgebra generated by the above

elements when � has order 2, and the subspaces
(
t3k⊗(L0

)�)
for k 	=0�(

t3k+1⊗(L0
)
!

)
�
(
t3k+2⊗(L0

)
!2

)
lie in this subalgebra when � has order 3.

Let M be the subalgebra of 
̂
(
L0
)$

generated by e0� e1� � � � � el�

f0� f1� � � � � fl�H
$ . Suppose first that � has order 2. We have

e0= t⊗
(
F�0−F���0�

)∈M and F�0−F���0� ∈
(
L0
)
−1 �

Now if x∈ (L0
)�
� y∈ (L0

)
−1 then

�1⊗x� t⊗y�= t⊗ �xy�∈ t⊗(L0
)
−1 �

Thus the elements y∈ (L0
)
−1 for which t⊗y∈M form an

(
L0
)�
-submodule of(

L0
)
−1. However,

(
L0
)
−1 is an irreducible

(
L0
)�
-module by Proposition 18.8.

Thus t⊗(L0
)
−1 lies in M . Now we can find elements x� y∈ (L0

)
−1 such that

�xy� 	=0. Then �t⊗x� t⊗y�= t2⊗ �xy� is a non-zero element of M . However,
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the set of z∈ (L0
)�

such that t2⊗z∈M is an ideal of
(
L0
)�

and
(
L0
)�

is a
simple Lie algebra. Thus t2⊗(L0

)�
lies in M . The relations[

t2⊗x� t2k⊗y]= t2k+2⊗ �xy� x� y∈ (L0
)�[

t2⊗x� t2k+1⊗y]= t2k+3⊗ �xy� x∈ (L0
)�
� y∈ (L0

)
−1

can then be used to show by induction on k that t2k⊗(L0
)� ⊂M and

t2k+1⊗(L0
)
−1⊂M when k>0. Starting with f0 instead of e0 will similarly

show this when k<0. Thus M= 
̂�L0�$ .
Now suppose that � has order 3. We have

e0= t⊗
(
F�0+!2F���0�+!F�2��0�

)
F�0+!2F���0�+!F�2��0� ∈

(
L0
)
!
�

An argument similar to the above shows that t⊗(L0
)
!
⊂M . Now there exist

elements x� y∈ (L0
)
!
with �xy� 	=0. Then

�t⊗x� t⊗y�= t2⊗ �xy�∈ t2⊗(L0
)
!2 �

We can then show as above that t2⊗(L0
)
!2 ⊂M . There exist elements

x∈ (L0
)
!
� y∈ (L0

)
!2 with �xy� 	=0. Then[
t⊗x� t2⊗y]= t3⊗ �xy�∈ t3⊗(L0

)�
�

We then see as above that t3⊗(L0
)� ⊂M . Induction on k can then be used

to see that the subspaces

t3k⊗(L0
)�
� t3k+1⊗(L0

)
!
� t3k+2⊗(L0

)
!2

all lie in M when k>0. A similar result is obtained when k<0 starting
with f0 instead of e0. Thus M= 
̂

(
L0
)$
. Hence in all cases the elements

e0� e1� � � � � el� f0� f1� � � � � fl and H$ generate 
̂�L0�$ .
Finally we must show that 
̂

(
L0
)$

has no non-zero ideal J with J ∩H$=O.
To see this we decompose 
̂

(
L0
)$

into root spaces with respect to H$ . We
first suppose � has order 2. For each 1-element orbit ��� of � on �0 we
choose E� ∈L0

�. We showed in the proof of Theorem 9.19 that � �E��=E�.
For each 2-element orbit ����� of � on �0 we choose E� ∈L0

��E� ∈L0
� such

that � �E��=E�. Then 
̂
(
L0
)$

is the direct sum of H$ and the following
weight spaces.
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t2k⊗(H0
)�

with weight 2k�

t2k+1⊗(H0
)
−1 with weight �2k+1��

t2k⊗�E� with weight �+2k� where ��� is a 1-element orbit

t2k⊗�
(
E�+E�

)
with weight �+2k� where ����� is a 2-element orbit

t2k+1⊗�
(
E�−E�

)
with weight �+�2k+1�� where ����� is a
2-element orbit�

By Lemma 14.12 the ideal J is the direct sum of its intersections with these
weight spaces. Thus J has non-zero intersection with one of these weight
spaces. Taking a non-zero element x in this weight space and in J we can
find an element y in the negative weight space such that �xy� is a non-zero
element of H$ , and this contradicts J ∩H$=O.

When � has order 3 a similar argument can be applied. This time the
weight spaces are

t3k⊗(H0
)�

with weight 3k�

t3k+1⊗(H0
)
!

with weight �3k+1��

t3k+2⊗(H0
)
!2 with weight �3k+2��

t3k⊗�E� with weight �+3k� where ��� is a 1-element orbit

t3k⊗�
(
E�+E�+E�

)
with weight �+3k� where ������� is a
3-element orbit

t3k+1⊗�
(
E�+!2E�+!E�

)
with weight �+�3k+1�� where �������
is a 3-element orbit

t3k+2⊗�
(
E�+!E�+!2E�

)
with weight �+�3k+2�� where �������
is a 3-element orbit�

Any non-zero ideal J with J ∩H$=O must have non- zero intersection with
one of these weight spaces. We can then multiply it by an element of the
negative weight space to give a non-zero element of H$ , and this contradicts
J ∩H$=O. Thus we deduce that J =O.
We have now verified all the conditions of Proposition 14.15 and can

conclude that 
̂
(
L0
)$

is isomorphic to L�A′�.

As a corollary we obtain the multiplicities of the imaginary roots of the
affine Kac–Moody algebras of types B̃t

l� C̃
t
l � F̃

t
4� G̃

t
2.
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Corollary 18.10 The multiplicities of the imaginary roots are as follows.

Type B̃t
l. The roots 2k� �k 	=0� have multiplicity l and the roots �2k+1��

have multiplicity l−1.
Type C̃ t

l The roots 2k� �k 	=0� have multiplicity l and the roots �2k+1��
have multiplicity 1.
Type F̃ t

4 The roots 2k� �k 	=0� have multiplicity 4 and the roots �2k+1��
have multiplicity 2.
Type G̃t

2 The roots 3k� �k 	=0� have multiplicity 2 and the roots �3k+1��
and �3k+2�� have multiplicity 1.

Proof. For types B̃t
l� C̃

t
l � F̃

t
4 Theorem 18.9 shows that the multiplicity of

2k� �k 	=0� is dim
(
H0

)�
, which is equal to l. The multiplicity of �2k+1��

is dim
(
H0

)
−1, which is l−1�1�2 in the three cases respectively.

For type G̃t
2 the multiplicity of 3k� �k 	=0� is dim

(
H0

)� =2, and the
multiplicities of �3k+1�� and �3k+2�� are dim

(
H0

)
!
=dim

(
H0

)
!2 =1.

We now make some comments on the isomorphism between L�A′� and

̂
(
L0
)$

which we have obtained. The standard invariant form on L�A′� does
not map under this isomorphism to the restriction of the standard invariant
form on 
̂

(
L0
)
. For let �i� be a 1-element �-orbit on 
1� � � � � l�. Such an orbit

exists in each of the cases. Then hi ∈L�A′� corresponds to 1⊗Hi ∈ 
̂
(
L0
)$
.

We have

�1⊗Hi�1⊗Hi�=2

�hi�hi�′ =2ai/ci�

However, we may check that ci=mai for all 1-element �-orbits, hence

�hi�hi�′ =2/m

where m is the order of � . Thus

�1⊗Hi�1⊗Hi�=m �hi�hi�′ �
Also the isomorphism does not map the element c∈ 
̂ (L0

)$
to the canonical

central element c′ ∈L�A′�. We noted in the proof of Theorem 18.9 that

l∑
i=0

cihi=mc in 
̂
(
L0
)$

and hence our isomorphism maps mc to c′.
However, the scaling element d∈ 
̂ (L0

)$
maps to a scaling element d′ ∈

L�A′�. For we have �0=−�0+� and so �0�d�=��d�=1. Also �i�d�=0
for i=1� � � � � l.
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We also see that, if x� y∈ 
̂ (L0
)$

map to x′� y′ ∈L�A′�, then
�x� y�=m �x′� y′�′

where �� � and �� �′ are the standard invariant forms. This is true for x′� y′ ∈
L�A′�′ since any two symmetric invariant forms are proportional on L�A′�′.
However, it is also true when y=d�y′ =d′ since

�hi�d�=0 for i=1� � � � � l

�c�d�=1

�d�d�=0

Thus it is true for all x′� y′ ∈L�A′�.
We now wish to obtain realisations of the remaining twisted Kac–Moody

algebras of type C̃ ′l for l≥2 and Ã′1. These will be obtained as fixed point
subalgebras of the untwisted Kac–Moody algebra of type Ã2l under the twisted
graph automorphism $. We begin by recalling from Theorem 9.19 that the
fixed point subalgebra of the finite dimensional Lie algebra L�A2l� under its
graph automorphism � is given by

L�A2l�
� �L�Bl��

Bl

σ

A2l

l – 11 2 l

2l 2l – 1 l + 1l + 2

1 2 l – 1 l

In order to show that L
(
Ã2l

)$�L (C̃ ′l) if l≥2 and L
(
Ã2

)$�L (Ã′1) we shall
compare the diagrams

10 2 l – 1 l

l – 11

0

2

A2l
~

l

2l 2l – 1 l + 1l + 2
~
Cl′

1

2

0

A2
~

A1
~ ′
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We note that the numbering of the vertices of the graph for C̃ ′l is not the
same as the numbering previously used when C̃ ′l was constructed from Cl

by adding an extra vertex labelled 0. Here we are starting from the finite
dimensional simple Lie algebra Bl rather than Cl. In Theorem 17.17 (d) and
(e) we obtained the roots of C̃ ′l and Ã

′
1 in terms of those of Cl. For our present

purpose we require these roots in terms of those of Bl.
We consider the diagram of C̃ ′l labelled as follows.

10 2 l – 2 l – 1 l

and let Bl be the subdiagram obtained by omitting vertex 0 and Cl be the
subdiagram obtained by omitting vertex l. We recall that

�=�0+2�1+· · ·+2�l−1+2�l�

The following lemma will be useful by relating the roots of Bl and Cl.

Lemma 18.11 (i) Each long positive root of Cl involves �0. Each short
positive root of Bl involves �l. There is a bijective correspondence �↔�

between long positive roots of Cl and short positive roots of Bl satisfying
�+2�=�.
(ii) There is a bijective correspondence �↔� between short positive roots of

Cl and long positive roots of Bl. If ��� do not involve �0��l respectively
this correspondence is the identity map. If � involves �0 and � involves
�l the correspondence is given by �+�=�.

Proof. This follows immediately from expressing the roots of Bl and Cl in
terms of the fundamental roots �1� � � � ��l and �0��1� � � � ��l−1 respectively.

Example The above bijection between �+ �C3� and �+ �B3� is as given
below.

10 2 3

�+ �C3� �+ �B3�

�0 �1+�2+�3

�0+2�1 �2+�3
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�0+2�1+2�2 �3

�1 �1

�2 �2

�1+�2 �1+�2

�0+�1 �1+2�2+2�3

�0+�1+�2 �1+�2+2�3

�0+2�1+�2 �2+2�3

By using Lemma 18.11 together with Theorem 17.17 we may express the
real roots of C̃ ′l in terms of the roots of Bl.

Proposition 18.12 (i) The real roots of L
(
C̃ ′l
)
, l≥2, are

�Re�s =
{
�+r�  �∈�0

s � r ∈�
}

�Re�i =
{
�+r�  �∈�0

l � r ∈�
}

�Re�l =
{
2�+�2r+1��  �∈�0

s � r ∈�
}

where �Re�s��Re�i��Re�l are the short, intermediate and long roots respec-
tively, and �0

s ��
0
l are the short and long roots of Bl.

(ii) The real roots of L
(
Ã′1
)
are

�Re�s =
{
�+r�  �∈�0� r ∈�}

�Re�l =
{
2�+�2r+1��  �∈�0� r ∈�}

where �0 is the root system of type A1 obtained from the short funda-
mental root of Ã′1.

Proof. (i) We know from Theorem 17.17 that

�Re�s =
{
1
2
��+�2r−1���  �∈�0

l �Cl� � r ∈�
}

�Re�i =
{
�+r�  �∈�0

s �Cl� � r ∈�
}

�Re�l =
{
�+2r�  �∈�0

l �Cl� � r ∈�
}
�

We make use of the bijection �↔��−�↔−� of Lemma 18.11 where
�∈�+ �Cl� ��∈�+ �Bl�. For each �∈�0 �Cl� we choose the corresponding
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�∈�0 �Bl�. First suppose �∈�0
l �Cl�. The corresponding �∈�0

s �Bl� is given
by �+2�=� if � is positive and �+2�=−� if � is negative. Thus

1
2
��+�2r−1���=

{
−�+r� if � is positive

−�+�r−1�� if � is negative

�+2r�=
{
−2�+�2r+1�� if � is positive

−2�+�2r−1�� if � is negative
�

This gives the required formulae for �Re�s and �Re�l as r runs through �. Next
consider �Re�i. If �∈�0

s �Cl� does not involve �0 we have �=�∈�0
l �Bl�. If

�∈�0
s �Cl� does involve �0 the corresponding �∈�0

l �Bl� satisfies �+�=�
if � is positive and �+�=−� if � is negative. Then

�+r�= �+r� in the first case

�+r�=
{
−�+�r+1�� if � is positive

−�+�r−1�� if � is negative

in the second case. This gives the required formula for �Re�i as r runs
through �.
(ii) In type Ã′1 the argument is exactly the same except that �0=�0

s has type
A1 and �0

l is empty. Thus �Re�i is empty in this case.

We shall next prove the analogue of Proposition 18.8 in our present case.

Proposition 18.13 Let L0 be the simple Lie algebra of type A2l and � be
its graph automorphism of order 2. Let

(
L0
)
−1 be the eigenspace of � on

L0 with eigenvalue −1. Then L0= (L0
)�⊕(L0

)
−1. The eigenspace

(
L0
)
−1 is

an irreducible
(
L0
)�
-module. The algebra

(
L0
)�

is isomorphic to L�Bl� and(
L0
)
−1 is isomorphic to its irreducible module L�2!1�.

Proof. It is clear that
(
L0
)
−1 is an

(
L0
)�
-module and that L0= (L0

)�⊕(L0
)
−1.

We have

dimL0=dimL�A2l�=2l�2l+2�

dim
(
L0
)� =dimL�Bl�= l�2l+1��

Thus dim
(
L0
)
−1=dimL0−dim

(
L0
)� = l�2l+3�. Let �=�1+· · ·+�2l be

the highest root of A2l. Then a corresponding root vector E� lies in
(
L0
)
−1

and gives the highest weight of
(
L0
)
−1. It gives rise to the weight 2�1+· · ·

+2�l of L�Bl�. By considering the Cartan matrix of Bl we see that �1+· · ·
+�l=!1 and so the highest weight of the L�Bl�-module

(
L0
)
−1 is 2!1.
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Weyl’s dimension formula shows that dimL�2!1�= l�2l+3�. Since this is
also the dimension of

(
L0
)
−1 we see that

(
L0
)
−1 is an irreducible L�Bl�-

module isomorphic to L�2!1�.

By using this result we can prove the analogue of Theorem 18.9 in the
A2l case.

Theorem 18.14 Let L0 be a simple Lie algebra of type A2l with l≥2 and
� be its graph automorphism of order 2. Let $ be the corresponding twisted
graph automorphism of 
̂

(
L0
)
. Then the fixed point subalgebra 
̂

(
L0
)$

is
isomorphic to L

(
C̃ ′l
)
.

When l=1 the fixed point subalgebra is isomorphic to L
(
Ã′1
)
.

Proof. The general idea of the proof is like that of Theorems 18.5 and 18.9.
We aim to obtain the result by applying Proposition 14.15.
We first suppose l≥2. We have


̂
(
L0
)=∑

k∈�

(
tk⊗L0

)⊕�c⊕�d


̂
(
L0
)$=∑

k∈�

(
t2k⊗(L0

)�)+∑
k∈�

(
t2k+1⊗(L0

)
−1
)⊕�c⊕�d�

Let E1� � � � �E2l� F1� � � � � F2l�H1� � � � �H2l be standard generators of L0. We
wish to define analogous elements e0� e1� � � � � el� f0� f1� � � � � fl� h0� h1� � � � � hl
in 
̂

(
L0
)$
. These are chosen as follows.

e1 = 1⊗�E1+E2l� � � � � � el−1=1⊗�El−1+El+2� � el=1⊗√2 �El+El+1�

f1 = 1⊗�F1+F2l� � � � � � fl−1=1⊗�Fl−1+Fl+2� � fl=1⊗√2 �Fl+Fl+1�

h1 = 1⊗�H1+H2l� � � � � � hl−1=1⊗�Hl−1+Hl+2� � hl=1⊗2 �Hl+Hl+1�

e0 = t⊗F�� f0= t−1⊗E�� h0=− �1⊗H��+c
where � is the highest root of L0.
Let H⊂ 
̂

(
L0
)
be given by H= (1⊗H0

)⊕�c⊕�d. We define maps
�0��1� � � � ��l �H

�→�. For i=1� � � � � l these are the restrictions of the roots
�i �H→�. For i=0 we define �0=−�+�.
Let �v= 
h0� h1� � � � � hl�⊂H� and �= 
�0��1� � � � ��l�⊂ �H��∗. We

show that �H�����v� is a realisation of the Cartan matrix A′ of type C̃ ′l .
We know from Theorem 9.19 that �j �hi�=A′ij for i� j∈ 
1� � � � � l�. This

l× l matrix is the Cartan matrix of type Bl. In particular it is non-singular.
Thus h1� � � � � hl and �1� � � � ��l are linearly independent. Now h0 involves
c whereas h1� � � � � hl do not, thus h0� h1� � � � � hl are linearly independent.
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Also we have �0�d� 	=0 and �i�d�=0 for i=1� � � � � l thus �0��1� � � � ��l are
linearly independent. We must show in addition

�j �h0�=A′0j j=1� � � � � l

�0 �hi�=A′i0 i=1� � � � � l

�0 �h0�=2�

We recall that the integers ai� ci associated with the affine Cartan matrix
A′ are

21 2 2 2 2 22 2 2 2 1

a0, a1, ... , al c0, c1, ... , cl

In particular we have a0=1� c0=2. (The change of labelling explains the fact
that c0 is not 1, as it usually is.) We note that

l∑
i=0

ai�i=�

l∑
i=0

cihi=2c�

We then have

�0 �hi�=−
l∑

j=1
aj�j �hi�=−

l∑
j=1

A′ijaj=A′i0a0=A′i0

�j �h0�=−
1
2

l∑
i=1

ci�j �hi�=−
1
2

l∑
i=1

ciA
′
ij=

1
2
c0A

′
0j=A′0j

�0 �h0�= �−�+�� ��1⊗−H��+c�=� �H��=2�

We observe that A′ is an �l+1�×�l+1� matrix of rank l and that dimH� =
l+2. Thus we have shown that �H�����v� is a realisation of A′.
We next verify the relations[

hiej
]=A′ijej [

hifj
]=−A′ijfj

for i� j∈ 
0�1� � � � � l�. We know this already for i� j∈ 
1� � � � � l� by Theo-
rem 9.19. Thus we must verify[

h0ej
]=A′0jej [

h0fj
]=−A′0jfj

�hie0�=A′i0e0 �hif0�=−A′i0f0
�h0e0�=2e0 �h0f0�=−2f0�
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Now [
h0ej

]=−1
2

l∑
i=1

ci
[
hiej

]=(−1
2

l∑
i=1

ciA
′
ij

)
ej=A′0jej

and similarly
[
h0fj

]=−A′0jfj . Also
�hie0�= �hi� t⊗F��= t⊗�−� �hi�F��=−� �hi� e0

=
(
−

l∑
j=1

aj�j �hi�

)
e0=

(
−

l∑
j=1

A′ijaj

)
e0=A′i0e0�

Similarly we have �hif0�=−A′i0f0. We also have

�h0e0�= �− �1⊗H��+c� t⊗F��=−t⊗ �H�F��

= 2t⊗F�=2e0

and similarly �h0f0�=−2f0. Finally we have

�cei�=�i�c�ei=0 i=0�1� � � � � l

�cfi�=−�i�c�fi=0 i=0�1� � � � � l

�dei�=�i�d�ei=0 i=1� � � � � l

�dfi�=−�i�d�fi=0 i=1� � � � � l

�de0�=�0�d�e0= e0
�df0�=−�0�d�f0=−f0�

Since H$= (1⊗(H0
)�)⊕�c⊕�d we have verified all relations necessary

for the application of Proposition 14.15.
We next show that the elements e0� e1� � � � � el� f0� f1� � � � � fl together with

H$ generate 
̂
(
L0
)$
. By Theorem 9.19 e1� � � � � el� f1� � � � � fl generate

(
L0
)�
.

Since 
̂
(
L0
)$=∑k∈�

(
t2k⊗(L0

)�)⊕∑k∈�
(
t2k+1⊗(L0

)
−1
)⊕�c⊕�d it is

sufficient to show that the subspaces(
t2k⊗(L0

)�)
for k 	=0 and

(
t2k+1⊗(L0

)
−1
)

lie in the subalgebra M generated by e0� e1� � � � � el� f0� f1� � � � � fl�H
$ .

Now e0= t⊗F� lies in M and F� ∈
(
L0
)
−1. If x∈

(
L0
)�
� y∈ (L0

)
−1 then

�1⊗x� t⊗y�= t⊗ �xy�∈ t⊗(L0
)
−1 �

Thus the elements y∈ (L0
)
−1 for which t⊗y∈M form an

(
L0
)�
-submodule

of
(
L0
)
−1. This submodule contains F� so is non-zero. Since

(
L0
)
−1 is an
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irreducible
(
L0
)�
-module by Proposition 18.13 this submodule is the whole

of
(
L0
)
−1. Thus t⊗

(
L0
)
−1 lies in M .

Now we can find elements x� y∈ (L0
)
−1 with �xy� 	=0. (For example, x=

F�l
−F�l+1� y=E�l+�l+1 .) Thus �t⊗x� t⊗y�= t2⊗ �xy� is a non-zero element

of M . However, the set of z∈ (L0
)�

for which t2⊗z∈M is an ideal of
(
L0
)�

since [
t2⊗z�1⊗w]= t2⊗ �zw� for w∈ (L0

)�
�

Since �xy�∈ (L0
)�

this is a non-zero ideal of
(
L0
)�

and since
(
L0
)�

is a simple
Lie algebra it is the whole of

(
L0
)�
. Thus t2⊗(L0

)�
lies in M .

Now the relations[
t2⊗x� t2k⊗y]= t2k+2⊗ �xy�� x� y∈ (L0

)�[
t2⊗x� t2k+1⊗y]= t2k+3⊗ �xy�� x∈ (L0

)�
� y∈ (L0

)
−1

can be used to show by induction on k that t2k⊗(L0
)� ⊂M and

t2k+1⊗(L0
)
−1⊂M when k>0�

Starting with f0 instead of e0 will similarly show this for k<0. Thus
M= 
̂

(
L0
)$

as required.
Finally we must show that 
̂

(
L0
)$

has no non-zero ideal J with J ∩H$=O.
To see this we decompose 
̂

(
L0
)$

into weight spaces with respect to H$ .
Any non-zero ideal J with J ∩H$=O must have non-zero intersection with
one of these weight spaces, by Lemma 14.12. Let x be a non-zero element in
such an intersection. Then there exists y in the weight space corresponding
to the negative of this weight such that �xy� 	=0, by Corollary 16.5. But then
�xy�∈ J ∩H$ and so J ∩H$ 	=O, a contradiction. Hence J =O.
We have now verified all the hypotheses of the recognition theorem Propo-

sition 14.15 and so can conclude that 
̂
(
L0
)$

is isomorphic to L
(
C̃ ′l
)
.

We now consider the case l=1. This time the graphs are

0 1
σ

1

2

0

and the Cartan matrix A′ of Ã′1 is

A′ =
(

2 −1
−4 2

)
0
1�

0 1
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The elements e0� e1� f0� f1� h0� h1 of 
̂
(
L0
)$

are

e1=1⊗√2 �E1+E2� � f1=1⊗√2 �F1+F2� � h1=1⊗2 �H1+H2�

e0= t⊗F�� f0= t−1⊗E�� h0=− �1⊗H��+c
where �=�1+�2 is the highest root of A2. We have

v
�= 
h0� h1� �= 
�0��1�

where �0=−�+� and �1 ∈ �H��∗ is the restriction of �1 ∈H∗. The integers
a0� a1� c0� c1 for Ã

′
1 are

a0=1� a1=2� c0=2� c1=1�

We have

a0�0+a1�1=�
c0h0+c1h1=2c�

We can then check that �H�����v� is a realisation of A′. We also check the
relations

�h0e0�=2e0� �h0e1�=−e1� �h1e0�=−4e0� �h1e1�=2e1

�h0f0�=−2f0� �h0f1�=f1� �h1f0�=4f0� �h1f1�=−2f1�
The facts that H$� e0� e1� f0� f1 generate 
̂

(
L0
)$

and that 
̂
(
L0
)$

has no
non-zero ideal J with J ∩H$=O are proved just as before. Thus applying
Proposition 14.15 shows that 
̂

(
L0
)$

is isomorphic to L
(
Ã′1
)
.

We shall describe explicitly the weight space decomposition of 
̂
(
L0
)$

with respect to H$ . We recall from Proposition 9.18 that there is a bijective
correspondence between roots of

(
L0
)� =L�Bl� and equivalence classes of

roots of L0=L�A2l�. Each equivalence class has 2 or 3 elements. Equivalence
classes with 2 elements have form �����where ����=������=� and �+�
is not a root. Equivalence classes with 3 elements have form ������+��
where ����=������=� and ���+��=�+�. Equivalence classes with
2 elements correspond to long roots of Bl and equivalence classes with 3
elements correspond to short roots of Bl. For each 2-element equivalence
class we can choose root vectors E��E� with � �E��=E�. For each 3-element
equivalence class we choose root vectors E��E��E�+� with � �E��=E� and[
E�E�

]=E�+�. Then

�
(
E�+�

)=� [
E�E�

]= [E�E�

]=−E�+�

thus E�+� ∈
(
L0
)
−1.
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The Lie algebra 
̂
(
L0
)$

is the direct sum of H$ and the following weight
spaces.

t2k⊗(H0
)�

with weight 2k�

t2k+1⊗(H0
)
−1 with weight�2k+1��

t2k⊗�
(
E�+E�

)
with weight �+2k� for each 2 element equivalence
class�����

t2k+1⊗�
(
E�−E�

)
with weight �+�2k+1�� for each 2 element
equivalence class�����

t2k⊗�
(
E�+E�

)
with weight �+2k� for each 3 element equivalence
class������+��

t2k+1⊗�
(
E�−E�

)
with weight �+�2k+1�� for each 3 element
equivalence class������+��

t2k+1⊗�E�+� with weight 2�+�2k+1�� for each 3 element equivalence
class������+���

The weights listed above correspond to the roots of L
(
C̃ ′l
)
as described in

Proposition 18.12.
In the case l=1 the weight spaces of L

(
Ã2

)$
are

t2k⊗� �H1+H2� with weight 2k�

t2k+1⊗� �H1−H2� with weight�2k+1��

t2k⊗� �E1+E2� with weight �1+2k�

t2k+1⊗� �E1−E2� with weight �1+�2k+1��

t2k+1⊗�E�1+�2
with weight 2�1+�2k+1��

t2k⊗� �F1+F2� with weight−�1+2k�

t2k+1⊗� �F1−F2� with weight−�1+�2k+1��

t2k+1⊗�F�1+�2
with weight−2�1+�2k+1���

Corollary 18.15 (i) The multiplicities of the imaginary roots k� of C̃ ′l are
equal to l.
(ii) The multiplicities of the imaginary roots k� of Ã′1 are equal to 1.

Proof. (i) The multiplicity of 2k� is dim
(
H0

)�
, which is equal to l. The

multiplicity of �2k+1�� is dim
(
H0

)
−1, which is also equal to l.

(ii) The same applies to Ã′1 when l=1.
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We note that the isomorphism between L�A′� and 
̂ �A2l�
$ does not map

the standard invariant form �� �′ on L�A′� to the restriction of the standard
invariant form �� � on 
̂ �A2l�. For hl ∈L�A′� corresponds to 1⊗2 �Hl+Hl+1�
in 
̂ �A2l�. We have

�hl�hl�′ =2
al
cl
=4

�1⊗2 �Hl+Hl+1� �1⊗2 �Hl+Hl+1��=4 �Hl+Hl+1�Hl+Hl+1�=8�

Thus the form is not preserved by the isomorphism.
Also the canonical central element c∈ 
̂ �A2l�

$ does not map to the canoni-
cal central element c′ ∈L�A′�. Since we showed that

∑l
i=0 cihi=2c it follows

that 2c corresponds to c′ under our isomorphism.

Comments on notation

An alternative notation is sometimes given to the affine Kac–Moody algebras
of twisted type, based on the results of this chapter. The twisted affine
algebra can be specified by the type of the untwisted affine algebra from
which it is obtained, together with the order of the automorphism of which
it is the fixed point subalgebra. This is the notation used by Kac in his book
Infinite Dimensional Lie Algebras. The alternative notation in each case is
shown below.

B̃t
l

2Ã2l−1 l≥3

C̃ t
l

2D̃l+1 l≥2

F̃ t
4

2Ẽ6

G̃t
2

3D̃4

C̃ ′l
2Ã2l l≥2

Ã′1
2Ã2
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Some representations of symmetrisable

Kac–Moody algebras

19.1 The category � of L�A�-modules

We now turn to the representation theory of Kac–Moody algebras. We shall
not consider arbitrary representations, but restrict attention to those in the
category � introduced by Bernstein, Gelfand and Gelfand. Let

L�A�=N−⊕H⊕N
be a Kac–Moody algebra and V be an L�A�-module. We say that V is an
object in the category � if the following conditions are satisfied:

(i) V =⊕�∈H∗V� where V�= 
v∈V  xv=��x�v for all x∈H�
(ii) dimV� is finite for each �∈H∗
(iii) there exists a finite set �1� � � � � �s ∈H∗ such that each � with V� 	=O

satisfies �≺�i for some i∈ 
1� � � � � s�.
The morphisms in category � are the homomorphisms of L�A�-modules.
Thus each module in � is a direct sum of its weight spaces and these

weight spaces are finite dimensional. Moreover all the weights are bounded
above by finitely many elements of H∗.

We now give some examples of modules in category �. For each �∈H∗
we may define the Verma module M��� with highest weight �. This is
defined in a manner analogous to that in which we defined Verma modules for
finite dimensional Lie algebras in Section 10.1. Let ��L�A�� be the universal
enveloping algebra of L�A� and K� be the left ideal of ��L�A�� generated
by N and x−��x� for all x∈H . Thus

K�=��L�A��N +∑
x∈H

��L�A���x−��x���

Then M���=��L�A��/K� is an L�A�-module called the Verma module with
highest weight �. Let m� ∈M��� be defined by m�=1+K�. Then, just as in
Theorem 10.6, we see that each element of M��� is uniquely expressible in

452
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the form um� for some u∈��N−�. Also, as in Theorem 10.7, we have

M���= ⊕
�∈H∗

M����

M���� 	=O if and only if �≺�
dimM����=���−���

This shows that M���∈�. The finite set of weights giving an upper bound
for all weights can be taken in this case to have just one element �.

Lemma 19.1 (i) If V ∈� and U is a submodule of V then U ∈� and V/U ∈�.
(ii) If V1�V2 ∈� then V1⊕V2 ∈� and V1⊗V2 ∈�.

Proof. (i) We have V =⊕�∈H∗V�. The argument of Theorem 10.9 shows
that U�=U ∩V� and U =

⊕
�∈H∗U�. It follows that U ∈�. Moreover we have

�V/U��=V�/U� and V/U =⊕�∈H∗�V/U��. It follows that V/U ∈�.
(ii) We have �V1⊕V2��= �V1��⊕�V2�� and V1⊕V2=

⊕
�∈H∗ �V1⊕V2��. It

follows that V1⊕V2 ∈�.
Now consider V1⊗V2. We have

V1=
⊕

�1∈H∗
�V1��1 � V2=

⊕
�2∈H∗

�V2��2

thus

V1⊗V2=
⊕
�1��2

(
�V1��1⊗�V2��2

)
�

Now �V1��1⊗�V2��2 ⊂ �V1⊗V2��1+�2 . Hence V1⊗V2=
⊕

�∈H∗ �V1⊗V2��
where

�V1⊗V2��=
∑
�1��2

�1+�2=�

(
�V1��1⊗�V2��2

)
�

Now there exist �i ∈H∗� i=1� � � � � s1, such that �1≺�i for some i. Also
there exist %j ∈H∗� j=1� � � � � s2 such that �2≺%j for some j. Thus �=
�1+�2≺�i+%j for some pair �i� j�. We have(

�i+%j

)−�= ��i−�1�+
(
%j−�2

)
�

The expressions
(
�i+%j

)−���i−�1�%j−�2 are all non-negative integral
combinations of the fundamental roots. Thus for given i� j the

(
�i+%j

)−�
has only finitely many such decompositions. It follows that for each
� with �V1⊗V2�� 	=O there exist only finitely many pairs �1��2 with
�1+�2=�� �V1��1 	=O��V2��2 	=O. It follows from this that V1⊗V2 ∈�.
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Now each L�A�-module V ∈� admits a character chV . We recall from
Section 12.1 that chV is the function from H∗ to � defined by

�chV����=dimV��

We also recall from Section 12.1 the definition of the ring  of functions
from H∗ to �. A function f � H∗→� lies in  if there exists a finite set
�1� � � � � �s ∈H∗ such that

Suppf ⊂S ��1�∪ · · · ∪S ��s�

where S���=Supp�chM����. It follows from the definition of category �
that chV ∈ for all V ∈�.
In Proposition 12.4 we obtained a formula for the character of a Verma

module for a finite dimensional semisimple Lie algebra. We now generalise
this result to Verma modules for Kac–Moody algebras. We recall that the
function e� � H∗→� was defined by e����=1 and e����=0 if � 	=�. The
characteristic functions e� lie in  and any function f ∈ can be written in
the form

f = ∑
�∈H∗

f���e�

where the sum may be infinite.

Proposition 19.2 Let M��� be a Verma module for the Kac–Moody algebra
L�A�. Then

chM���= e�∏
�∈�+

�1−e−��m�

where m� is the multiplicity of �.

Proof. We use the fact that the map u→um� is a bijection between � �N−�
and M���. This bijection maps the weight space � �N−�−� to the weight
space M����−�.
For each �∈�+ we have dim �N−�−�=m�. Let e−��i�1≤ i≤m�, be a

basis of �N−�−�. We choose an order on these basis elements for all �� i. We
then obtain a PBW-basis of � �N−� consisting of all products

∏
�

m�∏
i=1

e
n��i
−��i
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with n��i ∈� and n��i≥0. Thus the weight space � �N−�−� has a basis con-
sisting of the above elements which satisfy

∑
�∈�+

(
m�∑
i=1

n��i

)
�=��

This shows that the character of � �N−� is

ch� �N−�= ∏
�∈�+

(
1+e−�+e2−�+· · ·

)m�

since the number of times e−� appears on the right-hand side is the number
of sets

(
n��i

)
of non-negative integers such that

∑
�∈�+

(
m�∑
i=1

n��i

)
�=��

Hence the character of M��� is

chM���= e�
∏

�∈�+

(
1+e−�+e2−�+· · ·

)m� �

Now the element 1+e−�+e2−�+· · ·∈ has inverse 1−e−� ∈. Thus we
have

chM���= e�∏
�∈�+

�1−e−��m�

Of course in the special case when L�A� is finite dimensional this formula
reduces to that obtained in Proposition 12.4. In the general case there are two
differences – the roots need not have multiplicity 1 and the product over the
positive roots can be an infinite product.
Now the Verma module M��� for L�A� has a unique maximal submodule

J���, just as in the proof of Theorem 10.9. We define

L���=M���/J����

Then L��� is an irreducible L�A�-module in the category �.

Proposition 19.3 The modules L��� for �∈H∗ are the only irreducible
modules in category �.

Proof. Let V be an irreducible L�A�-module with V ∈�. The definition of �
shows that V has a maximal weight � under the partial ordering ≺. Let v� ∈V
be a weight vector with weight �. Then xv�=0 for x∈N and xv�=��x�v�
for x∈H .
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We may define a map from the Verma module M��� into V as follows.
Each element of M��� has a unique expression of form um� for u∈� �N−�.
Let � � M���→V be defined by � �um��=uv� for u∈� �N−�. It may then
be shown, just as in the proof of Proposition 10.13, that � is a homomorphism
of ��L�A��-modules. The image of � is a submodule of V containing v�,
so is the whole of V since V is irreducible. Thus the kernel of � is a
maximal submodule of M���, so must be J���. Thus V is isomorphic to
M���/J���=L���.
Now in Theorem 12.16 we showed that each Verma module M��� for a

finite dimensional semisimple Lie algebra L has a finite composition series.
The proof of this result made extensive use of the fact that L is finite dimen-
sional, and the result does not carry over to Verma modules for Kac–Moody
algebras L�A�. For example it can be shown that the Verma module M�0�
has no irreducible submodule when L�A� is infinite dimensional.
We would nevertheless like to define the multiplicity �V � L���� of the

irreducible module L��� in the module V ∈�. If V had a finite composition
series �V � L���� would be the number of composition factors isomorphic
to L��� in a given composition series, and this would be independent of
the choice of composition series by the Jordan–Hölder theorem. However, V
does not in general have a finite composition series. Even so, Kac found a
way of defining the multiplicity �V � L����. This makes use of the following
lemma.

Lemma 19.4 Let V ∈� and �∈H∗. Then V has a filtration

V =V0⊃V1⊃· · ·⊃Vt=O
of finite length by means of a sequence of submodules such that each factor
Vi−1/Vi either is isomorphic to L��� for some �"� or has the property that
�Vi−1/Vi��=O for all �"�.

Proof. The definition of � shows that V has only finitely many weights �
with �"�. Thus

a�V���=∑
�"�

dimV�

is finite. We shall prove the lemma by induction on a�V���. If a�V���=0
then V =V0⊃V1=O is the required filtration. So suppose a�V���>0. Then
V has a weight � with �"�. We may choose a maximal weight � with
�"�. Let v� ∈V be a weight vector with weight �. Then xv�=0 for x∈N
and xv�=��x��� for x∈H . Let U =��L�A��v� be the submodule of V
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generated by v�. We then have a map � � M���→U defined by �
(
um�

)=
uv� for u∈� �N−�, and � is a homomorphism of ��L�A��-modules as before,
as shown in the proof of Proposition 10.13. Moreover � is surjective. Thus
U is isomorphic to a factor module of the Verma module M���, and so has
a unique maximal submodule Ū . We also have

U/Ū �M���/J����L����
Now consider the filtration

V ⊃U ⊃ Ū ⊃O�
We have a�Ū ���<a�V��� and a�V/U���<a�V���, since the weight �"�
appears in U/Ū . Thus by induction we obtain filtrations for the modules
Ū ∈� and V/U ∈� of the required kind, and these may be combined to give
the required filtration of V .

Lemma 19.5 Let V ∈� and �∈H∗. Consider filtrations of the type given in
Lemma 19.4 with respect to �. Let �∈H∗ satisfy �"�. Then the number of
factors L��� in such a filtration is independent of the choice of filtration and
also of the choice of �.

Proof. We first observe that a filtration with respect to � is also a filtration
with respect to � when �"�. Also the multiplicity of L��� in such a filtration
is the same whether it is regarded as a filtration with respect to � or �. Thus
to prove the lemma it will be sufficient to take two filtrations with respect to
� and show that L��� has the same multiplicity in each.
The following variant of the proof of the Jordan–Hölder theorem achieves

this. Let

V =V0⊃V1⊃· · ·⊃Vl1
=O (19.1)

V =V ′0⊃V ′1⊃· · ·⊃V ′l2 =O (19.2)

be two such filtrations of lengths l1� l2. We shall use induction on min �l1� l2�.
Suppose first that min �l1� l2�=1. Then either V is irreducible and the two

filtrations are identical, or � is not a weight of V and L��� does not appear
in either filtration.
Thus suppose min �l1� l2�>1. We suppose first that V1=V ′1. We then con-

sider the two filtrations

V1⊃· · ·⊃Vl1
= O

V ′1⊃· · ·⊃V ′l2 = O
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of V1. By induction they give the same multiplicity for L���, and the filtrations
for V are obtained by adding the additional factor V/V1 which is the same
for both.
We may therefore suppose that V1 	=V ′1. Suppose first that one contains the

other, say V1⊂V ′1. Then V/V1 is not irreducible and so � is not a weight of
V/V1. Thus neither V/V1 nor V/V

′
1 is isomorphic to L���. Let

V1⊃U1⊃· · ·⊃Um=O
be a filtration of V1 of the required type with respect to �. We then consider
the filtrations

V ⊃V1⊃U1⊃· · ·⊃Um=O (19.3)

V ⊃V ′1⊃V1⊃U1⊃· · ·⊃Um=O� (19.4)

These are filtrations of V of the required type with respect to �. L��� has
the same multiplicity in filtrations (19.1), (19.3) since they have the same
leading term V1. Similarly L��� has the same multiplicity in filtrations (19.2),
(19.4). So L��� has the same multiplicity in filtrations (19.3), (19.4) since
none of V/V1�V/V

′
1�V

′
1/V1 is isomorphic to L���. Thus L��� has the same

multiplicity in filtrations (19.1), (19.2) as required.
We may therefore assume that neither of V1�V

′
1 is contained in the other.

Let U =V1∩V ′1 and choose a filtration of U of the required kind with respect
to �. This has form

U ⊃U1⊃· · ·⊃Um=O�
We then consider the filtrations

V ⊃V1⊃U ⊃U1⊃· · ·⊃Um=O (19.5)

V ⊃V ′1⊃U ⊃U1⊃· · ·⊃Um=O� (19.6)

These are filtrations of V of the required type with respect to �. This is clear
since

V1/U � �V1+V ′1� /V ′1� V ′1/U � �V1+V ′1� /V1�

Now L��� has the same multiplicity in filtrations (19.1), (19.5) and the
same multiplicity in filtrations (19.2), (19.6) since the leading terms are the
same. It is therefore sufficient to show that L��� has the same multiplicity in
filtrations (19.5), (19.6). These filtrations differ only in the first two factors.
If V1+V ′1=V then we have

V/V1�V ′1/U� V/V ′1�V1/U
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as required. If V1+V ′1 	=V then V/V1 and V/V
′
1 are not irreducible. In this case

� is not a weight of V/V1 or V/V
′
1, so is not a weight of V1/U . Thus none of

V/V1�V1/U�V/V
′
1�V

′
1/U is isomorphic to L���. This completes the proof.

Definition The multiplicity of L��� in a filtration of V ∈� of the type con-
sidered in Lemmas 19.4 and 19.5 will be denoted by �V � L����.

Of course this agrees with the previous definition of �V � L���� in the case
when V has a composition series of finite length.

Proposition 19.6 Let V ∈�. Then
chV = ∑

�∈H∗
�V � L����chL����

Proof. Both sides are functions H∗→�. We have �chV����=dimV� and
the right-hand side evaluated at � is∑

�∈H∗
�V � L����dimL�����

We choose a filtration of V with respect to � of the type given in Lemma 19.4.
Each factor either is isomorphic toL��� for some �"� or does not contain� as
a weight. The multiplicity of L��� as a factor is �V � L����. Hence we have

dimV�=
∑
�

�V � L����dimL����

summed over all �"�. We may in fact take the sum over all �∈H∗ since
dimL����=0 unless �"�.

19.2 The generalised Casimir operator

We recall from Section 11.6 that, if L is a finite dimensional semisimple Lie
algebra, the Casimir element of the centre of the enveloping algebra ��L�
plays an important role in the representation theory of L. If x1� � � � � xm are
any basis of L and y1� � � � � ym are the dual basis with respect to the Killing
form the Casimir element is given by∑

xiyi ∈��L��
We showed in Proposition 11.36 that the Casimir element acts on a Verma
module M��� for L as scalar multiplication by ��+	��+	�−�	�	� where
�� � is the Killing form and 	 is, as usual, the element ofH∗ given by 	�hi�=1
for i=1� � � � � l.
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Now let L�A� be a Kac–Moody algebra where A is symmetrisable. We
cannot define an analogous Casimir element

∑
xiyi in ��L�A�� since the sum

will in general be infinite and make no sense. It was shown by Kac, however,
that it is possible to define an operator c � V→V on any L�A�-module V

in category � which has properties analogous to the action of the Casimir
element for finite dimensional algebras. In order to define Kac’ operator on V
we recall the formula for the Casimir element of a finite dimensional algebra
given in Proposition 11.35. Let h′1� � � � � h

′
l be a basis of H and h′′1� � � � � h

′′
l be

the dual basis of H with respect to the Killing form of L. Choose elements
e� ∈L�� f� ∈L−� such that �e�f��=h′� for each �∈�+. Then the Casimir
element of ��L� is given by

l∑
i=1

h′ih
′′
i +

∑
�∈�+

h′�+2
∑
�∈�+

f�e��

Since
∑

�∈�+ �=2	 this element can also be written

l∑
i=1

h′ih
′′
i +2h′	+2

∑
�∈�+

f�e�

where h′	 ∈H satisfies 	�x�= 〈h′	� x〉 for all x∈H .
We wish to define an analogous element for the symmetrisable Kac–Moody

algebraL�A�.TherootspaceL� ofL�A�neednotbe1-dimensional, sowechoose
a basis e�1�� � e�2�� � � � � forL�. Instead of using theKilling formwe use the standard
invariant bilinear form on L�A�. (In the case when L�A� is finite dimensional
this is a scalar multiple of the Killing form.) We recall from Corollary 16.5 that
the pairing L�×L−�→� given by x� y→�x� y� is non-degenerate. Thus we
may choose a corresponding dual basis f �1�

� � f �2�
� � � � � for L−� such that〈

e�i�� � f �j�
�

〉=�ij�
We choose a basis h′1� h

′
2� � � � of H and let h′′1� h

′′
2� � � � be the dual basis of

H satisfying
〈
h′i� h

′′
j

〉=�ij . Since the fundamental coroots h1� � � � � hn ∈H are
linearly independent there exists 	∈H∗ such that 	�hi�=1 for i=1� � � � � n.
However, 	 is not in general uniquely determined by this condition. So we
choose any element 	∈H∗ satisfying 	�hi�=1 for i=1� � � � � n. We then
have a corresponding element h′	 ∈H such that 	�x�= 〈h′	� x〉 for all x∈H .
We then consider the expression∑

i

h′ih
′′
i +2h′	+2

∑
�∈�+

∑
i

f �i�
� e�i�� �

This element does not make sense as an element of ��L�A�� in general since
the sum over �∈�+ may be infinite. However, if V is an L�A�-module in
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� we know that chV ∈ and so there exist only finitely many �∈�+ such
that L�V 	=O. Thus the operator & � V→V given by

&=∑
i

h′ih
′′
i +2h′	+2

∑
�∈�+

∑
i

f �i�
� e�i��

is well defined. It is straightforward to check that this operator & � V→V

does not depend on the choice of dual bases h′1� h
′
2� � � � h′′1� h

′′
2� � � � of H or

on the choice of dual bases e�i�� � f �i�
� for L� and L−�. It may, however, depend

upon the choice of 	.

Definition The operator & � V→V for V ∈� is called the generalised
Casimir operator on V with respect to 	.

In the case of a finite dimensional semisimple Lie algebra the Casimir
element lies in the centre of the universal enveloping algebra. We shall prove
an analogous result in the present situation, i.e. that the generalised Casimir
operator commutes with the action on V ∈� of any element of ��L�A��. We
first need some preliminary results.

Lemma 19.7 Let �����−�∈�. Suppose e�i�� � f �i�
� are dual bases of L��L−�

and e�i�� � f
�i�
� are dual bases of L��L−�. Let x∈L�−�. Then in the vector space

L�A�⊗L�A� we have∑
i

f �i�
� ⊗

[
x� e�i��

]=∑
i

[
f
�i�
� � x

]
⊗e�i�� �

Proof. We note that both sides lie in the subspace L−�⊗L�. We define a
bilinear form on L�A�⊗L�A�, uniquely determined by

�x1⊗y1� x2⊗y2�=�x1� x2� �y1� y2� �
Since the standard invariant form is non-degenerate on L�A� this bilinear
form will be non-degenerate on L�A�⊗L�A�.
Let a⊗b∈L�⊗L�. Then the scalar products of both sides of the required

equation with a⊗b are zero unless �=� and �=−�. We therefore suppose
�=� and �=−� and consider the scalar products〈∑

i

f �i�
� ⊗

[
x� e�i��

]
� a⊗b

〉
〈∑

i

[
f
�i�
� � x

]
⊗e�i�� � a⊗b

〉
�
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We have 〈∑
i

f �i�
� ⊗

[
x� e�i��

]
� a⊗b

〉
=∑

i

〈
f �i�
� � a

〉 〈[
x� e�i��

]
� b
〉

=−∑
i

〈
f �i�
� � a

〉 〈
e�i�� � �xb�

〉
=−�a� �xb��

since e�i�� � f �i�
� are dual bases of L��L−�. Similarly〈∑

i

[
f
�i�
� � x

]
⊗e�i�� � a⊗b

〉
=∑

i

〈[
f
�i�
� � x

]
� a
〉 〈
e
�i�
� � b

〉
=∑

i

〈
f
�i�
� � �x�a�

〉 〈
e
�i�
� � b

〉
= ��xa�� b�
= −�a� �xb���

Thus the two sides of our equation have the same scalar product with each a⊗
b∈L�⊗L−�. Since the form is non-degenerate on L�A�⊗L�A� this shows
the two sides are equal.

Corollary 19.8 In the enveloping algebra ��L�A�� we have

∑
i

f �i�
�

[
x� e�i��

]=∑
i

[
f
�i�
� � x

]
e
�i�
� �

Proof. We apply the natural homomorphism from the tensor algebra T�L�A��
to ��L�A��. The result then follows from Lemma 19.7.

Theorem 19.9 Let u∈��L�A�� and V ∈�. Then the maps & � V→V and
u � V→V commute.

Proof. The algebra ��L�A�� is generated by ei� fi for i=1� � � � � n and the
elements of H . If x∈H then x commutes with each term f �i�

� e�i�� in ��L�A��
since this term has weight 0. Thus x � V→V commutes with f �i�

� e�i�� � V→V

and hence with & � V→V . It is therefore sufficient to show that & � V→V

commutes with ei � V→V and fi � V→V .
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We consider the element
[∑

j f
�j�
� e�j�� � ei

]
of ��L�A��. We have[∑

j

f �j�
� e�j�� � ei

]
=∑

j

[
f �j�
� � ei

]
e�j�� +

∑
j

f �j�
�

[
e�j�� � ei

]
=∑

j

[
f �j�
� � ei

]
e�j�� −

∑
j

f �j�
�

[
ei� e

�j�
�

]
=∑

j

[
f �j�
� � ei

]
e�j�� −

∑
j

[
f
�j�
�+�i � ei

]
e
�j�
�+�i

by Corollary 19.8. If �+�i 	∈� the second term is interpreted as 0.
We show that ∑

�∈�+
�	=�i

(∑
j

f �j�
� e�j��

)
� V→V

commutes with ei � V→V . We have⎡⎢⎣ ∑
�∈�+
�	=�i

(∑
j

f �j�
� e�j��

)
� ei

⎤⎥⎦= ∑
�∈�+
�	=�i

[∑
j

f �j�
� � ei

]
e�j�� −

∑
�∈�+
�	=�i

∑
j

[
f
�j�
�+�i � ei

]
e
�j�
�+�i

on V . If �−�i 	∈� then
[∑

j f
�j�
� � ei

]=0. Thus we may assume �=�+�i in
the first term with �∈�+ and get

∑
�∈�+
�	=�i

[∑
j

f
�j�
�+�i � ei

]
e
�j�
�+�i−

∑
�∈�+
�	=�i

∑
j

[
f
�j�
�+�i � ei

]
e
�j�
�+�i =0�

Since &=∑j h
′
jh
′′
j +2h′	+2

∑
�∈�+

∑
j f

�j�
� e�j�� on V it is now sufficient to

show that
∑

j h
′
jh
′′
j +2h′	+2fiei commutes with ei on V . In fact these elements

commute in ��L�A��. For we have[∑
j

h′jh
′′
j � ei

]
=∑

j

[
h′j� ei

]
h′′j +

∑
j

h′j
[
h′′j � ei

]
=∑

j

�i

(
h′j
)
eih
′′
j +

∑
j

�i

(
h′′j
)
h′jei

= ei

(∑
j

�i

(
h′j
)
h′′j +

∑
j

�i

(
h′′j
)
h′j

)
+
(∑

j

�i

(
h′′j
)
�i

(
h′j
))

ei

= ei

(∑
j

〈
h′�i � h

′
j

〉
h′′j +

∑
j

〈
h′�i � h

′′
j

〉
h′j

)
+
(∑

j

〈
h′�i � h

′′
j

〉 〈
h′�i � h

′
j

〉)
ei�
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Since h′1� h
′
2� � � � and h′′1� h

′′
2� � � � are dual bases of H we have∑

j

〈
h′�i � h

′
j

〉
h′′j =

∑
j

〈
h′�i � h

′′
j

〉
h′j=h′�i

and ∑
j

〈
h′�i � h

′′
j

〉 〈
h′�i � h

′
j

〉= 〈h′�i � h′�i 〉=��i��i� �

Hence [∑
j

h′jh
′′
j � ei

]
=2eih

′
�i
+��i��i� ei�

Secondly we have[
2h′	� ei

]=2�i

(
h′	
)
ei=2

〈
h′�i � h

′
	

〉
ei=2	

(
h′�i

)
ei=��i��i� ei

since hi=
2h′�i〈

h′�i � h
′
�i

〉 and 	�hi�=1, hence

	
(
h′�i

)= 〈
h′�i � h

′
�i

〉
2

= ��i��i�
2

�

Thirdly we have

�2fiei� ei�=2 �fi� ei� ei=−2 �ei� fi� ei�
We recall that ei� fi were chosen so that �ei� fi�=1. By Corollary 16.5 this
implies �eifi�=h′�i . Hence

�2fiei� ei�=−2h′�iei=−2eih′�i−2�i

(
h′�i

)
ei

=−2eih′�i−2 ��i��i� ei�
Thus we have shown:[∑

j

h′jh
′′
j � ei

]
= 2eih

′
�i
+��i��i� ei[

2h′	� ei
]= ��i��i� ei

�2fiei� ei�=−2eih′�i−2 ��i��i� ei�
Hence [∑

j

h′jh
′′
j +2h′	+2fiei� ei

]
=0�
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Thus we have shown that & � V→V commutes with ei � V→V . The
proof that & � V→V commutes with fi � V→V is similar. Using the fact
that [∑

j

f �j�
� e�j�� � fi

]
=∑

j

[
f �j�
� � fi

]
e�j�� +

∑
j

f �j�
�

[
e�j�� � fi

]
=∑

j

f
�j�
�+�i

[
fi� e

�j�
�+�i

]
−∑

j

f �j�
�

[
fi� e

�j�
�

]
we deduce as before that

∑
�∈�+
�	=�i

(∑
j

f �j�
� e�j��

)
� V→V

commutes with fi � V→V . We also obtain[∑
j

h′jh
′′
j � fi

]
=−2fih′�i+��i��i�fi[

2h′	� fi
]=−��i��i�fi

�2fiei� fi�= 2fih
′
�i
�

Hence [∑
j

h′jh
′′
j +2h′	+2fiei� fi

]
=0�

Thus & � V→V commutes with fi � V→V and the proof is complete.

We next describe the action of the generalised Casimir operator & on a
Verma module.

Proposition 19.10 & acts on the Verma module M��� as scalar multiplica-
tion by ��+	��+	�−�	�	�.

Proof. Let m� be a highest weight vector of M���. Then

&m� =
(∑

j

h′jh
′′
j +2h′	+2

∑
�∈�+

∑
j

f �j�
� e�j��

)
m�

=
(∑

j

�
(
h′j
)
�
(
h′′j
)+2�

(
h′	
))

m��
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Now
∑

j �
(
h′j
)
�
(
h′′j
)=����� and �

(
h′	
)=���	�. Hence

&m�= ���+	��+	�−�	�	��m��

Now each element of M��� has form um� for some u∈� �N−�. Thus

&�um��=u�&m��= ���+	��+	�−�	�	��um��

by Theorem 19.9. Hence & acts on M��� as scalar multiplication by

��+	��+	�−�	�	��

Corollary 19.11 & acts on the irreducible L�A�-module L��� as scalar
multiplication by ��+	��+	�−�	�	� .

Note Proposition 19.10 is the analogue of Proposition 11.36 for finite dimen-
sional semisimple Lie algebras. In Proposition 11.36 the invariant form which
appeared was the Killing form whereas in Proposition 19.10 and Corol-
lary 19.11 it is the standard invariant form. The difference is explained by the
fact that the Casimir element in the enveloping algebra of a finite dimensional
semisimple Lie algebra was defined in terms of the Killing form, whereas the
generalised Casimir operator was defined in terms of the standard invariant
form.

19.3 Kac’ character formula

Let X be the set of integral weights �∈H∗, that is the set of all � such that
��hi�∈� for i=1� � � � � n. Let X+ be the subset of dominant integral weights,
that is the set of weights �∈X such that ��hi�≥0 for all i. In this section
we shall prove a formula due to Kac for the character of the irreducible
L�A�-module L��� when �∈X+. The reason for the restriction to weights in
X+ lies in the fact that the modules L��� for �∈X+ are integrable.

Definition An L�A�-module V is called integrable if

V =⊕
�∈H∗

V�

and if ei � V→V and fi � V→V are locally nilpotent for all i=1� � � � � n.

Proposition 19.12 The adjoint module L�A� is integrable.

Proof. The proof of Proposition 7.17 carries over to the present situation.
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Proposition 19.13 Let V be an integrable L�A�-module. Then dimV�=
dimVw��� for each �∈H∗ and each w∈W .

Proof. Since the Weyl group W of L�A� is generated by the elements si it is
sufficient to show that dimV�=dimVsi���

.

We may regard V as a module for the 3-dimensional simple subalgebra
�ei� hi� fi� of L�A�. Let v∈V� and consider the �ei� hi� fi�-submodule gener-
ated by v. The vectors

v� eiv� e2i v� � � � � er−1i v

lie in this submodule, where r is the smallest positive integer with eri v=0.
The vectors fb

i e
a
i v also lie in this submodule, and there are only finitely many

�a� b� for which such a vector is non-zero. Each such vector is a weight vector
in V . However, the relation

eif
n
i =fn

i ei+nfn−1
i �hi−�n−1��

obtained in the proof of Theorem 10.20 shows that the subspace spanned by
all vectors fb

i e
a
i v is an �ei� hi� fi�-submodule. Hence every weight vector v∈V

lies in a finite dimensional �ei� hi� fi�-submodule which is also an H-module,
i.e. it is an �ei�H�fi�-submodule.
Now let U be the subspace of V given by

U =∑
k∈�

V�+k�i �

U is clearly an �ei�H�fi�-submodule of V . The �ei�H�fi�-submodule gen-
erated by each weight vector is finite dimensional, thus U is a sum of finite
dimensional �ei�H�fi�-submodules. Now �ei� hi� fi� is a 3-dimensional sim-
ple Lie algebra of type A1. Thus every finite dimensional �ei� hi� fi�-module
is a direct sum of finite dimensional irreducible �ei� hi� fi�-modules, by the
complete reducibility theorem, Theorem 12.20. The weight spaces involved
in such a decomposition of an H-invariant �ei� hi� fi�-module can be chosen
as weight spaces for H , as in the proof of Theorem 10.20, thus every finite
dimensional H-invariant �ei� hi� fi�-module is a direct sum of finite dimen-
sional H-invariant irreducible �ei� hi� fi�-modules. Thus U is a sum of finite
dimensional H-invariant irreducible �ei� hi� fi�-submodules, so is a direct
sum of certain of these submodules. However, for each of these irreducible
submodules M we have

dimM�=dimMsi���
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by Proposition 10.22. It follows that

dimV�=dimVsi���

and the required result follows.

Proposition 19.14 Let L�A� be a symmetrisable Kac–Moody algebra and
L��� be an irreducible L�A�-module in the category �. Then L��� is inte-
grable if and only if � is dominant and integral.

Proof. Suppose first that L��� is integrable. Let v� be a highest weight vector
in L���. Then f r

i v�=0 for some r. Consider the vectors

v�� fiv�� � � � � f r−1
i v��

Since eif
n
i =fn

i ei+nfn−1
i �hi−�n−1�� for each n we see that these vectors

span an �ei� hi� fi�-submodule of L���. The highest weight of this finite
dimensional �ei� hi� fi�-module is �. But the highest weight of any finite
dimensional module for a finite dimensional simple Lie algebra is dominant
and integral. Thus ��hi�∈� and ��hi�≥0. Since this holds for all i� � is
dominant and integral.

Now suppose conversely that ��hi�∈� and ��hi�≥0 for each i. Then we
have

f
��hi�+1
i v�=0

as in the proof of Theorem 10.20. Now each element of L��� has form uv�
for some u∈L�A�. We have

fN
i �uv��=

N∑
k=0

(
N

k

)(
�ad fi�

k u
)(

fN−k
i v�

)
�

Now �ad fi�
k u=0 for k sufficiently large since L�A� is integrable, by Propo-

sition 19.12. Also fN−k
i v�=0 for N −k sufficiently large, as shown above.

Thus fN
i �uv��=0 for N sufficiently large, and so fi � L���→L��� is locally

nilpotent. The fact that ei � L���→L��� is locally nilpotent follows from
the fact that L��� lies in category �. Thus L��� is integrable.

As before we write

X+= 
�∈H∗  � �hi�∈��� �hi�≥0 for each i� �
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We now turn to Kac’ character formula for chL��� when �∈X+. We recall
from Proposition 19.2 that the character of the corresponding Verma module
M��� is given by

chM���= e�
�

where �=∏�∈�+ �1−e−��m� and m� is the multiplicity of �.
We begin with a lemma.

Lemma 19.15 Let X++= 
�∈X  ��hi�>0 for all i�. Suppose �∈X++�%∈
X+ satisfy %≺� and �%�%�=��� ��. Then %=�.

Proof. Since %≺� we have �−%=∑n
i=1 ki�i with ki ∈� and ki≥0. Thus

��� �� − �%�%�=��+%��−%�

=∑
i

ki ��+%��i�=
∑
i

ki
��i��i�

2
��+%� �hi� �

Now ��i��i�>0 and ��+%� �hi�>0. Hence ��� ��−�%�%�=0 implies that
ki=0 for each i. Thus �=%.

Theorem 19.16 (Kac’ character formula). Let L�A� be a symmetrisable
Kac–Moody algebra and L��� be an irreducible L�A�-module with �∈X+.
Then

chL���=
∑
w∈W

 �w�ew��+	�−	∏
�∈�+

�1−e−��m�
�

(This is an equality in the ring .)

Proof. By Proposition 19.6 we have

chM���= ∑
�∈H∗

�M��� � L���� chL����

Now all � for which �M��� � L���� 	=0 satisfy �≺�. For L��� appears as
a factor in some filtration of M���, so � is a weight of M���.
We consider the action of the generalised Casimir operator & on M���. By

Proposition 19.10& acts onM��� as scalar multiplication by ��+	��+	�−
�	�	�. Similarly by Corollary 19.11 & acts on L��� as scalar multiplication
by ��+	��+	�−�	�	�. Thus if �M��� � L���� 	=0 we must have

��+	��+	�−�	�	�=��+	��+	�−�	�	�
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that is ��+	��+	�=��+	��+	�. Thus
chM���=∑

�

�M��� � L���� chL���

summed over all �≺� with ��+	��+	�=��+	��+	�. If we take a total
ordering on the weights� satisfying�≺� and ��+	��+	�=��+	��+	�
which is compatible with the partial ordering ≺ these equations can be
written

chM���=∑
�

a��chL���

where
(
a��

)
is an infinite matrix with non-negative integer entries such that

a��=1 and a��=0 for all entries below the diagonal. Such a matrix
(
a��

)
can be inverted to give a matrix

(
b��

)
with b�� ∈�� b��=1 and b��=0 for

entries below the diagonal. Thus we have

chL���=∑
�

b�� chM���

=∑
�

b��
e�

�
�

Thus � chL���=∑� b��e� and e	� chL���=∑� b��e�+	.
We consider the action of the Weyl group on the functions which appear

here. Since si transforms �i to −�i and �+−
�i� into itself we have

si
(
e	�

)= si

(
e	
(
1−e−�i

) ∏
�∈�+−
�i�

�1−e−��m�

)
= e	−�i

(
1−e�i

) ∏
�∈�+−
�i�

�1−e−��m�

=−e	�
since si�	�=	−�i. Hence

w
(
e	�

)= �w� e	� for all w∈W�

Also by Proposition 19.13 we have

w�chL����= chL��� for all w∈W�

since L��� is integrable. It follows that

w

(∑
�

b��e�+	

)
= �w�∑

�

b��e�+	�
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This implies that

b��= �w�b��
where w��+	�=�+	.
Suppose � is a weight for which b�� 	=0. Consider the set of all weights �

for which w��+	�=�+	 for some w∈W . All such weights satisfy b�� 	=0
and we have �≺�. Among all such weights � we can choose one for which
the height of �−� is minimal. Then �+	 must lie in X+. For if there existed
an i for which ��+	� �hi�<0 we would have

siw��+	�= si��+	�=�+	−��+	� �hi��i

contradicting the minimality of ht ��−��. Hence �+	∈X+. We also have

��+	��+	�=��+	��+	�=��+	��+	��
Thus we have

�+	∈X++� �+	∈X+� �+	≺�+	
and ��+	��+	�=��+	��+	�. By Lemma 19.15 this implies �=�.
Hence every weight � for which b�� 	=0 satisfies �+	=w��+	� for some
w∈W . But then

b��= �w�b��= �w��
Hence

e	� chL���=∑
w∈W

 �w�ew��+	��

If follows that

chL���=
∑
w∈W

 �w�ew��+	�−	

�
�

(We note that 1
�
= e−� chM��� lies in .)

Corollary 19.17 (Kac’ denominator formula). For a symmetrisable Kac–
Moody algebra we have

e	
∏

�∈�+
�1−e−��m� =∑

w∈W
 �w�ew�	��
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Proof. L�0� is the 1-dimensional trivial module with chL�0�= e0. Hence
�=�e0=

∑
w∈W

 �w�ew�	�−	

and so e	�=
∑

w∈W  �w�ew�	�.

Corollary 19.18 (Alternative form of Kac’ character formula). Let
L�����∈X+, be an irreducible module for a symmetrisable Kac–Moody
algebra. Then

chL���=
∑
w∈W

 �w�ew��+	�∑
w∈W

 �w�ew�	�
�

Proof. This follows from Theorem 19.16 and Corollary 19.17.

Note Kac’ character formula and denominator formula appear very similar to
Weyl’s character and denominator formulae for finite dimensional semisimple
Lie algebras. However, the nature of Kac’ formulae is in fact rather different,
since they involve in general infinite sums over the elements ofW and infinite
products over the positive roots.

Theorem 19.19 Let L�A� be a symmetrisable Kac–Moody algebra and
�∈X+. Then L���=M���/J��� where J��� is the submodule of M��� gen-
erated by elements f��hi�+1

i m� for i=1� � � � � n.

Proof. Let K��� be the submodule of M��� generated by the elements
f
��hi�+1
i m�. We know that L���=M���/J��� where J��� is the unique max-
imal submodule of M���, and wish to show that K���= J���. Now we have

f
��hi�+1
i v�=0 where v�= J���+m�

as in the proof of Proposition 19.14 (the detailed argument is given in Theo-
rem 10.20). Thus f��hi�+1

i m� ∈ J��� and so K���⊂ J���.
Let V���=M���/K���. Then V��� is an L�A�-module in the category �, so

chV���=∑
�≺�

�V��� � L���� chL���

by Proposition 19.6. We also have

chL���=∑
�≺�

b�� chM����



19.3 Kac’ character formula 473

Hence

chV���=∑
�≺�

c�� chM���

for certain c�� ∈�. By considering the action of the generalised Casimir
operator & on M��� and on V��� and using Proposition 19.10 we have

chV���= ∑
�≺�

��+	��+	�=��+	��+	�

c�� chM����

Now let v′�=K���+m� be the highest weight vector of V���. Then we have

f
��hi�+1
i v�=0�

It follows, as in the proof of Proposition 19.14, that fi � V���→V��� is
locally nilpotent. Since V���∈�� ei � V���→V��� is locally nilpotent.
Hence V��� is an integrable L�A�-module. Thus

w�chV����= chV��� for all w∈W
by Proposition 19.13. We then have

e	� chV���= ∑
�≺�

��+	��+	�=��+	��+	�

c��e�+	

by Proposition 19.2. It then follows exactly as in the proof of Theorem 19.16
that every weight � for which c�� 	=0 satisfies �+	=w��+	� for some
w∈W , and that then c��= �w�. Hence

e	� chV���=∑
w∈W

 �w�ew��+	�

and so chV���= chL��� by Theorem 19.16. Since L��� is a factor module of
V��� this can only happen if V���=L���. Thus K���= J��� as required.
We now recall that for finite dimensional semisimple Lie algebras the

partition function � was defined as follows. If �∈H∗ ���� is the number of
ways of writing � as a sum of positive roots, i.e. as the number of sets of
non-negative integers r���∈�+, such that �=∑�∈�+ r��.
For Kac–Moody algebras we define the generalised partition function �

as follows. If �∈H∗ ���� is the number of ways of writing � as a sum of
positive roots, each such root � being taken m� times, i.e. as the number of
sets of non-negative integers r��i for �∈�+ and 1≤ i≤m� such that

�= ∑
�∈�+

m�∑
i=1

r��i��
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We then have an analogue for symmetrisable Kac–Moody algebras of
Kostant’s multiplicity formula Theorem 12.18.

Proposition 19.20 Let L�A� be a symmetrisable Kac–Moody algebra and let
�∈�+. Then for each weight � of L��� we have

dimL����=
∑
w∈W

 �w���w��+	�−��+	���

Proof. By Proposition 19.2 we have

chM���= e�
∏

�∈�+
�1+e−�+e−2�+· · · �m� �

By definition of � we have∏
�∈�+

�1+e�+e2�+· · · �m� = ∑
�∈Q+

����e��

Thus chM���= e�
∑

�∈Q+ ����e−�. It follows that

chL���= ∑
w∈W

 �w�chM�w��+	�−	�

= ∑
w∈W

∑
�∈Q+

 �w�ew��+	�−	����e−�

= ∑
w∈W

∑
�∈Q+

 �w�ew��+	�−	−�����

=∑
�

∑
w∈W

 �w���w��+	�−��+	��e��

Hence the multiplicity of � as a weight of L��� is∑
w∈W

 �w���w��+	�−��+	���

19.4 Generators and relations for symmetrisable algebras

We recall that the Kac–Moody algebra L�A� was not defined in terms of
generators and relations. The larger algebra L̃�A� was defined by generators
and relations and its quotient L�A� is given as L̃�A�/I where I is the largest
ideal of L̃�A� satisfying I∩H̃=O. It is natural to ask what additional relations
are required to pass from L̃�A� to L�A�. We shall answer this in the case
when the GCM A is symmetrisable.
We first require some preliminary results on enveloping algebras and mod-

ules in category �.
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Proposition 19.21 Let � � L→L′ be a surjective homomorphism of Lie
algebras with kernel K. Let � � ��L�→� �L′� be the corresponding homo-
morphism between enveloping algebras. Then the kernel of � is K��L�.

Proof. Since K is an ideal of L�K��L� is a 2-sided ideal of ��L�. For �kx�∈
K for k∈K�x∈L and so kx=xk+ �kx� in ��L�. Thus K��L�=��L�K and
K��L� is a 2-sided ideal of ��L�. Thus K��L�⊂ker�.

Conversely we have a homomorphism

� � ��L�/K��L�→� �L′�

induced by �. We consider the Lie algebra ���L�/K��L��. We shall define
a map L′ → ���L�/K��L�� as follows. Given x′ ∈L′ we choose x1 ∈L with
� �x1�=x′. Then x1 ∈��L� gives rise to x̄1 ∈ ���L�/K��L��. We show that
the map x′ → x̄1 is well defined. Suppose x2 ∈L also satisfies � �x2�=x′.
Then x̄2 ∈ ���L�/K��L��. Now � �x1�=� �x2� so x1−x2 ∈K. Hence x̄1=
x1−x2+ x̄2= x̄2. Thus our map is well defined and is clearly a Lie algebra
homomorphism. By the universal property of enveloping algebras there is a
homomorphism

� � � �L′�→��L�/K��L�

compatible with our homomorphism of Lie algebras

L′ → ���L�/K��L���

It is readily checked that ��� are inverse homomorphisms, and thus isomor-
phisms. Hence the homomorphism � � ��L�→� �L′� has kernel K��L�.

The 2-sided ideal L��L� of ��L� will be denoted by ��L�+. We have

��L�=�1⊕��L�+�

Proposition 19.22 L∩���L�+�2= �LL�.

Proof. Since L⊂��L�+ and, for x� y∈L� �xy�=xy−yx we see that

�LL�⊂L∩(��L�+)2 �
Conversely let L̄=L/�LL�. We have a natural homomorphism ��L�→��L̄�
under which L∩���L�+�2 maps to L̄∩(��L̄�+)2. Now L̄ is an abelian Lie
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algebra so ��L̄� is a polynomial algebra. In such a polynomial algebra it is
evident that

L̄∩(��L̄�+)2=0�

It follows that L∩���L�+�2 lies in the kernel of L→ L̄ and so

L∩(��L�+)2⊂ �LL��
Proposition 19.23 Let K be a subalgebra of the Lie algebra L. Then
K∩K��L�+= �KK�.

Proof. Since K⊂��K�+ we have �KK�⊂K��K�+, using �xy�=xy−yx.
Hence �KK�⊂K∩K��L�+. To prove the converse we use the PBW basis
theorem. Let 
ki� be a basis ofK, and extend it to a basis

{
ki� uj

}
of L. Then all

finite products of the form
∏
k
mi
i u

nj
j with mi≥0� nj≥0 form a basis of ��L�

and the subset
∏
k
mi
i with mi≥0 is a basis for ��K�. The monomials

∏
k
mi
i u

nj
j

with
∑

mi+
∑

nj≥1 form a basis of ��L�+ and those with
∑

mi+
∑

nj≥2
and

∑
mi≥1 form a basis of K��L�+. Now

K∩K��L�+⊂��K�∩K��L�+�

A linear combination of monomials
∏
k
mi
i u

nj
j lies in ��K� if and only if all

such monomials have nj=0. Thus each element of K∩K��L�+ is a linear
combination of such monomials with all nj=0 and

∑
mi≥2. Hence

K∩K��L�+⊂ (��K�+)2∩K
and so K∩K��L�+⊂ �KK� by Proposition 19.22.

We next need some further properties of Verma modules. We recall that
for �∈H∗ the Verma module M��� for L�A� is given by

M���=��L�A��/K�

where K�=��L�A��N +∑x∈H ��L�A���x−��x��. The Verma moduleM���

can also be described as a tensor product. Let B be the subalgebra of L�A�
given by B=N +H .

Lemma 19.24 M��� is isomorphic to the ��L�-module ��L�⊗��B��v�,
where �v� is the 1-dimensional B-module with N in the kernel and H acting
by the weight �.
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Proof. There is a bijection

��L�⊗��B��v�→� �N−�⊗��v�

given as follows. Since L=N−⊕B we have a bijection

��L�→� �N−�⊗���B��

Thus we have bijections

��L�⊗��B��v�→ �� �N−�⊗���B��⊗��B��v�

→ � �N−�⊗�

(
��B�⊗��B��v�

)→� �N−�⊗��v��

The ��L�-action on � �N−�⊗��v� is given as follows. Let u′ ∈��L� and
u∈� �N−�. Then

u′u=∑
i

aibi where ai ∈� �N−� � bi ∈��B��

We have u′ �u⊗v��= �
∑

i � �bi� ai�⊗v�. On the other hand we know that each
element of M��� is expressible uniquely as um� for u∈� �N−�. Moreover
for u′ ∈��L� we have

u′ �um��=
(∑

i

� �bi� ai

)
m��

Thus there is a��L�-module isomorphism between��L�⊗��B��v� andM���.

We may also define a module M̃��� for the larger Lie algebra L̃�A� by

M̃���=��L̃�⊗��B̃��v�

where �∈H∗ and B̃= Ñ +H .

Lemma 19.25 For �∈H∗ there is an isomorphism of ��L�-modules

��L�⊗��L̃� M̃����M����

Proof. We have a sequence of bijections

��L� ⊗ ��L̃�M̃���=��L�⊗��L̃�

(
��L̃�⊗��B̃� �v�

)
→ (

��L�⊗��L̃���L̃�
)⊗��B̃��v�→��L�⊗��B̃��v��

Now we have a natural homomorphism ��B̃�→��B� with kernel K which
acts trivially on ��L� and on �v�. Thus we have a bijection

��L�⊗��B̃��v�→��L�⊗��B��v�=M����

The above bijections are isomorphisms of ��L�-modules.
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We next require further information about modules in the category �. The
following definition turns out to be very useful.

Definition Let V be an L�A�-module with V ∈�. A vector v∈V is called
primitive if

(i) v is a weight vector
(ii) there exists a submodule U ⊂V such that v 	∈U but Nv⊂U .

Lemma 19.26 A module V ∈� is generated as an L�A�-module by its prim-
itive vectors.

Proof. Let V ′ be the submodule generated by the primitive vectors in V .
Suppose V ′ 	=V . Consider the factor module V/V ′. This factor module lies
in � so contains a weight vector v̄ 	=0 of maximal weight with respect to ≺.
Thus Nv̄=0. Let v be a weight vector in V such that v→ v̄. Then v 	∈V ′ and
Nv⊂V ′. Thus v is a primitive vector not in V ′, a contradiction.

In fact the following stronger result is true.

Proposition 19.27 A module V ∈� is generated as a ��N−�-module by its
primitive vectors.

Proof. We first show that if v∈V is a weight vector which is not primitive
then v∈��N−���N�+v. For consider the ��L�-submodule of V generated
by Nv. We have

��L�Nv= ��N−���H���N�Nv

= ��N−���N�Nv since v is a weight vector

= ��N−���N�+v�

Now let U be the � �N−�-submodule generated by the primitive vectors in
V . We wish to show U =V . We shall assume U 	=V and obtain a contradic-
tion. For each weight vector v∈V we have

��L�v= ��N−���H���N�v=��N−���N�v

= ��N−���1+��N�+�v

= ��N−�v+��N−���N�+v�

We can deduce from this that V is generated as ��L�-module by U and
the � �N−�-submodule generated by ��N�+v for all primitive v∈V . Since
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U 	=V there exists a primitive v such that ��N�+v 	⊂U . Let v have weight
�. Then there exists a weight vector u1 ∈��N�+ with u1v 	∈U . So u1v is not
primitive in V . Thus we have

u1v∈� �N−���N�+u1v�

Hence ��N�+u1v 	⊂U . So there exists a weight vector u2 ∈��N�+ with
u2u1v 	∈U .
Continuing in this way we obtain a sequence of weight vectors

u1� u2� u3� � � � in ��N�+ such that uk � � � u1v 	∈U for each k. Let the weight of
ui be �i. Then the weight of uk � � � u1v is �+�1+· · ·+�k. We have

�≺�+�1≺�+�1+�2≺· · · �
But V ∈� and so such a sequence of weights must terminate after finitely
many steps. This gives the required contradiction.

We now consider the module
⊕n

i=1M�−�i� in �.

Proposition 19.28 Every primitive vector in the module
⊕n

i=1M�−�i� has
weight −� where �����=2�	���.

Proof. Let v be a primitive vector in
⊕n

i=1M�−�i� of weight −�. Then
there is a submodule U of

⊕n
i=1M�−�i� such that v 	∈U and Nv⊂U . Write

v=v1+· · ·+vn where vi ∈M�−�i� and let v→ v̄ where v̄∈ �⊕M�−�i��/U .
We consider the action of the generalised Casimir operator & on the module⊕

M�−�i�. By Proposition 19.10

&vi = ��−�i+	�−�i+	�−�	�	�� vi
= ���i��i�−2 �	��i�� vi�

Now 	�hi�=1 so
〈
	�

2�i

��i��i�
〉
=1. Hence ��i��i�=2 �	��i� and so&vi=0.

Thus & acts as 0 on
⊕

M �−�i�. Hence & acts as 0 on �
⊕

M�−�i��/U and
&v̄=0. But v̄ has weight −� and so

&v̄= ��−�+	�−�+	�−�	�	��v̄
= ������−2�	����v̄�

Thus �����=2�	��� as required.
We shall now start to see the relevance of the preliminary results which

we have obtained. We concentrate on the kernel I of the natural homo-
morphism L̃�A�→L�A�. We recall that I= I−⊕ I+ where I−⊂ Ñ− and
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I+⊂ Ñ . We have I−=⊕�∈Q−I
−
� by Lemma 14.12. Since dim L̃�A�−�i =

dimL�A�−�i =1 we have I−−�i =0. Thus I−=⊕�∈Q−��	=−�i I
−
� . Hence each

element of I− has form
∑n

i=1 uifi where ui ∈�
(
Ñ−

)+
. It is in fact uniquely

expressible in this form since Ñ− is the free Lie algebra on f1� � � � � fn by
Proposition 14.8 and so �

(
Ñ−

)
is the free associative algebra on f1� � � � � fn

by Proposition 9.10.

Proposition 19.29 Let � � L̃�A�→L�A� be the natural homomorphism with
kernel I= I−⊕ I+. Then there is a homomorphism of L̃-modules

I−→
n⊕
i=1

M�−�i�

given by
∑n

i=1 uifi→
∑n

i=1 � �ui�m−�i . The kernel of this homomorphism
is �I−I−�.

Proof. We begin with the L̃-module

M̃���=��L̃� ⊗
��B̃�

�v� for �∈H∗�

The module M̃��� has highest weight vector m̃�=1⊗v� and, just as for the
Verma module M���, each element of M̃��� is uniquely expressible in the
form um̃� for u∈�(Ñ−). We take the special case �=0. Then u→um̃0 is a
bijection between �

(
Ñ−

)
and M̃�0�.

Now �
(
Ñ−

)
is freely generated by f1� � � � � fn so

�
(
Ñ−

)=�1⊕� (
Ñ−

)
f1⊕· · ·⊕�

(
Ñ−

)
fn�

Thus
⊕n

i=1�
(
Ñ−

)
fi is a �

(
Ñ−

)
- submodule of codimension 1 in �

(
Ñ−

)
. It

corresponds to the subspace
⊕n

i=1�
(
Ñ−

)
fim̃0 of codimension 1 in M̃�0�. Let

J̃ �0�=
n⊕
i=1

�
(
Ñ−

)
fim̃0�

Then J̃ �0� is a ��L̃�-submodule of M̃�0�. For it is clearly invariant under
�
(
Ñ−

)
and ��H�, but also

eifim̃0 = fieim̃0+him̃0=0

ejfim̃0 = fiejm̃0=0 if j 	= i�
Thus ��Ñ �+fim̃0=0 and so ��Ñ �fim̃0=�fim̃0. Hence

��L̃�fim̃0 = �
(
Ñ−

)
��H���Ñ �fim̃0

= �
(
Ñ−

)
��H�fim̃0=�

(
Ñ−

)
fim̃0�
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Thus J̃ �0�=⊕n
i=1��L̃�fim̃0, which is a ��L̃�-submodule of M̃�0�. Now fim̃0

has weight −�i and the map

�
(
Ñ−

)
fim̃0→ M̃ �−�i�

uifim̃0→uim̃−�i

is an isomorphism of��L̃�-modules. Thus J̃ �0� is isomorphic to
⊕n

i=1M̃ �−�i�

as ��L̃�-modules. It then follows from Lemma 19.25 that

��L�⊗��L̃� J̃ �0��
n⊕
i=1

M �−�i�

as ��L̃�-modules, or as ��L�-modules.
We now consider the map

� � I−→��L� ⊗
��L̃�

J̃ �0�

given by x→1⊗xm̃0. We note that xm̃0 lies in J̃ �0� since I−⊂ Ñ−. We
show that � is a homomorphism of L̃-modules. To see this let y∈ L̃. Then

�y� x�→ 1⊗ �y� x�m̃0

= 1⊗�yx−xy�m̃0

= 1⊗y �xm̃0�−1⊗x �ym̃0� �

Now we have xm̃0 ∈ J̃ �0� and ym̃0 ∈ J̃ �0�. Thus
�y� x�→ ��y�⊗�xm̃0�−��x�⊗�ym̃0�

= ��y�⊗�xm̃0� since ��x�=0�

= y �1⊗xm̃0� �

This shows that � is a homomorphism of L̃-modules. Moreover �I−I−� lies
in the kernel of �. For if x� y∈ I− we have �y� x�→0 as above, since ��x�=
��y�=0. Thus we have a homomorphism of L̃-modules

� � I−→
n⊕
i=1

M �−�i�

with
∑n

i=1 uifi→
∑n

i=1 � �ui�m−�i where ui ∈�
(
Ñ−

)+
.

We determine the kernel K of �. We know that �I−I−�⊂K and prove the
reverse inclusion. Let

∑
uifi ∈K where ui ∈�

(
Ñ−

)+
. Then

∑
� �ui�m−�i =0.

This implies � �ui�m−�i =0 for each i and then that � �ui�=0 for each i.
Now the homomorphism of Lie algebras � � Ñ−→N− gives rise to a homo-
morphism of enveloping algebras �

(
Ñ−

)→��N−� with kernel I−�
(
Ñ−

)
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by Proposition 19.21. Thus ui ∈ I−�
(
Ñ−

)
and so

∑
uifi ∈ I−�

(
Ñ−

)+
.

Hence K⊂ I−∩ I−� (
Ñ−

)+
. However, I−∩ I−� (

Ñ−
)+= �I−I−� by Propo-

sition 19.23. Hence K⊂ �I−I−�. Thus the kernel of our homomorphism is
�I−I−�.

We now come to our description of L�A� by generators and relations.

Theorem 19.30 Let L�A� be a symmetrisable Kac–Moody algebra. Then
L�A�= L̃�A�/J where J is the ideal of L̃�A� generated by the elements
�ad ei�

1−Aij ej and �ad fi�
1−Aij fj for all i 	= j. Thus we obtain a system of

generators and relations for L�A� by taking generators and relations for
L̃�A� and adding the further relations

�ad ei�
1−Aij ej=0� �adfi�

1−Aij fj=0

for all i 	= j.

Proof. Let J be the ideal of L̃�A� generated by the elements �ad ei�
1−Aij ej

and �ad fi�
1−Aij fj . We have L�A�= L̃�A�/I and J ⊂ I by Proposition 16.10.

We wish to show that I= J .
We shall suppose if possible that I 	= J and obtain a contradiction. Let

Ī= I/J . Then Ī 	=0 and Ī= Ī+⊕ Ī− where

Ī+= ⊕
�∈Q+

Ī�� Ī−= ⊕
�∈Q−

Ī�

since the analogous property holds for I . The automorphism !̃ of L̃�A� given
in Proposition 14.5 satisfies !̃�I�= I and !̃�J�= J so induces an automor-
phism on Ī= I/J . This automorphism satisfies !̃

(
Ī+
)= Ī−. Hence Ī+=0 if

and only if Ī−=0. Since Ī= Ī+⊕ Ī− and Ī 	=0 we must have Ī− 	=0.
We know from Section 16.2 that the Weyl group W acts on the weights

of L̃�A�/I and that weights in the same W -orbit have the same multiplicity.
The same argument can be applied to L̃�A�/J to give a similar result. Since

dim
(
L̃�A�/J

)
�
=dim

(
L̃�A�/I

)
�
+dim �I/J��

we see that W acts on the weights of Ī and that weights in the same W -orbit
have the same multiplicity. In factW acts on the weights of Ī− since if �∈Q−
is a weight of Ī− then si���∈Q− also, since −�i is not a weight of I .

We choose a weight �=∑n
i=1 ki�i ∈Q+ such that Ī−−� 	=0 and � has mini-

mal possible height
∑

ki. Since Ī
−
−si��� 	=0 we have ht si���≥ht�. Since

si���=�−2
��i���
��i��i�

�i
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we have ��i���≤0. Since �=∑ki�i with each ki≥0 we deduce that
�����≤0. On the other hand we have

2�	���=∑
i

ki �	�2�i�=
∑
i

ki ��i��i�>0�

Thus �����≤0 and 2�	���>0. In particular ����� 	=2�	���. Thus the
weights −� for Ī− for which � has minimal height satisfy ����� 	=2�	���.

We now recall from Proposition 19.29 that I−/ �I−� I−� is isomorphic as
L̃-module to a submodule of

⊕n
i=1M �−�i�. By Proposition 19.28 all primi-

tive vectors in
⊕n

i=1M �−�i� have a weight −� satisfying �����=2�	���.
Thus all primitive vectors of I−/ �I−I−� have weight −� satisfying �����=
2�	���. Now I−/ �I−I−� is generated as an N−-module by its primitive vec-
tors, by Proposition 19.27. Thus I−/ �I−I−� is generated as an Ñ−-module by
its weight vectors with weight −� satisfying �����=2�	���. (Recall that
Ñ−/I−�N−.)
We claim the same is true of I−. Let K be the Ñ−-submodule of

I− generated by all weight vectors with weight −� satisfying �����=
2�	���. Then ��I−I−�+K�/ �I−I−� has the same property in I−/ �I−I−�,
thus �I−I−�+K= I−. Suppose if possible that K 	= I−. Then I−/K is an
Ñ−-module whose weights are non-zero elements of Q−. Consider the
submodule �I−/K� I−/K� of I−/K. This is an Ñ−-module whose weights
have form �+� where ��� are weights of I−/K. Thus if � is a weight of
I−/K for which �ht�� is minimal then � cannot be a weight of �I−/K� I−/K�.
Thus

�I−/K� I−/K� 	= I−/K

and this gives K+ �I−� I−� 	= I−, a contradiction. Thus I− is generated as
Ñ−-module by its weight vectors with weight −� satisfying �����=2�	���.
The same must therefore be true of Ī−. However, we have seen above that
the weights −� of Ī− for which ht� is minimal do not satisfy �����=
2�	���. This implies that the set of weight vectors with weight −� satisfying
�����=2�	��� cannot generate Ī− as Ñ−-module. This gives the required
contradiction.



20
Representations of affine
Kac–Moody algebras

20.1 Macdonald’s identities

We now consider Kac’ denominator formula∏
�∈�+

�1−e−��m� =∑
w∈W

 �w�ew�	�−	

in the special case when L is an affine Kac–Moody algebra.
We assume first that L is an untwisted affine algebra. Then L= 
̂

(
L0
)

where L0 is a finite dimensional simple Lie algebra with root system �0

and Weyl group W 0. We recall from Theorems 17.18 and 16.27, and Corol-
lary 18.6 that

�={�+n�  �∈�0� n∈�}∪
n�  n∈�� n 	=0�

and that �+n� has multiplicity 1 and n� has multiplicity l. Also

�+={�+n�  �∈�0� n>0
}∪(�0

)+∪
n�  n>0��

Thus the left-hand side of the denominator formula can be expressed as

∏
�∈��0�

+
�1−e−��

∏
n>0

{
�1−e−n��l

∏
�∈�0

�1−e−�−n��
}

We also recall from Remark 17.34 that W = t �M∗�W 0 where M∗ is the
lattice given by

M∗ =

⎧⎪⎨⎪⎩
l∑

i=1
��i for types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8∑

�i long
��i+

∑
�i short

p��i for B̃l� C̃l� F̃4� G̃2

484
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and t �M∗� is the set of t� � H∗→H∗ for �∈M∗ given by

t����=�+��c��−������+ 1
2�������c����

In calculating the right-hand side of the denominator formula we recall that

H=H0⊕��c+�d�

H∗ = (H0
)∗⊕���+���

where
(
H0

)∗
is embedded inH∗ by assuming ��c�=0���d�=0 for �∈ (H0

)∗
.

Lemma 20.1 Let �∈H∗. Then

�=�0+��c��+a−10 ��d��

where �0 ∈ (H0
)∗
.

Proof. Let �=�0+r�+s� where �0 ∈ (H0
)∗
. Then ��c�=�0�c�+r��c�+

s��c�. But we have �i�c�=0 for i=1� � � � � l hence �0�c�=0. Also ��c�=0
and ��c�=1. Hence r=��c�. Also ��d�=�0�d�+r��d�+s��d�. We know
�i�d�=0 for i=1� � � � � l thus �0�d�=0. Also ��d�=0 and ��d�=a0. Hence
��d�=a0s and s=a−10 ��d�.

Of course in the untwisted case we have a0=1.
We recall that 	∈H∗ satisfies 	�hi�=1 for i=0�1� � � � � l and 	�d�=0.

In particular we have 	�c�= c0+c1+· · ·+cl.

Definition The number h=a0+a1+· · ·+al is called the Coxeter number
of L. The number hv= c0+c1+· · ·+cl is called the dual Coxeter number
of L.

We note that if L= 
̂
(
L0
)
is of untwisted type then the Coxeter number

of L is equal to the Coxeter number of L0.
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The values of h and hv are given in the following table.

Type of L h hv

Ãl l+1 l+1
B̃l 2l 2l−1
C̃l 2l l+1
D̃l 2l−2 2l−2
Ẽ6 12 12
Ẽ7 18 18
Ẽ8 30 30
F̃4 12 9
G̃2 6 4
B̃t
l 2l−1 2l

C̃ t
l l+1 2l

F̃ t
4 9 12

G̃t
2 4 6

Ã′1 3 3
C̃ ′l 2l+1 2l+1

Lemma 20.2 	=	0+hv� where 	0 ∈ (H0
)∗

satisfies 	0 �hi�=1 for i=
1� � � � � l.

Proof. This follows from Lemma 20.1 since 	�c�=hv and 	�d�=0.

We now consider the right-hand side of the denominator formula. Let
w∈W have form w=w0t� where w0 ∈W 0 and �∈M∗. Then

w�	�−	 =w0t��	�−	

=w0

(
	+hv�−

(
�	���+ 1

2
�����hv

)
�

)
−	

=w0�	�−	+hvw0���−
(
�	���+ 1

2
�����hv

)
�

=w0
(
	0
)−	0+hvw0���−

(〈
	0��

〉+ 1
2
�����hv

)
�

since w0���=� and�����=0 for all �∈M∗

=w0
(
hv�+	0

)−	0−
(〈
	0+hv��	0+hv�

〉− 〈	0� 	0
〉)

2hv
��
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For convenience we shall write, for �∈ (H0
)∗
,

c���= 〈�+	0��+	0
〉− 〈	0� 	0

〉
�

We recall from Corollary 19.11 that when � is dominant and integral the
generalised Casimir operator acts on the irreducible module with highest
weight � as scalar multiplication by c���.
We also write, for �∈ (H0

)∗
,

�0���=
∑

w∈W 0

 �w�ew��+	0�−	0∑
w∈W 0

 �w�ew�	0�−	0
�

We recall from Theorem 12.17 that when � is dominant and integral �0���

is the character of the irreducible L0-module L���. However, c��� and �0���

are now defined for all �∈ (H0
)∗
. Then we have, writing e��� instead of e�

for convenience:∑
w∈W

 �w�e�w�	�−	�

= ∑
�∈M∗

∑
w0∈W 0

 
(
w0
)
e
(
w0

(
hv�+	0

)−	0
)
e

(−c �hv��

2hv
�

)

= ∑
w0∈W 0

 
(
w0
)
e
(
w0

(
	0
)−	0

) ∑
�∈M∗

�0 �hv��e

(−c �hv��

2hv
�

)

= ∏
�∈��0�

+
�1−e−��

∑
�∈M∗

�0 �hv��e

(−c �hv��

2hv
�

)

by Weyl’s denominator formula.
We now put q= e−� and equate the left- and right-hand sides of Kac’

denominator formula. We obtain the following result.

Theorem 20.3 (Macdonald’s identity for untwisted affine Kac–Moody alge-
bras).

∏
n>0

{
�1−qn�l ∏

�∈�0

�1−qne−��
}
= ∑

�∈M∗
�0 �hv��qc�h

v��/2hv

where

M∗ =
⎧⎨⎩
∑l

i=1��i for types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8∑
�i long

��i+
∑

�i short
p��i for B̃l� C̃l� F̃4� G̃2�
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We next wish to state Macdonald’s identities for the twisted affine Kac–
Moody algebras. The left-hand side of the identity is obtained from a knowl-
edge of the real and imaginary roots together with the multiplicities of the
imaginary roots. The real roots are given in Theorem 17.8 and the multiplic-
ities of the imaginary roots in Corollaries 18.10 and 18.15. The right-hand
side of the identity looks the same as before – the only change being that
the appropriate lattice M∗ must be taken in each case. The appropriate lattice
was described in Remark 17.34.

Theorem 20.4 (Macdonald’s identity for twisted affine Kac–Moody algebras).
(a) The left-hand side of the identity is given as follows.

B̃t
l

∏
n>0

⎧⎨⎩(1−q2n
)l (

1−q2n−1)l−1 ∏
�∈�0

s

�1−qne−��
∏
�∈�0

l

(
1−q2ne−�

)⎫⎬⎭
C̃ t
l

∏
n>0

⎧⎨⎩(1−q2n
)l (

1−q2n−1) ∏
�∈�0

s

�1−qne−��
∏
�∈�0

l

(
1−q2ne−�

)⎫⎬⎭
F̃ t
4

∏
n>0

⎧⎨⎩(1−q2n
)4 (

1−q2n−1)2 ∏
�∈�0

s

�1−qne−��
∏
�∈�0

l

(
1−q2ne−�

)⎫⎬⎭
G̃t

2

∏
n>0

{(
1−q3n

)2 (
1−q3n−1) (1−q3n−2)

∏
�∈�0

s

�1−qne−��
∏
�∈�0

l

(
1−q3ne−�

)⎫⎬⎭
C̃ ′l

∏
n>0

{
�1−qn�l ∏

�∈�0
s

�1−qne−��

∏
�∈�0

l

(
1−q 2n−1

2 e −1
2 �

)(
1−q2ne−�

)⎫⎬⎭
Ã′1

∏
n>0

{
�1−qn� ∏

�∈�0

(
1−q 2n−1

2 e−1/2�
)(

1−q2ne−�
)}

�

(b) The right-hand side of the identity is∑
�∈M∗

�0 �hv
�� q

c�hv��/2hv
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where

M∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l∑

i=1
��i for types B̃t

l� C̃
t
l � F̃

t
4� G̃

t
2∑

�i long

1
2��i+

∑
�i short

��i for type C̃ ′l

1
2��1 for type Ã′1�

We now give some examples to illustrate Macdonald’s identity. Suppose
first that L has type Ã1. Then L0 has type A1��

0= 
�1�−�1� �h
v=2 and

M∗ =��1. Moreover ��1��1�=2 c1
a1
=2 and 	0= 1

2�1. Let z= e−�1
. The left-

hand side of Macdonald’s identity is

∏
n>0

�1−qn� �1−qnz� (1−qnz−1) �
Now �0 �n�1�=

en�1
−e−�n+1��1

1−e−�1

= z−n−zn+1
1−z . We also have

c �2n�1�=
〈
�2n+ 1

2 ��1� �2n+ 1
2 ��1

〉− 〈 12�1�
1
2�1

〉
= 4n�2n+1��

Thus the right-hand side of Macdonald’s identity is

∑
n∈�

z−2n−z2n+1
1−z qn�2n+1��

This can be written in the convenient form

1
1−z

∑
n∈�

(
z−2nqn�2n+1�−z2n+1qn�2n+1�

)
= 1

1−z
∑
m∈�

�−1�mzmqm�m−1�/2�

Multiplying both sides of the identity by 1−z we obtain:

Proposition 20.5 (Macdonald’s identity for type Ã1).∏
n>0

�1−qn� (1−qn−1z) (1−qnz−1)=∑
m∈�

�−1�mzmqm�m−1�/2�

This is a classical identity known as Jacobi’s triple product identity.
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As a second example we suppose L has type Ã′1. Then L0 has type A1 and
�0= 
�1�−�1� as before, but we now have hv=3 and M∗ = 1

2��1. We have
a0=2� a1=1� c0=1� c1=2, thus

��1��1�=
2c1
a1

=4 and �=2�0+�1�

We write e−�0
= z. Then e−�1

= z−2q. The left-hand side of Macdonald’s
identity is∏

n>0

�1−qn� (1−qnz−1) (1−qn−1z) (1−q2n+1z−2
) (
1−q2n−1z2

)
�

We have

c
(
3
2n�1

)= ( 94n2+ 3
2n
) ��1��1�=9n2+6n�

Also

�0
(
3
2n�1

)= (
z−2q

)− 3
2
n−(z−2q) 3

2
n+1

1−z−2q �

Thus the right-hand side of the identity is

∑
n∈�

((
z−2q

)− 3
2
n−(z−2q) 3

2
n+1)

1−z−2q q
n�3n+2�

2

= 1
1−z−2q

(∑
n∈�

z3nq
n�3n−1�

2 −∑
n∈�

z−3n−2q
�n+1��3n+2�

2

)

= 1
1−z−2q

(∑
n∈�

z3nq
n�3n−1�

2 −∑
n∈�

z−3n+1q
n�3n−1�

2

)

= 1
1−z−2q

∑
n∈�

(
z3n−z−3n+1)q n�3n−1�

2 �

We multiply both sides of the identity by 1−z−2q and obtain

Proposition 20.6 (Macdonald’s identity for type Ã′1).∏
n>0

�1−qn� (1−qnz−1) (1−qn−1z) (1−q2n−1z−2
) (
1−q2n−1z2

)
=∑

n∈�

(
z3n−z−3n+1)q n�3n−1�

2 �

This is also a classical identity known as the quintuple product identity.
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20.2 Specialisations of Macdonald’s identities

We can obtain some striking identities, simpler than the original Macdonald
identities, by specialising the latter identities in various ways. One way of
specialising is simply to replace e� by 1 for all �∈�0. When this is done the
expression �0��� is replaced by d0��� where

d0���=
∏

�∈��0�+
〈
�+	0��

〉∏
�∈��0�+ �	0��� �

This is shown in Theorem 12.19. The identities obtained by specialisation in
this way involve Euler’s �-function

��q�= �1−q� (1−q2
) (
1−q3

)
� � �

If we specialise the identity of Theorem 20.3 we obtain the following.

Theorem 20.7 (Macdonald’s �-function identity).

��q�dimL0 = ∑
�∈M∗

d0 �hv��qc�h
v
��/2h

v
�

Proof. The left-hand side of the specialised identity is

��q�l+��
0� =��q�dimL0

�

On the right-hand side �0 �hv�� specialises to d0 �hv��.

We give some examples of this �-function identity.

Type Ã1

��q�3=∑
n1∈�

�4n1+1� qn1�2n1+1��

Type Ã2

��q�8 = ∑
�n1�n2�∈�2

1
2 �6n1−3n2+1� �−3n1+6n2+1� �3n1+3n2+2�

×q3n21−3n1n2+3n22+n1+n2 �

Type C̃2

��q�10 = ∑
�n1�n2�∈�2

�12n1−6n2+1� �−6n1+6n2+1� �2n2+1� �3n1+1�

×q6n21−6n1n2+3n22+n1+n2 �
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Type G̃2

��q�14 = ∑
�n1�n2�∈�2

1
15 �8n1−12n2+1� �−12n1+24n2+1� �3n1−3n2+1�

× �12n2+5� �−2n1+6n2+1� �4n1+3�

×q4n21−12n1n2+12n22+n1+n2 �

We next specialise the identities of Theorem 20.4 for twisted affine
Kac–Moody algebras.

Theorem 20.8 (Macdonald’s twisted �-function identities).

(a) The left-hand side of the identity is given as follows.

B̃t
l ��q�2l

2−l−1�
(
q2
)2l+1

C̃ t
l ��q�2l+1�

(
q2
)2l2−l−1

F̃ t
4 ��q�26�

(
q2
)26

G̃t
2 ��q�7�

(
q3
)7

C̃ ′l �
(
q

1
2

)2l
��q�2l

2−3l�
(
q2
)2l

Ã′1 �
(
q

1
2

)2
��q�−1�

(
q2
)2

(b) The right-hand side of the identity is∑
�∈M∗

d0 �hv��qc�h
v��/2hv

where M∗ is as in Theorem 20.4 (b).

We give some examples of twisted �-function identities.

Type Ã′1

�
(
q

1
2

)2
��q�−1�

(
q2
)2=∑

n1∈�
�3n1+1� q

1
2 n1�3n1+2��

Type C̃ t
2

��q�5�
(
q2
)5 = ∑

�n1�n2�∈�2

1
3 �8n1−4n2+1� �−8n1+8n2+1�

× �8n1+3� �2n2+1�

×q8n21−8n1n2+4n22+2n1+n2 �
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Type C̃ ′2

�
(
q

1
2

)4
��q�2�

(
q2
)4 = ∑

�n1�n2�∈�2

1
6 �10n1−5n2+1� �−5n1+5n2+1�

× �5n2+3� �5n1+2�

×q5n21−5n1n2+ 5
2 n

2
2+n1+n2 �

Type G̃t
2

��q�7�
(
q3
)7 = ∑

�n1�n2�∈�2

1
10 �12n1−18n2+1� �−6n1+12n2+1�

× �−3n1+9n2+2� �6n1+5� �3n1−3n2+1�

× �2n2+1� q6n21−18n1n2+18n22+n1+3n2 �

Another possibility to obtain specialised identities in one variable from
Macdonald’s identity is to apply a homomorphism

� � �
[[
e−�0

� e−�1
� � � � � e−�l

]]→���q��

between rings of formal power series, given by

�
(
e−�0

)=qs0� � (e−�1

)=qs1� � � � � � (e−�l)=qsl
where s0� s1� � � � � sl are non-negative integers. Of course under such a spe-
cialisation e−� would be mapped to qa0s0+···+alsl , so that q would have to be
replaced by this power of q in our earlier description of Macdonald’s identity.

For example in type Ã1 we obtain the following.

Proposition 20.9 (Macdonald’s 1-variable identity for Ã1).∏
n>0

(
1−q�s0+s1�n) (1−qs0�n−1�+s1n) (1−qs0n+s1�n−1�)
=∑

m∈�
�−1�mqs0 m�m−1�

2 +s1 m�m+1�
2 �

We mention some explicit examples of this identity. If �s0� s1�= �1�1� we
obtain

��q�2

��q2�
=∑

m∈�
�−1�mqm2

that is

�1−q�2 (1−q2
) (
1−q3

)2 (
1−q4

) (
1−q5

)2 (
1−q6

) · · ·
=1−2q+2q4−2q9+2q16−· · · �
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This is a classical formula of Gauss.
Next consider the example given by �s0� s1�= �2�1�. Then we obtain

��q�=∑
m∈�

�−1�mq m�3m−1�
2

that is

�1−q� (1−q2
) (
1−q3

) (
1−q4

) (
1−q5

) (
1−q6

) · · ·
=1−q−q2+q5+q7−q12−q15+q22+q26−· · · �

This is a well known formula of Euler.
Many additional formulae can be obtained by taking different values of

�s0� s1� or different affine Kac–Moody algebras.

20.3 Irreducible modules for affine algebras

We next consider the weights of the irreducible modules L�����∈X+, for
the affine Kac–Moody algebra L�A�. We recall that X is the set of �∈H∗
with ��hi�∈� for i=0�1� � � � � l and X+ is the set of �∈X with ��hi�≥0
for i=0�1� � � � � l.
It is convenient to introduce the fundamental weights !0�!1� � � � �!l. !i

is the element of X+ defined by

!i

(
hj
)=�ij !i�d�=0�

Since the imaginary root � satisfies

�
(
hj
)=0 ��d�=1

we see that !0�!1� � � � �!l� � form a basis of H∗.
If �∈H∗ satisfies

�=�0!0+�1!1+· · ·+�l!l+��
then � lies in X if and only if �i ∈� for i=0�1� � � � � l. � can be any element
of �. Also �∈X+ if and only if �i ∈� and �i≥0 for i=0�1� � � � � l.
Now every weight � of L��� has form �=�−m0�0−m1�1−· · ·−ml�l

for certain mi ∈� with mi≥0. Since �i�c�=0 for i=0�1� � � � � l we have
��c�=��c�. Thus all the weights � of L��� have the same value of ��c�.
Since c= c0h0+c1h1+· · ·+clhl we have ��c�=∑i=0 ci� �hi� and so, for
�∈X+���c� is a non-negative integer. The integer ��c� is called the level of
the module L���.
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Proposition 20.10 If L��� has level 0 then �=�� for some �∈� and
dimL���=1.

Proof. If ��c�=0 then ��hi�=0 for i=0�1� � � � � l. Writing �=�0!0+· · ·+
�l!l+�� we see that �i=0 for i=0�1� � � � � l, hence �=��. Kac’ character
formula then shows that chL����= e��. Thus dimL����=1.

Since the modules L��� of level 0 are trivial 1-dimensional modules we
shall subsequently concentrate on modules L�����∈X+, of level greater
than 0.
If� is a weight of L��� then so isw��� for anyw∈W , by Proposition 19.13.

We take a w∈W for which the height of �−w��� is minimal and put
�=w���. Since si���=�−� �hi��i the minimality of the height shows that
� �hi�≥0. Thus for any weight � of L��� there exists w∈W with w���∈X+.
We now show that the converse is true also.

Theorem 20.11 Let �∈X+ have ��c�>0. Then �∈X is a weight of L��� if
and only if there exists w∈W such that w���∈X+ and w���≺�.

Proof. It will be sufficient to show that if �∈X+ with �≺� then � is a
weight of L���. The proof of this is non-trivial and reminiscent of that of
Proposition 16.23.
Let �=�−� where �=∑ki�i and each ki≥0. We may assume ki >0

for some i. supp� is the set of i for which ki >0. We first show that every
connected component of supp� contains an i with ��hi�>0. Suppose if
possible there exists a connected component S of supp� with ��hi�=0 for
all i∈S. We have

L����⊂� �N−�−� v�

where v� is a highest weight vector of L��� and, by the PBW basis theorem,
� �N−�−� is spanned by elements of the form∏

�∈�+
e
k�
−�

where k�≥0�
∑

k��=�, and each � involves fundamental roots which all
lie in the same connected component of supp�. (We recall from Proposi-
tion 16.21 that supp� is connected.) Now the e−� with fundamental roots
in different connected components of supp� commute with one another, so
we may bring the e−� with fundamental roots in S to the right of the above
product. But for such � we have e−�v�=0.
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For fiv�=0 for each i∈S by Theorem 19.19, since ��hi�=0. It follows
that

� �N−�−� v�=O
and so L����=O, a contradiction. Hence there exists i∈S with ��hi�>0.

Now let ) be defined by

) ={�∈Q+  �≺���−� is a weight of L���
}
�

The set ) is finite. Let �∈) be an element of maximal height. Then �≺�.
We aim to show that �=� and hence that �−� is a weight of L���. Let
�=∑mi�i with each mi≥0. We have �=∑ki�i with mi≤ki for each i.

Let I= 
0�1� � � � � l� and J be the subset of I given by J = 
i∈ I  ki=mi�.
We aim to show that J = I and so that �=�. Suppose if possible that
J 	= I . Consider the non-empty subset of I given by supp�−�supp�∩J�.
This set splits into connected components. Let M be a connected component
of supp�−�supp�∩J�. Let i∈M . Then �−� is a weight of L��� but
�−�−�i is not. Thus ��−�� �hi�≤0. Also ��hi�≥0 since �∈X+ and so
��−�� �hi�≥0. Thus we have

��hi�≤��hi�≤��hi� �

Let �= ∑
j∈M

(
kj−mj

)
�j . We have kj−mj >0 for all j∈M . We also have

� �hi�=
∑
j∈M

(
kj−mj

)
Aij�

However, � �hi�= ��−�� �hi� since supp��−��= supp�−J and M is a
connected component of supp�−J . Thus � �hi�≤0 for each i∈M .

Let AM be the principal minor
(
Aij

)
for i� j∈M . Let u be the column vector

with entries ki−mi for i∈M . Then we have u>0 and AMu≤0. If M has
finite type AM�−u�≥0 would imply−u>0 or−u=0. ThusM does not have
finite type. SinceM is a subset of I which has affine type we must haveM= I
by Lemma 15.13. Thus supp�= I and J =�. But then, for all i∈ I��−� is a
weight of L��� but �−�−�i is not. Thus ��−�� �hi�≤0 for all i∈ I . Hence
��hi�≤��hi�≤��hi� for all i∈ I . We now have u>0 and Au≤0. Since A
is affine we can deduce Au=0. This shows that ��hi�=��hi� for all i∈ I .
Hence ��hi�=��hi� for all i∈ I , that is ��hi�=0 for each i. But then we
have ��c�=0, and so ��c�=0, a contradiction.

Corollary 20.12 If � is a weight of L��� then �−� is also a weight.
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Proof. Since � is a weight there exists w∈W such that w���∈X+.
Then w��−��=w���−�∈X+. Since w���−�≺� it follows from Theo-
rem 20.11 that w���−� is a weight of L���. Hence �−� is also a weight.

It follows from this corollary that �− i� is a weight for all positive
integers i. On the other hand there exist only finitely many positive integers
i such that �+ i�≺�.

Definition A weight � of L��� is called a maximal weight if �+� is not a
weight.

Corollary 20.13 For each weight � of L��� there are a unique maximal
weight � and a unique non-negative integer i such that �=�− i�.

Proof. Consider the sequence ���+���+2�� � � � There exists i such that
�+ i� is a weight of L��� but �+�i+1�� is not a weight. Let �=�+ i�.
Then � is a maximal weight of L��� and �=�− i�.
If �=�′ − i′�where �′ is a maximal weight and i′ a non-negative integer we

show �=�′ and i= i′. Otherwise we may assume i< i′. Then �′ =�+�i′ − i� �
is a weight. By Corollary 20.12 �+� is also a weight. Thus � is not a maximal
weight and we have a contradiction.

A string of weights of L��� is a set

�� �−���−2�� � � �

where � is a maximal weight. Each weight lies in a unique string of weights.
Thus it is natural to consider the set of maximal weights of L���.

Proposition 20.14 The set of maximal weights of L�����∈X+, is invariant
under the Weyl group.

Proof. Let w∈W . Then � is a weight if and only if w��� is a weight. Thus
if � is a maximal weight w��� is a weight but w���+�=w��+�� is not a
weight. Thus w��� is a maximal weight.

Corollary 20.15 Each maximal weight of L�����∈X+, has formw��� where
w∈W and � is a dominant maximal weight.

We shall therefore consider the set of dominant maximal weights of L���.
We shall show that L��� has only finitely many dominant maximal weights.
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We recall from Section 17.3 that the fundamental alcove A∗ ⊂ (H0
�

)∗
was

defined by

A∗ =
{
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l  � �h��<

1
a0

}
= {

�∈ (H0
�

)∗
 ����i�>0 for i=1� � � � � l  �����<1

}
�

Its closure A∗ is a fundamental region for the action of W on
(
H0

�

)∗
.

We also recall that

H∗ = (H0
)∗⊕���+���

where
(
H0

)∗
is embedded inH∗ by assuming ��c�=0���d�=0 for �∈ (H0

)∗
.

By Lemma 20.1 we have, for �∈H∗,
�=�0+��c��+a−10 ��d��

where �0 ∈ (H0
)∗
. Let Q0⊂ (H0

)∗
be the set of �0 given by � in the root

lattice Q⊂H∗.

Proposition 20.16 Let �∈X+ have level ��c�=k>0. Then the map �→�0

gives a bijection between the set of dominant maximal weights of L��� and(
�0+Q0

)∩kA∗.
Proof. Let � be a dominant maximal weight of L���. Then �=�−
m0�0−· · ·−ml�l for certain mi ∈� with mi≥0. Hence �0=�0−
�m0�0+· · ·+ml�l�

0 and so �0 ∈�0+Q0.
Now �=�0+k�+a−10 ��d��. Since �∈X+ we have ��hi�≥0 for i=0�

1� � � � � l. Now � �hi�=��hi�=0 for i=1� � � � � l and so �0 �hi�≥0 for i=
1� � � � � l. We also have〈

�0� �
〉=�����=����−a0�0�=��c�−��h0�=k−��h0� �

Since ��h0�≥0 we have
〈
�0� �

〉≤k. Thus �0 ∈kA∗.
Hence �→�0 maps dominant maximal weights of L��� into

(
�0+Q0

)∩
kA∗. We wish to show this map is bijective. We first show it is surjective.
Let �∈ (�0+Q0

)∩kA∗. Then, since �0
i =�i for i=1� � � � � l and

�0
0=

(−a−10 �+a−10 �
)0=−a−10 �

we have

�=�0+k1�1+· · ·+kl�l−k0a−10 �
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for certain k0� k1� � � � � kl ∈�. Since �=a1�1+· · ·+al�l we have

�=�0+(m−k0a−10

)
�−�ma1−k1��1−· · ·−�mal−kl��l�

We choose m∈� with m≥ki/ai for i=0�1� � � � � l. Then

�=�0+m0

(
a−10 �

)−m1�1−· · ·−ml�l

where mi=mai−ki for i=0�1� � � � � l. Thus the mi are non-negative integers
for i=0�1� � � � � l. Let �=�−m0�0−· · ·−ml�l. Then

�0=�0+m0

(
a−10 �

)−m1�1−· · ·−ml�l=��
We show that �∈X+. We have ��hi�=�0 �hi�=� �hi�≥0 for i=1� � � � � l.
Also ��h0�=k−

〈
�0� �

〉=k−��� ��≥0. Hence �∈X+ and �≺�. Thus �
is a dominant weight of L��� by Theorem 20.11. Hence we have shown that
�=�0 for some dominant weight � of L���. By replacing � by the maximal
weight in the chain of weights containing � we may assume that � is a
dominant maximal weight. Thus our map is surjective.
To show the map is injective let ���′ be dominant maximal weights of

L��� with �0= ��′�0. We have

�=�0+k�+a−10 ��d��

�′ = ��′�0+k�+a−10 �′�d��

hence �−�′ =a−10 ���d�−�′�d���. Now �−�∈Q and �−�′ ∈Q hence
�−�′ ∈Q and a−10 ���d�−�′�d���∈Q. This shows that a−10 ���d�−�′�d��∈
�. Thus �=�′ +r� for some r ∈�. Since ���′ are both maximal weights
we must have r=0. Thus �′ =�.

Corollary 20.17 The set of dominant maximal weights of L�����∈X+, is
finite.

Proof. Q0 is a lattice in
(
H0

)∗
, that is a free abelian subgroup whose rank is

the dimension of
(
H0

)∗
. �0+Q0 is a coset of this lattice. On the other hand

the set kA∗ is bounded. Hence the intersection
(
�0+Q0

)∩kA∗ must be finite.
Thus the set of dominant maximal weights is also finite, by Proposition 20.16.

We now have a procedure for describing all weights of L�����∈X+. First
determine the finite set

(
�0+Q0

)∩kA∗ where k=��c�. For each element �
in this finite set there is a unique dominant maximal weight � of L��� with
�0=�. This gives the set of all dominant maximal weights. By applying
elements of the Weyl group to these we obtain all maximal weights. Finally
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by subtracting positive integral multiples of � from the maximal weights we
obtain all weights of L���.
We next consider the weights in a string

���−���−2�� � � �

We wish to show that the multiplicities of these weights form an increasing
function as we move down the string, i.e. that m�−�i+1��≥m�−i� for all i≥0.
In order to do this we consider L��� as a T -module where T is the subalgebra
of L�A� given by

T =· · ·⊕L−2�⊕L−�⊕H⊕L�⊕L2�⊕· · · �
Thus T is spanned by H and the root spaces for the imaginary roots. The
algebra T has a triangular decomposition

T =T−⊕H⊕T+

where T−=∑i>0 L−i�, T+=
∑

i>0 Li�. One can define the category � of T-
modules in a manner analogous to that in Section 19.1. One can also define
Verma modules for T . If �∈H∗ we define

M���=��T�/��T�T++∑
x∈H

��T��x−��x���

This is the Verma module for T with highest weight �. There is a bijection
� �T−�→M��� given by u→um� wherem� ∈M��� is the image of 1∈��T�.
We shall investigate properties of Verma modules for T by considering the

expression

&0=2
∑
i>0

∑
j

e
�j�
−i�e

�j�
i�

where e�j�i� is a basis for Li� and e
�j�
−i� is the dual basis for L−i�. Thus〈

e
�j�
i� � e

�k�
−i�
〉
=�jk

and
[
e
�j�
i� � e

�k�
−i�
]
=�jkic by Corollary 16.5.

Although the expression for &0 is an infinite sum the action of &0 on any
T -module in category � is well defined, since all but a finite number of the
terms will act as zero.

Lemma 20.18 Let �∈H∗ and M��� be the associated Verma module for T .
Let u∈��T�m� where m∈� and m 	=0. Then &0u−u&0 acts on M��� in the
same way as −2��c�mu.
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Proof. u is a linear combination of products of elements, each in Tr� for some
r with r 	=0.
First suppose u∈Tr�. We assume that u is one of the basis elements u= e�j�r� .

Then u commutes with all e�k�i� � e
�k�
−i� except for e

�j�
−r�. Thus

&0u−u&0 = 2
(
e
�j�
−r�e

�j�
r� e

�j�
r� −e�j�r� e�j�−r�e�j�r�

)
=−2rce�j�r� =−2ruc=−2r��c�u

on M���. The same will then apply to any u∈Tr�.
Next suppose u=u1u2 where

&0u1−u1&0 =−2��c�r1u1

&0u2−u2&0 =−2��c�r2u2 on M���

Then

&0u−u&0 =&0u1u2−u1u2&0

= u1&0u2−2��c�r1u−u1&0u2−2��c�r2u

=−2��c� �r1+r2�u on M����

The required result then follows for arbitrary u∈��T�m� by taking linear
combinations of such repeated products.

Proposition 20.19 Let �∈H∗ satisfy ��c�>0. Then the Verma moduleM���

for T is irreducible.

Proof. Suppose if possible that M��� has a proper submodule K. Let v be a
highest weight vector of K. Then v∈M����−m� for some m∈� with m>0.
Thus v=um� for some u∈� �T−�−m�. We consider the actions

&0 � M���→M��� u � M���→M����

By Lemma 20.18 we have

�&0u−u&0�m�=2��c�mum��

Thus &0v−u�&0m��=2��c�mv. Now &0m�=0 and &0v=0 since m� and
v are highest weight vectors in M��� and K respectively. Thus 2��c�mv=0.
But v 	=0�m>0���c�>0 and so we have a contradiction. Thus M��� is
irreducible.

We now consider the structure of L��� as a T -module.
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Proposition 20.20 Suppose �∈X+ with ��c�>0. Then the T -module L���
is completely reducible. Its irreducible components are Verma modules
for T .

Proof. Let U be the subspace of L��� given by

U ={v∈L���  T+v=0
}
�

Let B be a basis of U . We may choose B to be a basis of weight vectors
of U , i.e. so that each element of B lies in a weight space L����. Suppose
v∈B has weight �. Then T+v=0 and xv=��x�v for x∈H , hence Tv=
T−v. Let M��� be the Verma module for T with highest weight �. Then
we have a homomorphism of T -modules M���→Tv given by um�→uv

for u∈T−. Now �=�− i� for some i≥0 hence ��c�=��c�>0. Thus the
Verma module M��� for T is irreducible by Proposition 20.19. Hence the
homomorphism M���→Tv is an isomorphism and so Tv is a Verma module
for T . Let V =∑v∈B Tv. We claim that this sum of T -modules is a direct sum.
For consider

Tv∩∑
v′∈B
v′ 	=v

Tv′�

Since the Verma module Tv is irreducible we have Tv∩U =�v. We also
have ⎛⎜⎝∑

v′∈B
v′ 	=v

Tv′

⎞⎟⎠∩U =∑
v′ 	=v

�v′�

Since v 	∈∑v′ 	=v�v′ we see that Tv is not contained in
∑

v′ 	=v Tv′. Again, since
Tv is irreducible we have Tv∩∑v′ 	=v Tv′ =O. Hence V =

⊕
v∈BTv. Thus V is

a direct sum of Verma modules for T .
We wish to show that V =L���. We suppose if possible that V 	=L���.

We consider the T -module L���/V . Since L���=⊕�L���� and V =⊕�V�

we have L���/V =⊕��L���/V��. As L���/V is assumed to be non-zero we
can find a weight � of L���/V such that �+ i� is not a weight for any i>0.
Then T+�L���/V��=O, that is T+L����⊂V .
We now consider the map &0 � L���→L���. Since the action of &0

preserves weight spaces we have &0 � L����→L����. The weight space
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L���� is finite dimensional, so decomposes into a direct sum of generalised
eigenspaces of &0, given by

L����=
⊕
�∈�

(
L����

)
�

where �&0−�1�k=0 on
(
L����

)
�
for some k. Since L���� does not lie

in V there exists � ∈� such that
(
L����

)
�
does not lie in V . We choose

v∈ (L����)� with v 	∈V . Then

�&0−�1�k v=0

and &0v∈V , since T+L����⊂V . If � 	=0 the polynomials �t−��k and t are
coprime so we could deduce v∈V , a contradiction. Hence �=0 and &k

0v=0.
Now T+v 	=0 since v 	∈V . So there exist m>0 and u∈� �T+�m� with

uv 	=0 and T+�uv�=0. Let v′ =uv. Then v′ 	=0 and &0v
′ =0.

Now all the weights � of L��� satisfy ��c�=��c�. Thus we may apply the
argument of Lemma 20.18 to L��� and obtain

&0u−u&0=−2��c�mu on L����

Then

&0uv−u&0v=−2��c�muv
that is

�&0+2��c�m�v′ =u&0v�

It follows that

�&0+2��c�m�2 v′ = �&0+2��c�m� �u&0v�=u
(
&2

0v
)

and continuing thus we obtain

�&0+2��c�m�k v′ =u (&k
0v
)=0�

But ��c�>0 andm>0, thus the polynomials �t+2��c�m�k and t are coprime.
Thus �&0+2��c�m�k v′ =0 and &0v

′ =0 imply v′ =0, a contradiction.
Thus we have obtained our required contradiction and can deduce that

V =L��� and L��� is the direct sum of the irreducible T -modules Tv for
v∈B, each of which is isomorphic to a Verma module for T .

Proposition 20.21 Let � be a weight of L��� where �∈X+ and ��c�>0.
Then the multiplicities of the weights ���−� satisfy m�−�≥m�.
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Proof. This follows from Proposition 20.20. We choose a non-zero element
x∈L�A�−�. Consider the action of x on the T -module L���. This T -module
is a direct sum of Verma modules for T . Since x∈T−� x acts on each Verma
module for T injectively. Thus x acts on L��� injectively. We have a map

L����→L����−�

v→xv

which is injective, and so

dimL����−�≥dimL����

that is m�−�≥m� as required.

Thus the multiplicities form an increasing sequence as we move down a
string of weights for L���.

20.4 The fundamental modules for L
(
Ã1

)
We now give an example of the situation described in Section 20.3. We
consider the affine Kac–Moody algebra of type Ã1. This has diagram

0 1

and Cartan matrix

A=
(

2 −2
−2 2

)
�

We consider the irreducible modules L�!0� �L �!1� where !0�!1 are the
fundamental weights. By symmetry we need only determine the character of
one of these. We shall consider the module L�!0�.
In type Ã1 we have �=�0+�1 and c=h0+h1, that is

a0=1� a1=1� c0=1� c1=1�

We recall that

H∗ = (H0
)∗⊕���+���

and that

�=�0+��c��+a−10 ��d�� by Lemma 20�1�

The root lattice Q is given by

Q=��0+��1
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and we have �0
0=−�1� �0

1=�1. We have
(
H0

)∗ =��1 and the lattice
Q0⊂ (H0

)∗
is given by Q0=��1. We have �=�1 and h�= 1

a0
�c−h0�=h1.

The closure of the fundamental alcove is given by

Ā∗ = {
�∈ (H0

�

)∗
 � �h1�≥0�� �h��≤1

}
= {

�∈ (H0
�

)∗
 0≤��h1�≤1

}
�

We have !0=� and �0=0. Thus(
�0+Q0

)∩ Ā∗ = 
m�1  m∈��0≤2m≤1�

= 
0��

Thus by Proposition 20.16 the module L��� has only one dominant maximal
weight, which must be the highest weight �. The other maximal weights are
the transforms of � under the affine Weyl group W =�s0� s1�. We have

s0 ��0�=−�0 s0 ��1�=2�0+�1

s1 ��0�= �0+2�1 s1 ��1�=−�1�

The action of s0� s1 on the basis ���1� � of H∗ is given by

s0���=�+�1−� s0 ��1�=−�1+2� s0���=�
s1���=� s1 ��1�=−�1 s1���=��

The affine Weyl group W is an infinite dihedral group and has a semidirect
product decomposition

W = t (Q0
)
W 0=W 0t

(
Q0

)
where Q0=M∗ =��1 andW

0= 
1� s1�. The translation t� for �∈Q0 is given
by

t����=�+��c��−
(
�����+ 1

2
�������c�

)
�

which in the present case gives

tm�1
���=�+m�1−m2�

tm�1
��1�=�1−2m�

tm�1
���=�

for m∈�. The stabiliser of � in W is W 0 and the maximal weights in L���

have the form �+m�1−m2� for m∈�. The set of all weights of L��� is
�+m�1−m2�−k� for m∈�� k∈� and k≥0. The weights �+m�1−m2�
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γ– 2α1 –4δ γ+2α1 –4δ

γ+3α1 –9δ

γ–α1 – δ γ+α1 – δγ

γ–3α1 –9δ

Figure 20.1 Maximal weights in L���

have multiplicity 1, and �+m�1−m2�−k� has multiplicity depending only
on k (i.e. independent of m). The weights are shown in Figure 20.1.
We shall determine the multiplicities of these weights. We use Kac’ char-

acter formula

chL���=
∑

w∈W  �w�ew��+	�−	∏
�∈�+ �1−e−��m�

�

Now ∑
!∈W

 �w�ew��+	�−	 =
∑

w0∈W 0

∑
�∈��1

 
(
w0
)
ew0t���+	�−	

= ∑
w0∈W 0

 
(
w0
)∑
n∈�

ew0tn�1 ��+	�−	�

Now 	=	0+2� by Lemma 20.2 where 	0= 1
2�1. Thus 	=2�+ 1

2�1 and
�+	=3�+ 1

2�1. Hence

tn�1
��+	�=3�+

(
3n+ 1

2

)
�1−

(
3n2+n)�

so tn�1
��+	�−	=�+3n�1−

(
3n2+n)�. Also

s1tn�1
��+	�=3�−�3n+ 1

2
��1−

(
3n2+n)�

so s1tn�1
��+	�−	=�−�3n+1��1−

(
3n2+n)�. Thus∑

w∈W
 �w�ew��+	�−	= e�

∑
n∈�

(
e3n�1
−e−�3n+1��1

)
e−�3n2+n���

We write e−�1
= z and e−�=q1/2. Then our expression is

e�
∑
n∈�

(
z−3n−z3n+1)qn�3n+1�/2�
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Now we may factorise this expression by using Macdonald’s identity for type
Ã′1. By Proposition 20.6 it is equal to

e�
∏
n>0

�1−qn� (1−qnz−1) (1−qn−1z) (1−q2n−1z−2
) (
1−q2n−1z2

)
= e��1−z�

∏
n>0

�1−qn� (1−qnz−1) �1−qnz� (1−q2n−1z−2
) (
1−q2n−1z2

)
= e��1−z�

∏
n>0

�1−qn� (1−qnz−1)(1−q 2n−1
2 z−1

)
�1−qnz�

(
1−q 2n−1

2 z
)

×
(
1+q 2n−1

2 z−1
)(

1+q 2n−1
2 z

)
= e��1−z�

∏
k>0

(
1−qk/2z−1) (1−qk/2z) ∏

n>0

�1−qn�

×
(
1+q 2n−1

2 z−1
)(

1+q 2n−1
2 z

)
�

We now make use of Macdonald’s identity for type Ã1. By Proposition 20.5
this asserts that∏

n>0

�1−qn� (1−qn−1z′) (1−qnz′−1)=∑
n>0

�−1�n (z′n−z′−�n−1�)q n�n−1�
2 �

Putting z′ =−z−1q 1
2 we obtain∏

n>0

�1−qn�
(
1+q 2n−1

2 z−1
)(

1+q 2n−1
2 z

)
=∑

n>0

(
z−nqn

2/2+zn−1q�n−1�2/2
)

=∑
n∈�

z−nqn
2/2�

Hence

chL���=
∑

w∈W  �w�ew��+	�−	
�1−z�∏k>0 �1−qk/2z−1� �1−qk/2z� �1−qk/2�

= e�
∑

n∈� z−nqn
2/2∏

k>0 �1−qk/2�
=
∑

n∈� e�+n�1−n2�∏
k>0 �1−e−k��

�

Now
1∏

k>0 �1−e−k��
=∏

k>0

�1+e−k�+e−2k�+· · · �

=∑
k≥0

p�k�e−k�

where p�k� is the number of partitions of k. Thus

chL���=∑
n∈�

∑
k≥0

p�k�e�+n�1−n2�−k��
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Hence we have proved

Proposition 20.22 The weights of the fundamental module L��� for L
(
Ã1

)
are �+n�1−n2�−k� for n∈� and k≥0. This weight has multipli-
city p�k�.

We note in particular that all the maximal weights �+n�1−n2� have
multiplicity 1 and that the multiplicity of the weight �−k� in the string with
maximal weight � depends only upon k and not on �.

20.5 The basic representation

The module L�!0� for an affine Kac–Moody algebra L�A� gives the so-called
basic representation of L�A�. Since !0=� we have described the character
of the basic representation of L

(
Ã1

)
. We shall state without proof some

generalisations of this character formula to other types of affine Kac–Moody
algebras. For simplicity we shall concentrate on those of types Ãl� D̃l and Ẽl.

Theorem 20.23 The basic representation L��� for the Kac–Moody algebra
L�A� of types Ãl� D̃l� Ẽ6� Ẽ7� Ẽ8 has the following properties:

(a) � is the unique dominant maximal weight of L���.

(b) The set of all maximal weights is{
�+�− 1

2������ for �∈Q0
}
�

(c) The set of all weights is{
�+�− 1

2������−k� for �∈Q0� k∈�� k≥0
}
�

(d) The character of the basic representation is

chL���=
∑

�∈Q0

e�+�− 1
2
������(∏

k>0
�1−qk�

)l

where q= e−�.
(e) The multiplicity of the weight �+�− 1

2������−k� is pl�k�, the number
of partitions of k into l colours. We have

1

�
∏

k>0 �1−qk��l
=∑

k≥0
pl�k�q

k�
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The proof of this theorem can be found in the book of Kac, Infinite-
Dimensional Lie Algebras, third edition, Chapter 12.
We shall also describe without proof how to obtain a realisation of the basic

representation L��� of L�A� in types Ãl� D̃l� Ẽl. We first make some comments
on differential operators. Let R=� �x1� x2� x3� � � � � be the polynomial ring
over � in countably many variables and R̂=� ��x1� x2� x3� � � � �� be the ring
of formal power series in these variables. We shall consider differential
operators on R with values in R̂. An example is the partial derivative �/�xi or,
more generally, the divided power 1

mi! ��/�xi�
mi . We also have finite products∏

i
1
mi! ��/�xi�

mi where m= �m1�m2�m3� � � � � satisfies the conditions that mi ∈
��mi≥0, and mi >0 for only finitely many i. We define Dm �R→ R̂ by

Dm=
∏
i

1
mi!

��/�xi�
mi �

We also allow such operators combined with multiplication by elements of
R̂. Thus ∑

m

PmDm � R→ R̂

is a differential operator, where Pm ∈ R̂ and the sum over m will in general
be infinite.

∑
m PmDm is a linear map from R to R̂. In fact each linear map

from R to R̂ has this form, as we now show.

Proposition 20.24 Each linear map from R to R̂ can be written as
∑

m PmDm

for a unique set of elements Pm ∈ R̂.

Proof. Let Mm ∈R be the monomial Mm=
∏

i x
mi
i . The monomials Mm form

a basis for R. We have Dm �Mk�=0 unless ki≥mi for each i. We write this
condition as k≥m. We write k>m if k≥m and k 	=m. We also have

Dm �Mk�=
(
k
m

)
Mk−m if k≥m

where
(k
m

)=∏i

(
ki
mi

)
and

(0
0

)=1.

Let ��R→ R̂ be the linear map given by ��Mm�=Qm ∈ R̂. We show � is
uniquely expressible in the form

∑
PmDm. We have∑

m

PmDm �Mk�=
∑
m≤k

Pm

(
k
m

)
Mk−m

= Pk+
∑
m<k

Pm

(
k
m

)
Mk−m�
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The condition we require on the Pm is that

Pk+
∑
m<k

Pm

(
k
m

)
Mk−m=Qk for all k�

In particular P0=Q0. Assuming inductively that Pm is uniquely determined
for all m<k we conclude that

Pk=Qk−
∑
m<k

Pm

(
k
m

)
Mk−m

is uniquely determined.

Thus the set of differential operators from R to R̂ is the set of all linear
maps from R to R̂.
We shall now consider certain special kinds of differential operators. Let

�= ��1��2��3� � � � � where �i ∈�. Here there may be infinitely many non-zero
�i. Define T� �R→ R̂ by

T�f �x1� x2� x3� � � � �=f �x1+�1� x2+�2� x3+�3� � � � � �

T� is clearly a linear map from R to R̂. It may be written as a differential
operator by using the Taylor expansion. We have

f �x1+�1� x2+�2� x3+�3� � � � �

=∑
m

�
m1
1

m1!
�
m2
2

m2!
�
m3
3

m3!
� � � ��/�x1�

m1 ��/�x2�
m2 ��/�x3�

m3 � � � f �x1� x2� x3� � � � �

=∑
m

(∏
i

�
mi
i

)
Dmf �x1� x2� x3� � � � � �

Thus T�=
∑

m

(∏
i �

mi
i

)
Dm. The operator T� may also be written in the fol-

lowing convenient form. We have

f �x1+�1� x2+�2� x3+�3� � � � �

=
(∑

m1

�
m1
1

m1!
��/�x1�

m1

)(∑
m2

�
m2
2

m2!
��/�x2�

m2

)
� � � f �x1� x2� x3� � � � �

= exp ��1�/�x1� exp ��2�/�x2� � � � f �x1� x2� x3� � � � �

= exp ��1�/�x1+�2�/�x2+ � � � � f �x1� x2� x3� � � � � �
Thus T�= exp �

∑
i �i ��/�xi��.
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Lemma 20.25 Suppose D � R→ R̂ is a linear map which satisfies �xi�D�=
�iD for all i, that is

xiDf−D�xif�=�iDf for all f ∈R�

Then

D=D�1� exp
(
−∑

i

�i

�

�xi

)
�

Proof. We shall show Df =D�1� exp �−∑i �i ��/�xi�� f for all monomials
f ∈ R, using induction on the degree of f . If f has degree 0 then f = c∈�
and we have

D�1� exp

(
−∑

i

�i

�

�xi

)
c=D�1�c=D�c��

Assuming the result for a monomial f we prove it for xif . We have

D�xif�= �xi−�i�Df = �xi−�i�D�1� exp

(
−∑

i

�i

�

�xi

)
f�

On the other hand

D�1� exp

(
−∑

i

�i

�

�xi

)
�xif �= D�1�T−� �xif �=D�1� �xi−�i�T−�f

= D�1� �xi−�i� exp

(
−∑

i

�i

�

�xi

)
f�

Thus the lemma is proved.

Lemma 20.26 SupposeD�R→ R̂ is a linear map which satisfies ��/�xi�D�=
�iD for all i, that is

��/�xi��Df�−D��f/�xi�=�iDf for all f ∈R�

Then

D�1�= c exp
(∑

i

�ixi

)
for some c∈��
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Proof. Consider the element exp �
∑

i−�ixi�Df ∈ R̂. We have

�

�xi

(
exp

(∑
i

−�ixi

)
Df

)

=−�i exp

(∑
i

−�ixi

)
Df+exp

(∑
i

−�ixi

)
�

�xi
�Df�

= exp

(∑
i

−�ixi

)
��/�xi−�i�Df�

Thus by the assumption of the lemma we have(
exp

(∑
i

−�ixi

)
D

)
�f/�xi = exp

(∑
i

−�ixi

)
��/�xi−�i�Df

= �

�xi

(
exp

(∑
i

−�ixi

)
Df

)
�

Write �= exp �
∑

i−�ixi�D. Then we have ��f/�xi= ��/�xi���f� for each
i and f . In particular we may put f =1 and obtain ��/�xi����1��=0. Thus
��1�= c for some c∈�. Hence

D�1�= exp

(∑
i

�ixi

)
��1�= c exp

(∑
i

�ixi

)
as required.

Proposition 20.27 The set of all differential operators D � R→ R̂ satisfy-
ing the conditions �xi�D�=�iD and ��/�xi�D�=�iD for �i��i ∈� forms a
1-dimensional vector space with basis

exp
(∑

�ixi
)
exp

(
−∑�i

�

�xi

)
�

Proof. This follows from Lemmas 20.25 and 20.26.

Definition Differential operators D � R→ R̂ of the form

exp
(∑

�ixi
)
exp

(
−∑�i

�

�xi

)
for �i��i ∈� are called vertex operators.

Now let L= 
̂
(
L0
)
be an affine Kac–Moody algebra of type Ãl� D̃l or Ẽl.

Let

T−=⊕
j<0

Lj��
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Then T− has a basis tj⊗hi for i=1� � � � l and j<0. Consider the symmetric
algebra S �T−�. This is isomorphic to the polynomial ring over � in the
variables tj⊗hi.
Let Q0 be the subgroup of H0 generated by h1� � � � � hl. We shall write Q0

multiplicatively, so that its elements have form h
m1
1 � � � h

ml

l with m1� � � � �ml ∈
�. Let �

[
Q0

]
be the group algebra of Q0 over �. Elements of �

[
Q0

]
have

form ∑
m1���� �ml∈�

�m1���� �ml
h
m1
1 � � � h

ml

l �

�
[
Q0

]
is isomorphic to the algebra of Laurent polynomials over � in the

variables h1� � � � � hl.
We now form the tensor product

V =S �T−�⊗�
[
Q0

]
�

V is isomorphic to the algebra

�
[
h1� � � � � hl� h

−1
1 � � � � � h−1l � tj⊗hi

]
for i=1� � � � � l and j<0.

We define certain maps h��n� �V→V out of which vertex operators will
be constructed. For n∈� with n>0� h��n� is the derivation of V uniquely
determined by the conditions

t−n⊗hi→n �hi�h��
tj⊗hi→0 for j 	=−n
hi→0�

For n∈� with n<0� h��n� �V→V is multiplication by �tn⊗h��⊗1.
We now consider the expression

exp

(∑
n<0

−h��n�
n

z−n
)
exp

(∑
n>0

−h��n�
n

z−n
)

where z is an indeterminate. We first observe that exp
(∑

n>0− h��n�

n
z−n

)
maps

V into �
[
z−1

]⊗V . To see this we observe that each element v∈V is a finite
linear combination of monomials

Mm=
∏
i�j
j<0

(
tj⊗hi

)mij
∏
i

h
mi
i

where m= (mij�mi

)
with mi ∈��mij ∈��mij≥0.
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Let d1�m�=
∑

i�j mij . Then the derivation h��n��n>0, transforms Mm into
a linear combination of monomials in which d1�m� is decreased by 1 and∏

i h
mi
i remains unchanged. Thus a succession of d1�m�+1 derivations h��n�

for various n>0 annihilates Mm. Also, for a given monomial Mm� h��n�

annihilates Mm for all but finitely many n>0. Thus in the expression

exp

(∑
n>0

−h��n�
n

z−n
)
v v∈V

only finitely many terms − h��n�

n
z−n act on v and only a finite set of products

of such terms can act on v to give a non-zero element. Thus we have

exp

(∑
n>0

−h��n�
n

z−n
)
� V→�

[
z−1

]⊗V�
We shall modify this operator in the following way. Let

 � Q0×Q0→ 
±1�
be the function defined by

 �hi� hi�=−1
 
(
hi�hj

)=1 if Aij=0

 
(
hi�hj

)
is given by

[
E�i

E�j

]
= (hi�hj)E�i+�j if Aij=−1

 �h+h′� h′′�= �h�h′′�  �h′� h′′�
 �h�h′ +h′′�= �h�h′�  �h�h′′� �

Given �∈�0 we define a map  � ∈End V by

 � �P⊗h→P⊗ �h��h�h
where P ∈S �T−� �h∈Q0. We also define e� ∈End V by

e� �P⊗h→P⊗h�h
and z� ∈End (� [

z� z−1
]⊗V ) by
z� � �P⊗h�zi→ �P⊗h�zi+�h��h��

We now define, for �∈�0, the operator Y��z� on V by

Y��z�= exp

(∑
n<0

−h��n�
n

z−n
)
exp

(∑
n>0

−h��n�
n

z−n
)
e�z� ��
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We claim that Y��z� can be written in the form

Y��z�=
∑
j∈�

���j�z
−j−1

where ���j�∈End V . In order to see this we consider the effect of Y��z� on
a monomial Mm in V . We have

e�z� �Mm ∈ zn�⊗V
where n�=

∑
i mi �h��hi�. Thus

exp

(∑
n>0

−h��n�
n

z−n
)
e�z� �Mm ∈

K∑
k=0

zn�−k⊗V

for some K>0, and

exp

(∑
n<0

−h��n�
n

z−n
)
exp

(∑
n>0

−h��n�
n

z−n
)
e�z� �Mm

∈∑
k′≥0

K∑
k=0

zn�−k+k
′ ⊗V�

Thus to obtain z−j−1 on the right-hand side of Y��z�Mm we must have
n�−k+k′ =−j−1. For each value of k there is at most one k′ ≥0 sat-
isfying this. Since only finitely many k arise, only finitely many k′ can
arise for given j. This shows that only finitely many terms − h��n�

n
z−n in

exp
(∑

n<0− h��n�

n
z−n

)
are involved in ���j� and only finitely many products

of such terms are involved. Thus we have

���j� � V→V

and

Y��z�=
∑
j∈�

���j�z
−j−1

with ���j�∈End V .
Now the vector space V can be regarded as an L-module giving the basic

representation of L. In order to describe the L-action on V we introduce some
further notation. We have defined h��n�∈End V for n>0 and n<0. We now
define h�0�∈End V for any h∈H0. In contrast to the h��n� for n 	=0, which
act non-trivially on S �T−� and trivially on �

[
Q0

]
� h�0� acts trivially on

S �T−� and non-trivially on �
[
Q0

]
. We define, for h∈H0� h�0� � V→V by

h�0� �P⊗h�→P⊗�h��h�h�
for P ∈S �T−� ��∈Q0.
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Let h′1� � � � � h
′
l be a basis for H

0 and h′′1� � � � � h
′′
l be the dual basis satisfying〈

h′i� h
′′
j

〉=�ij . We define D0 ∈End V by

D0=
l∑

i=1

1
2
h′i�0�h

′′
i �0�+

∑
n≥1

h′i�−n�h′′i �n��

since, for v∈V�h′′i �n�v=0 for all but finitely many n>0. D0 lies in End V

and is readily seen to be independent of the choice of basis of H0.
We now have the definitions necessary to describe the action of L on V

which gives the basic representation.

Theorem 20.28 The vector space V =S �T−�⊗�
[
Q0

]
is a module for the

Kac–Moody algebra L�A� of type Ãl� D̃l or Ẽl giving the basic representation
under the following action L�A�→End V :

tn⊗H�→H��n� for �∈�0� n∈�
tn⊗E�→���n� for �∈�0� n∈�
c→1V

d→−D0�

The proof of this result can be found in the book of Kac, Infinite-Dimensional
Lie Algebras, third edition, Chapter 14.
The highest weight vector of V is the element 1⊗1. The first 1 is the

unit element of the symmetric algebra S �T−� and the second 1 is the unit
element of the lattice Q0 written multiplicatively, which is the unit element of
the group algebra �

[
Q0

]
. This vector 1⊗1 is annihilated by the generators

ei� i=0�1� � � � � l of L�A�. To see this we recall that

ei=1⊗Ei i=1� � � � � l e0= t⊗E0

with E0 ∈L0
−�. We have

ei�1⊗1�=��i�0��1⊗1� i=1� � � � � l

which is the coefficient of z−1 in Y�i�z��1⊗1�. Also

e0�1⊗1�=�−��1��1⊗1�

which is the coefficient of z−2 in Y−��z��1⊗1�. Recalling that

���z�= exp

(∑
n<0

−h��n�
n

z−n
)
exp

(∑
n>0

−h��n�
n

z−n
)
e�z� �
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we first note that e�z� ��1⊗1�=1⊗h�. Now negative powers of z in
Y��z��1⊗1� can only arise from derivations h��n� with n>0. However,
h��n��1⊗h��=0 for all n>0 since any derivation annihilates the unit ele-
ment 1∈S �T−�. Thus we have

��i�0��1⊗1�= 0 for i=1� � � � � l

�−��1��1⊗1�= 0�

Hence ei�1⊗1�=0 for all i=0�1� � � � � l.
We now check how the elements h0� h1� � � � � hl ∈H act on 1⊗1. We have

hi=1⊗Hi for i=1� � � � � l. Thus

hi�1⊗1�=H�i
�0��1⊗1�=1⊗�0� hi�1=0�

(We note that in the scalar product �� � the elements of Q0 are written addi-
tively so that the unit element will be 0.) We also have

c=h0+c1h1+· · ·+clhl�
Thus

h0�1⊗1�= c�1⊗1�=1⊗1�

Hence we have

hi�1⊗1�=� �hi� �1⊗1� for i=0�1� � � � � l

since � �hi�=0 for i=1� � � � � l and � �h0�=1. The highest weight vector
v�=1⊗1 is often called the vacuum vector of the basic representation.
The realisation of the basic representation given by the module S �T−�⊗

�
[
Q0

]
is called the homogeneous realisation. It is one of a number of descrip-

tions of the basic representation.
The basic representation is of great importance in a number of applications

of the theory of affine Kac–Moody algebras in mathematics and physics. For
example applications to the theory of differential equations are described in
Kac’ book, Chapter 14. There are also particularly interesting applications in
the area of mathematical physics. Vertex operators arose in the context of
dual resonance models, which subsequently developed into string theory, and
the representation theory of affine Kac–Moody algebras plays a key role in
string theory. This involves the calculus of vertex operators. The theory of
modular forms also plays a key role.
Readers wishing to learn more about the relations between Kac–Moody

algebras and string theory may wish to study the 30-page introduction to the
book of Frenkel, Lepowsky and Meurman, Vertex Operator Algebras and the
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Monster which also explains the connections with modular forms and sporadic
simple groups such as the Monster. The book by Kac on Vertex Algebras for
Beginners is a useful introduction to the calculus of vertex operators. This
whole area relating mathematics and physics is of great current interest and
seems certain to continue its rapid development.



21
Borcherds Lie algebras

21.1 Definition and examples of Borcherds algebras

A theory of generalised Kac–Moody algebras was introduced by R. Borcherds
in 1988. The purpose for which these algebras were introduced was as part
of Borcherds’ proof of the Conway–Norton conjectures on the representa-
tion theory of the Monster simple group, for which Borcherds was awarded
a Fields Medal in 1998. These generalised Kac–Moody algebras are now
frequently called Borcherds algebras. A detailed discussion of Borcherds
algebras, including proofs of all the assertions, is beyond the scope of this
volume. However, we shall include the definition of Borcherds algebras and
the statements of the main results about their structure and representation
theory, but without detailed proofs. In fact many of the results are quite sim-
ilar to those we have already obtained about Kac–Moody algebras. However,
the theory of Borcherds algebras includes examples which are quite different
from Kac–Moody algebras. The best known such example is the Monster Lie
algebra, which we shall describe in Section 21.3.
We begin with the definition of a Borcherds algebra. A Lie algebra L over

� is called a Borcherds algebra if it satisfies the following four axioms:

(i) L has a �-grading
L=⊕

i∈�
Li

such that dimLi is finite for all i 	=0, and L is diagonalisable with respect
to L0. (Note that dimL0 need not be finite.)

(ii) There exists an automorphism ! � L→L such that

!2=1

!�Li�=L−i for all i∈�
!=−1 on L0/L0∩Z�L��

519
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(iii) There is an invariant bilinear form

�� � � L×L→�

such that

�x� y�=0 if x∈Li� y∈Lj and i+j 	=0

�wx� wy�=�x� y� for all x� y∈L
−�x� wx�>0 for x∈Li with i 	=0� x 	=0�

(iv) L0⊂ �LL�.
We observe some consequences of these axioms. In the first place it can be
shown that �L0L0�=0, that is L0 is abelian.

To describe a further consequence we define, for x� y∈L,
�x� y�0=−�x� !y��

The scalar product �� �0 � L×L→� is called the contravariant bilinear form.
We now restrict the contravariant form to one of the graded components Li

with i 	=0 and have �� �0 � Li×Li→�. Let x∈Li. Then

�x� x�0=−�x� wx�>0 if x 	=0�

Thus the contravariant form is positive definite on each graded component Li

for i 	=0 (though not necessarily on L0).
We now give some examples of Borcherds algebras. We begin with a

symmetric matrix � over � which is either finite or countable. Thus

�= (aij) i� j∈ I
with aij ∈� and I either finite or countable. We shall assume that the matrix
� satisfies the conditions

aij≤0 if i 	= j
if aii >0 then 2aij/aii ∈� for all j�

Proposition 21.1 There is a Borcherds algebra L associated to a symmetric
matrix � satisfying the above conditions which is defined as follows by
generators and relations.

L is generated by elements ei� fi� hij i� j∈ I
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subject to relations [
eifj

]=hij[
hijhkl

]=0[
hijek

]=�ijaikek[
hijfk

]=−�ijaikfk
�ad ei�

n ej=0� �ad fi�
n fj=0 if aii >0� i 	= j and n=1−2aij/aii[

eiej
]=0�

[
fifj

]=0 if aii≤0� ajj≤0 and aij=0�

The Borcherds algebra L defined by generators and relations in this way
is called the universal Borcherds algebra associated with the symmetric
matrix �. Its structure as a Borcherds algebra can be described as follows. Its
involutary automorphism ! is given by

!�ei�=−fi� ! �fi�=−ei� !
(
hij
)=−hji�

Its invariant bilinear form is uniquely determined by the condition

�ei� fi�=1 for all i∈ I�
In particular, if we write hi=hii, then �eifi�=hi and〈

hi�hj
〉= 〈�eifi� � hj 〉= 〈ei� [fihj]〉= 〈ei� aijfi〉=aij�

Thus 〈
hi�hj

〉=aij for all i� j∈ I�
There are many ways of defining an appropriate grading on this Borcherds
algebra. For each i∈� let ni ∈� satisfy ni >0. Then there is a �-grading on
L uniquely determined by the conditions

ei ∈Lni
� fi ∈L−ni �

Further examples of Borcherds algebras can be obtained from a universal
Borcherds algebra as follows. The axiom

[
hijhkl

]=0 shows that the subal-
gebra generated by all elements hij , i� j∈ I , is abelian. If i 	= j then hij lies
in the centre of L since

[
hij� ek

]=0 and
[
hij� fk

]=0 for all k∈ I . Thus the
subalgebra generated by the hij for i 	= j lies in the centre. It can be shown
that the centre Z of L satisfies〈

hij  i� j∈ I� i 	= j〉⊂Z⊂ 〈hij  i� j∈ I 〉 �
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In fact the Jacobi identity[[
eifj

]
hk
]+[[fjhk] ei]+[�hkei� fj]=0

shows that [
hk�

[
eifj

]]= (aki−akj) [eifj] �
It can be shown that, as a consequence of this, hij=0 unless aki=akj for all
k∈ I , i.e. unless the ith and jth columns of � are identical.

Proposition 21.2 Let L be a universal Borcherds algebra and I be an ideal
of L contained in the centre Z of L. Then L/I retains the structure of a
Borcherds algebra.

The �-grading, involutary automorphism and invariant bilinear form on
L/I are readily obtained from those on L.

We now obtain still further Borcherds algebras. Starting from a universal
Borcherds algebra L we factor out an ideal I of L contained in the centre Z
of L. Then L/I is still a Borcherds algebra. We write L̄=L/I .
An inner derivation of L̄ is one of form x→ �xy� for some y∈ L̄, and

an outer derivation is a derivation which either is zero or is not an inner
derivation Let

L̄∗ =Hom�L̄���

and A⊂ L̄∗ be an abelian Lie algebra of outer derivations of L̄. We suppose
also that

�ēix�∈�ēi�
[
f̄ix

]∈�f̄i
for all x∈A where ēi� f̄i are images of ei� fi under the natural homomorphism
L→ L̄.

Proposition 21.3 Let L be a universal Borcherds algebra and I be an ideal
of L contained in the centre Z of L. Let L̄=L/I . Let A be an abelian Lie
algebra of outer derivations of L̄ and let L̄+A be the semidirect product of
L̄ by A whose elements have form x+a with x∈ L̄� a∈A where

�x+a� y+b�= �xy�+a�y�−b�x��
Suppose that

�ēix�∈�ēi�
[
f̄ix

]∈�f̄i
for all x∈A. Then L̄+A retains the structure of a Borcherds algebra in
which A⊂ �L̄+A�0.
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The �-grading, involutary automorphism and invariant bilinear form on
L̄+A are easily obtained from those of L̄.

We have now constructed a family of Borcherds algebras which includes
all universal Borcherds algebras, all quotients of such by ideals contained in
the centre, and all semidirect products of such quotients by an abelian Lie
algebra of outer derivations with suitable properties.
This turns out to give all possible Borcherds algebras, as is shown by the

next theorem.

Theorem 21.4 Let L be a Borcherds algebra. Then there is a unique universal
Borcherds algebra Lu and a homomorphism

f � Lu→L

(not necessarily unique) such that ker f is an ideal in the centre of Lu� im f

is an ideal of L, and L is the semidirect product of im f with an abelian
Lie algebra of outer derivations lying in the 0-graded component of L and
preserving all subspaces �ēi and �f̄i.
The homomorphism f preserves the grading, involutary automorphism,

and bilinear form.

Now that we have obtained the complete set of Borcherds algebras in this
way, we explore their relationship with symmetrisable Kac–Moody algebras.
It turns out that every symmetrisable Kac–Moody algebra over � gives rise
to a universal Borcherds algebra, which is the subalgebra of the Kac–Moody
algebra obtained by generators and relations prior to the extension of the
Cartan subalgebra by an abelian Lie algebra of outer derivations.

Theorem 21.5 Let L be a symmetrisable Kac–Moody algebra with GCM
A= (Aij

)
. Thus there exists a diagonal matrix D=diag �d1� � � � � dn� with

each di ∈��di >0 such that DA is symmetric. Let �= (aij) be given by

aij=
diAij

2
�

Then we have aij=aji and aii=di. Thus aij≤0 if i 	= j and aii is a positive
integer. Moreover 2aij/aii=Aij ∈�.
Then the symmetric matrix

(
aij
)
satisfies the conditions needed to construct

a Borcherds algebra, and the universal Borcherds algebra with symmetric
matrix � coincides with the subalgebra of the Kac–Moody algebra L obtained
by generators and relations prior to the adjunction of the abelian Lie algebra
of outer derivations.
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In this way every symmetrisable Kac–Moody algebra determines a cer-
tain subalgebra which is a universal Borcherds algebra. In fact the main
points of difference between symmetrisable Kac–Moody algebras and univer-
sal Borcherds algebras are that, in a Borcherds algebra:

I may be countably infinite rather than finite

aii may not be positive and need not lie in �

2aij/aii is only assumed to lie in � when aii >0�

21.2 Representations of Borcherds algebras

We now introduce the root system and Weyl group of a Borcherds algebra.
We suppose first that L is a universal Borcherds algebra. The root lattice

Q of L is the free abelian group with basis �i for i∈ I . We have a symmetric
bilinear form

Q×Q→�

given by
(
�i��j

)→ 〈
�i��j

〉=aij .
The basis elements �i of Q are called the fundamental roots. The set of

fundamental roots is denoted by �. We have a grading

L=⊕
�∈Q

L�

determined by the conditions

ei ∈L�i
� fi ∈L−�i �

An element �∈Q is called a root of L if � 	=0 and L� 	=O. � is called a
positive root if � is a sum of fundamental roots. For any root � either � or
−� is positive. We have

�=�+∪�−
where� is the set of roots and�+��− are the subsets of positive and negative
roots respectively. We say that �∈� is a real root if �����>0 and �∈�
is an imaginary root if �����≤0.
We next introduce the Weyl group W of the universal Borcherds algebra L.

W is the group of isometries of the root lattice Q generated by the reflections
si corresponding to the real fundamental roots. We have

si
(
�j

)=�j−2

〈
�i��j

〉
��i��i�

�i=�j−2
aij

aii
�i�

We recall that 2aij/aii ∈� since aii >0.
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Let H be the abelian subalgebra of L generated by the elements hij for all
i� j∈ I . We have a map

Q→H

under which �i maps to hi, which is a homomorphism of abelian groups
and preserves the scalar product. However, this map need not necessarily be
injective.
So for we have assumed that L is a universal Borcherds algebra. How-

ever, if L is an arbitrary Borcherds algebra there is an associated universal
Borcherds algebra Lu given by Theorem 21.4. Then the root system of L is
defined to be the root system of Lu and the Weyl group of L is defined to be
the Weyl group of Lu.

This theory of Borcherds algebras is thus very similar to the theory of
Kac–Moody algebras. The main difference is that for Borcherds algebras there
can exist imaginary fundamental roots, and that the Weyl group is generated
by the reflections with respect to the real fundamental roots only.
We now turn to the representation theory of Borcherds algebras. We define

the set X of integral weights by

X=
{
�∈Q⊗�2

����i�
��i��i�

∈� for all �i ∈�Re

}
�

Here �Re is the set of real fundamental roots. We recall that ��i��i�>0 when
�i ∈�Re. We define the subset X+⊂X of dominant integral weights by

X+= 
�∈X ����i�≥0 for all �i ∈�� �
In a manner very similar to that we have described for Kac–Moody algebras

in Chapter 19 it is possible to define an irreducible module L��� for the
Borcherds algebra L associated to any dominant integral weight �. L��� is
called the irreducible L-module with highest weight �.
Now Borcherds proved a character formula for L��� analogous to Kac’

character formula Theorem 19.16 for Kac–Moody algebras.

Theorem 21.6 (Borcherds’ character formula). Let L be a Borcherds alge-
bra, � a dominant integral weight and L��� the corresponding irreducible
L-module with highest weight �. Then the character of L��� is given by

chL���=
∑
w∈W

 �w�w

(∑
)

�−1��) �e��+	−∑)�

)
e�	�

∏
�∈�+

�1−e�−���m�
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where m�=dimL��) runs over all finite subsets of mutually orthogonal
imaginary fundamental roots, and 	 is any element of Q⊗� such that

�	��i�= 1
2 ��i��i�

for all real fundamental roots �i.

As usual this character is interpreted as

chL���=∑
�

(
dimL����

)
e���

where �→ e��� is an isomorphism between the additive group of weights
and the corresponding multiplicative group.
(In fact there may not exist a vector 	∈Q⊗� such that �	��i�= 1

2 ��i��i�
for all real fundamental roots �i of a general Borcherds algebra. But if there
is no such 	∈Q⊗�, 	 may still be defined as the homomorphism from Q

to � taking �i to
1
2 ��i��i� for all i∈ I , and the character formula can be

interpreted accordingly.)
In the special case �=0, L��� is the trivial 1-dimensional L-module. Then

Borcherds’ character formula reduces to the following identity.

Theorem 21.7 (Borcherds’ denominator formula).

e�	�
∏

�∈�+
�1−e�−���m� =∑

w∈W
 �w�w

(
e�	�

∑
)

�−1��) �e�−∑)�

)
�

By substituting Borcherds’ denominator formula into Theorem 21.6 we obtain
a second form of Borcherds’ character formula.

Theorem 21.8 (Borcherds’ character formula, second form). With the nota-
tion of Theorem 21.6 we have

chL���=
∑
w∈W

 �w�w

(∑
)

�−1��) �e��+	−∑)�

)
∑
w∈W

 �w�w

(
e�	�

∑
)

�−1��) �e�−∑)�

) �

Comments on the proof of Borcherds’ character formula
We shall not give the proof of Borcherds’ character formula in detail, since
the ideas are quite similar to those which arise in the proof of Kac’ character
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formula for Kac–Moody algebras. However we shall say enough to explain
where the additional term ∑

)

�−1��) �e�−∑)�

comes from, where ) runs over all finite sets of mutually orthogonal imag-
inary fundamental roots. Of course in Kac–Moody algebras there are no
imaginary fundamental roots so the only possible subset ) is the empty set.
The additional term then becomes e�0�, the identity element of e�Q�, and
disappears from the formula.
For a Borcherds algebra L we have

�=�Re∪�Im

where �Re is the set of real fundamental roots and �Im is the set of imaginary
fundamental roots. We also define

�Re=W ��Re� � �Im=�−�Re

to be the sets of real and imaginary roots respectively. We recall from Theo-
rem 16.24 that, in a Kac–Moody algebra,

�+Im=
⋃
w∈W

w�K�

where K= 
�∈Q+  � 	=0� supp� is connected, −�∈ C̄} and

C̄= 
�∈Q ⊗�  ����i�≥0 for all �i ∈�Re� �

There is an analogous result for Borcherds algebras given as follows.

Theorem 21.9 The set of positive imaginary roots of a Borcherds algebra is
given by

�+Im=
⋃
w∈W

w�K�

where K is given by

K = {
�∈Q+� 	=0� −�∈ C̄� supp� is connected

}
− 
j�i  j∈�� j≥2� �i ∈�Im� �

Proof. Omitted. The idea is generally similar to that of Theorem 16.24. It is
clearly necessary to exclude positive multiples j�i of imaginary fundamental
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roots with j≥2 since these vectors satisfy the conditions required for belong-
ing to K, but cannot be roots since there is no possible root vector giving rise
to such a root.

Following closely the proof of Kac’ character formula we obtain

e�	�
∏

�∈�+
�1−e�−���m�chL���=∑

�

c�e��+	�

summed over all weights � such that �≺� and ��+	��+	�=
��+	��+	�, where c� ∈� and both sides are skew-symmetric under the
action of the Weyl group W . (See the proof of Theorem 19.16.)
We now define a certain partial sum S of terms on the right-hand side.
Let S=∑� c�e��+	�, summed over all weights � satisfying �≺��
��+	��+	�=��+	��+	� and ��+	��i�≥0 for all �i ∈�Re.

Since �≺� we have

�=�−∑ki�i for some ki ∈�� ki >0��i ∈��
Since ��+	��+	�=��+	��+	� we have

���+	�−��+	�� ��+	�+��+	��=0

that is �∑ki�i��+�+2	�=0. This implies∑
ki ��i���+

∑
ki ��i��+2	�=0�

We can deduce several consequences from this equation. We note first that
��i���≥0 since � is dominant. Also for �i ∈�Re we have

��i��+2	�=��i��+	�+��i�	�=��i��+	�+ 1
2 ��i��i�> ��i��+	� �

Now ��i��+	�≥0 by definition of S, so ��i��+2	�>0. On the other
hand, for �i ∈�Im we have

��i��+2	�=��i��+�i�=
〈
�i��−

∑
k′j�j

〉
for some k′j >0�

Thus ��i��+2	�≥0 since ��i���≥0�
〈
�i��j

〉≤0 if i 	= j, and ��i��i�≤0.
We now collect these results together and put them into the equation∑

ki ��i���+
∑

ki ��i��+2	�=0�

The conclusion is that ��i���=0 and ��i��+2	�=0 for all �i in the sum∑
ki�i. This in turn implies that each such �i ∈�Im. But then

��i��+2	�=��i���−
∑

k′j
〈
�i��j

〉=−∑k′j
〈
�i��j

〉
�
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Since k′j >0 and
〈
�i��j

〉≤0 this implies that
〈
�i��j

〉=0. In fact k′j=kj if
j 	= i and k′i=ki−1. So if i 	= j we have

〈
�i��j

〉=0 for all �i��j in the sum∑
ki�i with i 	= j. In other words,

�−�=∑ki�i

is a linear combination of mutually orthogonal imaginary fundamental roots
all of which are orthogonal to �.
Now we have 〈

���j

〉= 〈���j

〉−∑
i

ki
〈
�i��j

〉≥0

for all �j ∈�Re since
〈
���j

〉≥0� ki >0 and
〈
�i��j

〉≤0 since �i ∈�Im��j ∈�Re

so i 	= j. Thus �∈ C̄. It follows that �+	∈C since〈
�+	��j

〉= 〈���j

〉+ 1
2

〈
�j��j

〉
>
〈
���j

〉
so

〈
�+	��j

〉
>0. Thus �+	 lies in the fundamental chamber C. Since our

sum ∑
�

�≺�
��+	��+	�=��+	��+	�

c�e��+	�

is skew-symmetric under the action of W , this sum must be equal to∑
w∈W

 �w�w�S�

since S is the partial sum including all summands c�e��+	� for which �+	
lies in C̄.
We shall now determine S. Let the module L��� have highest weight

vector v�. If ��hi�=0 then fiv�=0 by the analogue in Borcherds algebras of
the proof of Theorem 10.20. If all �i in the sum

∑
ki�i satisfied ��hi�=0 then

we would have fiv�=0 for all such i and this would imply that �−∑ki�i

could not be a weight of L���. So if �−∑ki�i is a weight not equal to �

we must have ��hi� 	=0 for some i in this sum. Thus ����i� 	=0 for some i
in this sum. On the other hand we know that �=�−∑ki�i where all �i in
the sum satisfy ����i�=0. This implies that the weight

�+	= ��+	�−∑ki�i

can only arise from the term e��� in chL��� in the formula

e�	�
∏

�∈�+
�1−e�−���m� chL���=∑

�

e�e��+	��
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So all terms on the right of this formula which lie in S arise from

e��+	� ∏
�∈�+

�1−e�−���m�

on the left.
We consider which roots �∈�+ in the formula

e��+	� ∏
�∈�+

�1−e�−���m�

can contribute to give �+	= ��+	�−∑ki�i. All such roots �∈�+ must
be linear combinations of the fundamental roots �i arising in the sum

∑
ki�i.

But such �i are mutually orthogonal imaginary fundamental roots. So sums
of two or more such �i do not have connected support, so cannot be roots
by Theorem 21.9. Also each �i ∈� has m�i

=1 since the corresponding root
space is spanned by ei. Thus a weight �+	 giving a term on the right which
lies in S must arise from

e��+	� ∏
�i∈�Im

�1−e �−�i��= e��+	�
∑
)

�−1��) �e�−∑)�

summed over all finite sets ) of mutually orthogonal imaginary fundamental
roots. Thus we have

S=∑
)

�−1��) �e��+	−∑)�

and so

e�	�
∏

�∈�+
�1−e�−���m�chL���=∑

w∈W
 �w�w

(∑
)

�−1��) �e��+	−∑)�

)
as required.
This argument therefore explains the difference between Kac’ charac-

ter formula and Borcherds’ character formula, and where the extra term in
Borcherds’ character formula comes from.

21.3 The Monster Lie algebra

In this final section we shall show that, although Borcherds algebras have
many properties which seem quite similar to those of Kac–Moody algebras,
they include examples which behave in a very different way from Kac–Moody
algebras. The example we have in mind is the Monster Lie algebra. The
definition and properties of the Monster Lie algebra are closely related to the
properties of a certain modular function j, so we shall begin by describing
the definition and significance of this function.
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We first recall the action of the group SL2��� on the upper half plane H .
Let

SL2���=
{(

a b

c d

)
 ad−bc=1� a� b� c�d∈�

}
H= 
$ ∈�  Im $>0� �

The group SL2��� acts on H by(
a b

c d

)
$= a$+b

c$+d
since if Im $>0 we have Im

(
a$+b
c$+d

)
>0. In particular the subgroup SL2���

acts on H . Since (−1 0
0 −1

)
$= $

we see that PSL2���=SL2���/ �±I2� acts on H . PSL2��� is called the
modular group.

We denote by H/SL2��� the set of orbits. Since
(
1 1
0 1

)
∈SL2��� the

elements $ and $+1 of H lie in the same orbit. Thus each orbit intersects{
$ ∈H − 1

2 ≤Re $≤ 1
2

}
�

Again we have
(

0 1
−1 0

)
∈SL2��� and so the elements $�−1/$ ∈H lie in the

same orbit. Thus each orbit intersects


$ ∈H  �$�≥1��

In fact we can obtain a fundamental region for the action of SL2��� on H by
taking the region


$ ∈H − 1
2 ≤Re $≤ 1

2 � �$�≥1�

and identifying the points $� $+1 for Re $=− 1
2 and the points ��−1/� for

���=1. The fundamental region is illustrated in Figure 21.1.
Having made the above identifications we obtain a set intersecting each

orbit in just one point. The set H/SL2��� of orbits has the structure of a
compact Riemann surface with one point removed. This is a Riemann surface
of genus 0, i.e. a Riemann sphere. When we remove one point from it we
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τ + 1

–1 –½ ½0 1

τ

σ –1/σ

Figure 21.1 Fundamental region

obtain a subset which can be identified with �. Thus we have an isomorphism
of Riemann surfaces

H/SL2���→��

This can be extended to an isomorphism of compact Riemann surfaces by
adding the point i) on the left and ) on the right. Thus we have an isomor-
phism

�H/SL2����∪
i)�→S2=�∪
)�
under which i) maps to ). Such an isomorphism of Riemann surfaces is
not uniquely determined. However, if j is any such isomorphism any other
must have the form a�j+b� where a�b are constants and a 	=0. Such a map
determines a map from H to � constant on orbits. This map will also be
denoted by j. j is a modular function, i.e. a function invariant under the action
of the modular group.
Since $� $+1 lie in the same orbit we have j�$�= j�$+1�, thus j is

periodic. This implies that j has a Fourier expansion of form

j�$�=∑
n∈�

cne
2(in$ �

We write q= e2(i$ . Then we have

j�$�=∑
n∈�

cnq
n�

We shall now describe such a function j. In order to do so we first introduce
some modular forms. A function f � H→� is called a modular form of
weight k if

f

(
a$+b
c$+d

)
= �c$+d�kf�$�
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for all
(
a b

c d

)
∈SL2���. We give two examples of modular forms. The first

is an example of a so-called Eisenstein series. For each positive integer n let

�3�n�=
∑
d�n

d3

summed over all divisors of n, and let

E4�$�=1+240
∑
n≥1

�3�n�q
n�

Thus

E4�$�=1+240q+2160q2+· · · �
This function is known to be a modular form of weight 4.
Secondly define � by

��$�=q∏
n≥1

�1−qn�24 �

Then

��$�=q−24q2+252q3−· · · �
This is called Dedekind’s �-function and is known to be a modular form of
weight 12.
We now define j � H→� by

j�$�= E4�$�
3

��$�
�

This is a modular form of weight 0, i.e. a modular function, and so is constant
on orbits of SL2��� on H . We have

j�$�=q−1+744+196884q+21493760q2+· · ·
and j has a simple pole at $= i), i.e. q=0.
j gives an isomorphism of Riemann surfaces

j � H/SL2���→�

which extends to an isomorphism of compact Riemann surfaces

j � �H/SL2����∪
i)�→S2=�∪
)��
Any other such isomorphism has the form a�j+b� where a�b are constants
and a 	=0. In particular there is just one such isomorphism with leading



534 Borcherds Lie algebras

coefficient 1 and constant term 0. We shall call this the canonical isomor-
phism. This is the function

j�$�−744=q−1+∑
n≥1

cnq
n

where c1=196884, c2=21493760, etc. All the cn are positive integers.
We are now ready to introduce the Monster Lie algebra. We first define a

countable symmetric matrix �. � is defined as a block matrix, with blocks of
rows and columns parametrised by the natural numbers �= 
0�1�2�3� � � � �.
Let Bij be the �i� j�-block of �. The number of rows in Bij is 1 if i=0 and ci
if i 	=0 where ci is the coefficient of qi in the modular function j. Similarly
the number of columns in Bij is 1 if j=0 and cj if j 	=0. All the matrix
entries in a given block Bij are equal to one another. These entries are given
as follows.

The single entry in block B00 is 2�

All entries in block B0n for n 	=0 are −�n−1��

All entries in block Bmn for m 	=0� n 	=0 are −�m+n��
These conditions determine the matrix �. We have

←196884→←21493760→

�=

↑
196884
↓
↑

21493760
↓

2 0 · · · 0 −1 · · · −1 −2 · · ·
0 −2 · · · −2 −3 · · · −3 −4 · · ·
���

���
���

���
���

���
0 −2 · · · −2 −3 · · · −3 −4 · · ·
−1 −3 · · · −3 −4 · · · −4 −5 · · ·
���

���
���

���
���

���−1 −3 · · · −3 −4 · · · −4 −5 · · ·
−2 −4 · · · −4 −5 · · · −5 −6 · · ·
���

���
���

���
���

���

�

Let L��� be the universal Borcherds algebra determined by the countable
matrix � as in Proposition 21.1. Let Z be the centre of L��� and H be the
subalgebra of L��� generated by all elements hij=

[
eifj

]
. We know from

Section 21.1 that 〈
hij  i 	= j

〉⊂Z⊂H�
It is also clear that hi−hj ∈Z where hi=hii� hj=hjj and i� j are in the same
block, since columns i� j of � are then identical. Z is in fact generated by the
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elements hij for i 	= j and hi−hj where i� j are in the same block. Moreover
Z is an ideal of L���.

Let �=L���/Z. � is called the Monster Lie algebra. We shall now
determine some properties of �.
Let the blocks of rows of � be B0�B1�B2� � � � with �B0�=1� �Bn�= cn for

n≥1. We choose one i∈ I out of each block, such that i lies in the block Bi.
We then consider the elements hi for such elements i∈ I . Thus we have
elements h0� h1� h2� � � �∈H . Then the elements

2h2 + h0−3h1

2h3 + 2h0−4h1

2h4 + 3h0−5h1

���

all lie in Z, since the corresponding linear combinations of the rows of � are
all zero vectors.
Let hi→ h̄i under the natural homomorphism L���→�. Then we have

2h̄2 = 3h̄1− h̄0

2h̄3 = 4h̄1−2h̄0

2h̄4 = 5h̄1−3h̄0

���

Let �0=H/Z. �0 is the Cartan subalgebra of �, being the image of H
under the natural homomorphism. We see from the above relations that �0

is spanned by h̄0 and h̄1. Moreover h̄0 and h̄1 are linearly independent since
this is true of the first two rows of �. Thus h̄0� h̄1 form a basis of �0 and
we have

dim�0=2�

In fact we find it more convenient to choose the basis b0� b1 of �0 given by

b0=
h̄0+ h̄1

2
� b1=

−h̄0+ h̄1

2
�

Thus �0=�b0+�b1. The scalar product on �0 is given by〈
h̄0� h̄0

〉= a00=2〈
h̄1� h̄1

〉= a11=−2〈
h̄0� h̄1

〉= 〈
h̄1� h̄0

〉=a01=0�
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It follows that

�b0� b0�=0� �b1� b1�=0� �b0� b1�=−1�
Hence

�mb0+nb1�m′b0+n′b1�=− �mn′ +nm′� �
We now regard the Monster Lie algebra � as a module over its Cartan

subalgebra �0. Let m�n∈� and define ��m�n� by

��m�n�= 
x∈�  �b0x�=mb0� �b1x�=nb1� �
Then one can show that ��0�0�=�0 and

�=⊕��m�n� for�m�n�∈�×��

Moreover we have

dim��m�n�= cmn if m 	=0� n 	=0

dim��0�0�=2

dim��m�0�=dim��0�n�=0 if m 	=0� n 	=0�

(These results follow from the ‘no-ghost’ theorem of Goddard and Thorn in
string theory! A statement and proof of this theorem in an algebraic context
can be found in E. Jurisich, Journal of Pure and Applied Algebra 126 (1998),
233–266).
Thus the graded components ��m�n� of the Monster Lie algebra � are as

shown in Table 21.1. In this table Vn is a vector space of dimension cn if
n≥1 and V−1 is a vector space of dimension 1.

Table 21.1 Graded components ��m�n� of the Monster Lie Algebra.

���
���

· · · O O O O O V4 V8 V12 V16 · · ·
O O O O O V3 V6 V9 V12
O O O O O V2 V4 V6 V8
O O O V−1 O V1 V2 V3 V4
O O O O �2 O O O O
V4 V3 V2 V1 O V−1 O O O
V8 V6 V4 V2 O O O O O
V12 V9 V6 V3 O O O O O

· · · V16 V12 V8 V4 O O O O O · · ·
���

���
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We now consider the roots of the Monster Lie algebra �. Since �=
L���/Z we recall from Section 21.2 that the root lattice of � is defined to
be the root lattice of L���. The fundamental roots of � are the �i for i∈ I .
We have a homomorphism Q→H under which �i maps to hi. We pointed
out in Section 21.2 that this homomorphism is not in general injective. In the
Monster Lie algebra it is far from injective, as �i��j have the same image if
and only if i� j lie in the same block of I .
We have

��0��0�=2

��i��i�=−2m if i 	=0 and i∈Bm�

Thus �re= 
�0� and �im= 
�i  i 	=0�. Hence the Monster Lie algebra� has
just one real fundamental root and countably many imaginary fundamental
roots.
The Weyl group W of � is generated by the fundamental reflections

corresponding to the real fundamental roots. Thus W =�s0�, and so W has
order 2. Thus � has an infinite number of fundamental roots while at the
same time having a very small Weyl group isomorphic to the cyclic group of
order 2.
Finally we shall consider Borcherds’ denominator formula for the Monster

Lie algebra�. This formula plays an important role in Borcherds’ proof of the
Conway–Norton conjectures. We recall from Theorem 21.7 that Borcherds’
denominator formula is given by

e�	�
∏

�∈�+
�1−e�−���m� =∑

w∈W
 �w�w

(
e�	�

∑
)

�−1��) �e�−∑)�

)

where 	∈Q⊗� is any vector satisfying

�	��i�= 1
2 ��i��i� for all i∈ I�

Now we have

h̄n=
�n+1�h̄1−�n−1�h̄0

2
=b0+nb1�

Thus we can identify a fundamental root �i in the block Bn with its image
b0+nb1 in the Cartan subalgebra �0 of � provided we remember that
there will be cn different such fundamental roots �i with a given image
b0+nb1.
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We may take 	= �−�0−�1�

2
, since if �i ∈Bn we have

�	��i�=
〈
−h̄0− h̄1

2
� b0+nb1

〉
=�−b0� b0+nb1�=n

whereas

��i��i�=�b0+nb1� b0+nb1�=−2n�
Thus �	��i�= 1

2 ��i��i�.
Hence we shall use this vector 	 in Borcherds’ denominator formula. Using

the natural homomorphisms

Q→H→�0=H/Z
�i→hi→hi

we may interpret Borcherds’ denominator formula in the integral group ring
of e ��0� rather than the integral group ring of e�Q�. Bearing this in mind
we define

p= eb0� q= eb1 �
Then e	=p−1 and so the left-hand side of the denominator identity is

p−1
∏
m>0
n∈�

�1−pmqn�cmn

since the positive roots �∈�+ are the elements of Q+ which map to elements
of�0 of the form mb0+nb1 with m>0 and n∈�, and the number of �∈�+
mapping to mb0+nb1 is dim��m�n�= cmn.
We now consider the right-hand side of the denominator identity. We recall

that, for �∈Q� ���= �−1�k where � is the sum of k orthogonal imaginary
fundamental roots and  ���=0 otherwise. In the case of the Monster Lie
algebra � no two imaginary fundamental roots are orthogonal since

�b0+mb1� b0+nb1�=−�m+n��
Thus the elements �∈Q contributing to

∑
 ���e� are �=0 with  ���=1 and

the imaginary simple roots in Q. These map to elements of form b0+nb1 ∈
�0. There are cn such roots �∈Q mapping to b0+nb1 and they all give
 ���=−1. Thus ∑

�∈Q
 ���e�=1−∑

n>0

cnpq
n�
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Now the Weyl group W has order 2 and consists of the elements 1 and s0.
We have s0�p�=q and s0�q�=p. Thus the right-hand side of the denominator
identity is

p−1
(
1−∑

n>0

cnpq
n

)
−q−1

(
1−∑

n>0

cnqp
n

)

=
(
p−1+∑

n>0

cnp
n

)
−
(
q−1+∑

n>0

cnq
n

)
= j�p�−j�q��

Thus we have obtained the following result.

Theorem 21.10 Borcherds’ denominator identity for the Monster Lie algebra
� asserts that:

p−1
∏
m>0
n∈�

�1−pmqn�cmn = j�p�−j�q�

where cn is the coefficient of qn in the modular function j.

In fact this identity was proved by Borcherds from first principles and used
subsequently to prove that the fundamental roots of � map to the elements

b0−b1� b0+b1� b0+2b1� b0+3b1� � � �

of �0.
Further information about results stated without proof in this chapter can

be found in the papers of R. Borcherds ‘Generalised Kac–Moody algebras’,
Journal of Algebra 115 (1988), 501–512, and ‘Monstrous moonshine and
monstrous Lie superalgebras’, Inventiones Mathematiae 109 (1992), 405–444.
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Summary pages – explanation

There follow a number of summary pages, one for each Lie algebra of finite
or affine type, giving basic properties of the Lie algebra in question. The
information given differs to some extent between the Lie algebras of finite
type and those of affine type.
In the case of the algebras of finite type we give the name of the algebra,

the Dynkin diagram with the labelling we have chosen for its vertices, the
Cartan matrix, the dimension of the Lie algebra, its Coxeter number, the
order of its Weyl group W and the degrees of the basic polynomial invariants
of W . We also give information about its root system. The roots are most
conveniently described in terms of a basis �1� � � � ��m of mutually orthogonal
basis vectors all of the same length. In several cases it is convenient to choose
m greater than the rank l of the Lie algebra, so that the root system lies in
a proper subspace of the vector space spanned by �1� � � � ��m. In the cases
when there are roots of two different lengths the long roots and short roots
are both described. The extended Dynkin diagram is given and the root lattice
described in terms of the above orthogonal basis. The fundamental weights
are given, as is the index of the root lattice in the weight lattice. Finally the
standard invariant forms on H� and H∗� are described, and the constant is
given which converts the standard invariant form on H� into the Killing form.
The labelling given here for the vertices of the Dynkin diagrams of types

E6 and E7 differs from that used in Chapter 8, where it was convenient to
describe the root systems of type E6�E7 or E8 together in Section 8.7.
In the case of the Lie algebras of affine type we have given two names for

each algebra which we have called the Dynkin name and the Kac name. The
Dynkin name describes the Dynkin diagram of the algebra whereas the Kac
name, introduced at the end of Chapter 18, indicates whether the Lie algebra is

540
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of untwisted or twisted type, and in the case of those of twisted type indicates
the type of the untwisted affine algebra from which it is obtained, together
with the order of the automorphism of which it is the fixed point subalgebra.
This Kac notation is entirely consistent with the notation normally used to
describe the twisted Chevalley groups.
The Dynkin diagram with chosen labelling is given, together with the gen-

eralised Cartan matrix and the integers a0� a1� � � � � al and c0� c1� � � � � cl. The
central element c, the basic imaginary root �, and the elements �∈ (H0

�

)∗
and

h� ∈H0
� which play an important role in the theory of affine algebras are writ-

ten down explicitly. The Coxeter number and dual Coxeter number are given.
The type of the finite dimensional Lie algebra L0 obtained by removing

vertex 0 from the Dynkin diagram is given. The root system � is described
in terms of the root system �0 of L0. The real and imaginary roots are given
separately and the multiplicities of the imaginary roots are given. (The real
roots all have multiplicity 1.) In order to clarify the action of the affine Weyl
group we describe the lattices M⊂H0

� and M∗ ⊂ (H0
�

)∗
which give rise to

the translations in the affine Weyl group. We also describe the fundamental
alcoves A⊂H0

� and A∗ ⊂ (H0
�

)∗
whose closures give fundamental regions

for the action of the affine Weyl group. Then we describe the fundamental
weights in terms of the fundamental weights of L0, and the standard invariant
forms on H and on H∗.
For the affine algebras of types C̃ ′l� l≥2, and Ã′1 we have given two

different descriptions, corresponding to two choices of the vertex of the
Dynkin diagram labelled by 0. (The algebra Ã′1 behaves just like C̃ ′l when
l=1.) Both descriptions are useful, as is shown in Section 18.4. The first
description is the conventional description in which the associated finite
dimensional algebra has type Cl, and which is discussed in Chapter 17. The
second description is the one used to obtain the realisation of C̃ ′l as

2Ã2l in
Section 18.4. Here the associated finite dimensional algebra has type Bl. A
word of caution is necessary in deriving the results appearing in the second
description. In these cases we have c0=2. Thus we cannot apply results from
Chapter 17 uncritically to these cases, since c0=1 is assumed in Chapter 17.
Instead we have the following situation.

�=�−a0�0=
l∑

i=1
ai�i

satisfies ��� ��=2a0c0. We also have

h�=
1

a0c0
�c−c0h0�=

1
a0c0

l∑
i=1

cihi�
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Under the natural bijection H↔H∗ we have hi↔aic
−1
i �i� h�↔a−10 c−10 ��

d↔a0c
−1
0 �. In addition we have

�h0�d�=a0c
−1
0 � ��0� ��=a−10 c0�

The lattices M�M∗ are given as follows in these cases. M is the lattice gener-
ated by w�h�� for all w∈W 0, and M∗ is the lattice generated by w

(
a−10 c−10 �

)
for all w∈W 0. The alcove A is bounded by the affine hyperplane ��h�=1
and the alcove A∗ is bounded by the affine hyperplane ��h��= 1

a0c0
.

In fact in this second description � turns out to be 2�s where �s is the
highest short root, and h� is

1
2h�s .
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NAME Al

Dynkin diagram with labelling.

1 2 3 l –1 l

Cartan matrix

1 2 3 · · · l − 1 l

1

2

3

·
·
·

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 ·
· · ·

· · ·
· · ·
· 2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL= l�l+2�.

Coxeter number. h= l+1.

Order of the Weyl group. �W �= �l+1�!
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � dl�= 
2�3� � � � � l+1� �

Number of roots. ���= l�l+1�.

The fundamental roots in terms of an orthogonal basis.

�1=�1−�2� �2=�2−�3� � � � � �l=�l−�l+1�

The root system.

�={�i−�j  i� j=1� � � � � l+1� i 	= j} �
The highest root. �=�1−�l+1.
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The extended Dynkin diagram, for l≥2.

The root lattice Q=∑��i.

Q=
{

l+1∑
i=1

�i�i  �i ∈��
∑

�i=0

}
�

The fundamental weights.

!i=
1

l+1
��l+1− i� ��1+· · ·+�i�− i ��i+1+· · ·+�l+1�� i=1� � � � � l�

The index of the root lattice in the weight lattice. �X�Q�= l+1� X/Q

is cyclic.

The standard invariant form on H�.〈
hi�hj

〉=Aij�

The standard invariant form on H∗�.〈
�i��j

〉=Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=2�l+1�.
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NAME Bl

Dynkin diagram with labelling.

1 2 3 l–1 l

Cartan matrix

1 2 3 � � l−2 l−1 l

1

2

3

�

�

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2
.

� �
.

�
. .

.
2 −1
−1 2 −1

−2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL= l�2l+1�.

Coxeter number. h=2l.

Order of the Weyl group. �W �=2l · l!
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � dl�= 
2�4� � � � �2l��
Number of roots. ���=2l2.

The fundamental roots in terms of an orthogonal basis.

�1=�1−�2� �2=�2−�3� � � � � �l−1=�l−1−�l� �l=�l�

The root system. �=�l∪�s where

�l =
{±�i±�j  i� j=1� � � � � l� i 	= j}

�s = 
±�i  i=1� � � � � l� �

The highest root. �l=�1+�2.

The highest short root. �s=�1.
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The extended Dynkin diagram.

The root lattice Q=∑��i.

Q=
{

l∑
i=1

�i�i  �i ∈�
}
�

The fundamental weights.

!i = �1+· · ·+�i i=1� � � � � l−1

!l = 1
2 ��1+· · ·+�l� �

The index of the root lattice in the weight lattice. �X�Q�=2.

The symmetrising matrix D=diag �di�.

di=1 i=1� � � � � l−1 dl=2�

The standard invariant form on H�.〈
hi�hj

〉=Aijdj�

The standard invariant form on H∗�.〈
�i��j

〉=d−1i Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=4l−2.
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NAME Cl

Dynkin diagram with labelling.

1 2 3 l–1 l

Cartan matrix

1 2 3 · · l−2 l−1 l

1

2

3
.

.

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2
.

. . .

. . .

.
2 −1
−1 2 −2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL= l�2l+1�.

Coxeter number. h=2l.

Order of the Weyl group. �W �=2l · l!
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � dl�= 
2�4� � � � �2l��
Number of roots. ���=2l2.

The fundamental roots in terms of an orthogonal basis.

�1=�1−�2� �2=�2−�3� � � � � �l−1=�l−1−�l� �l=2�l�

The root system. �=�l∪�s where

�l = 
±2�i  i=1� � � � � l�

�s =
{±�i±�j  i� j=1� � � � � l i 	= j} �

The highest root. �l=2�1.

The highest short root. �s=�1+�2.
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The extended Dynkin diagram.

The root lattice Q=∑��i.

Q=
{

l∑
i=1

�i�i  �i ∈��
∑

�i even

}
�

The fundamental weights

!i=�1+· · ·+�i i=1� � � � � l�

The index of the root lattice in the weight lattice. �X�Q�=2.

The symmetrising matrix D=diag �di�.

di=2 i=1� � � � � l−1 dl=1�

The standard invariant form on H�.〈
hi�hj

〉=Aijdj�

The standard invariant form on H∗�.〈
�i��j

〉=d−1i Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=2�l+1�.
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NAME Dl

Dynkin diagram with labelling.

1 2 3 l–2

l–1

l

Cartan matrix

1 2 3 · · · l−2 l−1 l

1

2

3

·
·
·

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2 ·
· · ·

· · ·
· · ·
· 2 −1 −1
−1 2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Dimension. dimL= l�2l−1�.

Coxeter number. h=2l−2.

Order of the Weyl group. �W �=2l−1l!
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � dl�= 
2�4� � � � �2l−2� l� �

Number of roots. ���=2l�l−1�.

The fundamental roots in terms of an orthogonal basis.

�1 = �1−�2� �2=�2−�3� � � � � �l−2=�l−2−�l−1�

�l−1 = �l−1−�l� �l=�l−1+�l�
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The root system.

�={±�i±�j  i� j=1� � � � � l i 	= j} �
The highest root. �=�1+�2.

The extended Dynkin diagram.

l ≥ 5

l = 4

The root lattice Q=∑��i.

Q=
{

l∑
i=1

�i�i  �i ∈��
∑

�i even

}
�

The fundamental weights.

!i = �1+· · ·+�i i=1� � � � � l−2

!l−1 = 1
2 ��1+· · ·+�l−2+�l−1−�l�

!l = 1
2 ��1+· · ·+�l−2+�l−1+�l� �

The index of the root lattice in the weight lattice. �X�Q�=4.

X/Q is cyclic if l is odd and non-cyclic if l is even.

The standard invariant form on H�.〈
hi�hj

〉=Aij�

The standard invariant form on H∗�.〈
�i��j

〉=Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=4�l−1�.
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NAME E6

Dynkin diagram with labelling.

1 2 3

4

5 6

Cartan matrix

1 2 3 4 5 6

1

2

3

4

5

6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 −1 0

0 0 −1 2 0 0

0 0 −1 0 2 −1
0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL=78.

Coxeter number. h=12.

Order of the Weyl group. �W �=27 ·34 ·5
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � d6�= 
2�5�6�8�9�12� �

Number of roots. ���=72.

The fundamental roots in terms of an orthogonal basis.

�1��2��3��4��5��6��7��8 orthogonal basis.

�1=�1−�2� �2=�2−�3� �3=�3−�4� �4=�4−�5�

�5=�4+�5� �6=− 1
2 ��1+�2+�3+�4+�5+�6+�7+�8� �
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The root system.

�= {±�i±�j  i� j=1�2�3�4�5 i 	= j}
∪
{

1
2

8∑
i=1

 i�i   i=±1�
8∏

i=1
 i=1�  6= 7= 8

}
�

The highest root.

�= 1
2 ��1+�2+�3+�4−�5−�6−�7−�8� �

The extended Dynkin diagram.

The root lattice Q=∑��i.

Q=
{

8∑
i=1

�i�i  2�i ∈�� �i−�j ∈��
8∑

i=1
�i ∈2�� i� j=1� � � � �8 �6=�7=�8

}
�

The fundamental weights.

!1 = �1− 1
3 ��6+�7+�8�

!2 = �1+�2− 2
3 ��6+�7+�8�

!3 = �1+�2+�3−��6+�7+�8�

!4 = 1
2 ��1+�2+�3+�4−�5−�6−�7−�8�

!5 = 1
2 ��1+�2+�3+�4+�5�− 5

6 ��6+�7+�8�

!6 =− 2
3 ��6+�7+�8� �

The index of the root lattice in the weight lattice. �X�Q�=3.

The standard invariant form on H�.〈
hi�hj

〉=Aij�

The standard invariant form on H∗�.〈
�i��j

〉=Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=24.
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NAME E7

Dynkin diagram with labelling.

1 2 3

5

4 6 7

Cartan matrix

1 2 3 4 5 6 7

1

2

3

4

5

6

7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 −1 0

0 0 0 −1 2 0 0

0 0 0 −1 0 2 −1
0 0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL=133.

Coxeter number. h=18.

Order of the Weyl group. �W �=210 ·34 ·5 ·7.
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � d7�= 
2�6�8�10�12�14�18� �

Number of roots. ���=126.

The fundamental roots in terms of an orthogonal basis.

�1��2��3��4��5��6��7��8 orthogonal basis.

�1=�1−�2� �2=�2−�3� �3=�3−�4� �4=�4−�5� �5=�5−�6�

�6=�5+�6� �7=− 1
2 ��1+�2+�3+�4+�5+�6+�7+�8� �



554 Appendix

The root system.

� = {±�i ± �j  i� j=1�2�3�4�5�6 i 	= j}
∪ 
± ��7+�8��

∪
{

1
2

8∑
i=1

 i�i   i=±1�
8∏

i=1
 i=1�  7= 8

}
�

The highest root. �=−�7−�8.

The extended Dynkin diagram

The root lattice Q=∑��i.

Q=
{

8∑
i=1

�i�i  2�i ∈�� �i−�j ∈��
8∑

i=1
�i ∈2�� i� j=1� � � � �8 �7=�8

}
�

The fundamental weights.

!1 = �1− 1
2 ��7+�8�

!2 = �1+�2−��7+�8�

!3 = �1+�2+�3− 3
2 ��7+�8�

!4 = �1+�2+�3+�4−2 ��7+�8�

!5 = 1
2 ��1+�2+�3+�4+�5−�6�−��7+�8�

!6 = 1
2 ��1+�2+�3+�4+�5+�6�− 3

2 ��7+�8�

!7 =− ��7+�8� �

The index of the root lattice in the weight lattice. �X�Q�=2.

The standard invariant form on H�.〈
hi�hj

〉=Aij�

The standard invariant form on H∗�.〈
�i��j

〉=Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=36.
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NAME E8

Dynkin diagram with labelling.

1 2 3

6

4 5 7 8

Cartan matrix

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 −1 0

0 0 0 0 −1 2 0 0

0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Dimension. dimL=248.

Coxeter number. h=30.

Order of the Weyl group. �W �=214 ·35 ·52 ·7.
Degrees of the basic polynomial invariants of W .


d1�d2� � � � � d8�= 
2�8�12�14�18�20�24�30� �
Number of roots. ���=240.

The fundamental roots in terms of an orthogonal basis.

�1=�1−�2� �2=�2−�3� �3=�3−�4� �4=�4−�5�

�5=�5−�6� �6=�6−�7� �7=�6+�7�

�8=− 1
2 ��1+�2+�3+�4+�5+�6+�7+�8� �
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The root system.

� = {±�i±�j  i� j=1�2�3�4�5�6�7�8 i 	= j}
∪
{

1
2

8∑
i=1

 i�i   i=±1�
8
�
i=1

 i=1

}
�

The highest root. �=�1−�8.

The extended Dynkin diagram

The root lattice Q=∑��i.

Q=
{

8∑
i=1

�i�i  2�i ∈�� �i−�j ∈��
8∑

i=1
�i ∈2� i� j=1� � � � �8

}
�

The fundamental weights.

!1 = �1−�8

!2 = �1+�2−2�8

!3 = �1+�2+�3−3�8

!4 = �1+�2+�3+�4−4�8

!5 = �1+�2+�3+�4+�5−5�8

!6 = 1
2 ��1+�2+�3+�4+�5+�6−�7�− 5

2�8

!7 = 1
2 ��1+�2+�3+�4+�5+�6+�7�− 7

2�8

!8 =−2�8�

The index of the root lattice in the weight lattice. �X�Q�=1.

The standard invariant form on H�.〈
hi�hj

〉=Aij�

The standard invariant form on H∗�.〈
�i��j

〉=Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=60.
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NAME F4

Dynkin diagram with labelling.

1 2 3 4

Cartan matrix

1 2 3 4

1

2

3

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0

−1 2 −1 0

0 −2 2 −1
0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Dimension. dimL=52.

Coxeter number. h=12.

Order of the Weyl group. �W �=27 ·32.
Degrees of the basic polynomial invariants of W .


d1�d2�d3�d4�= 
2�6�8�12��
Number of roots. ���=48.

The fundamental roots in terms of an orthogonal basis.

�1=�1−�2� �2=�2−�3� �3=�3� �4= 1
2 �−�1−�2−�3+�4� �

The root system. �=�l∪�s where

�l =
{±�i±�j  i� j=1�2�3�4 i 	= j}

�s = 
±�i i=1�2�3�4�∪
{

1
2

4∑
i=1

 i�i   i=±1
}
�

The highest root. �l=�1+�4.

The highest short root. �s=�4.

The extended Dynkin diagram.
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The root lattice Q=∑��i.

Q=
{

4∑
i=1

�i�i  2�i ∈�� �i−�j ∈� i� j=1�2�3�4

}
�

The fundamental weights.

!1 = �1+�4

!2 = �1+�2+2�4

!3 = 1
2 ��1+�2+�3+3�4�

!4 = �4�

The index of the root lattice in the weight lattice. �X�Q�=1.

The symmetrising matrix D=diag �di�.

d1=1� d2=1� d3=2� d4=2�

The standard invariant form on H�.〈
hi�hj

〉=Aijdj�

The standard invariant form on H∗�.〈
�i��j

〉=d−1i Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=18.
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NAME G2

Dynkin diagram with labelling.

1 2

Cartan matrix

1 2

1

2

⎛⎜⎝ 2 −1
−3 2

⎞⎟⎠
Dimension. dimL=14.

Coxeter number. h=6.

Order of the Weyl group. �W �=12.

Degrees of the basic polynomial invariants of W .


d1�d2�= 
2�6��
Number of roots. ���=12.

The fundamental roots in terms of an orthogonal basis.

�1��2��3 orthogonal basis�

�1=−2�1+�2+�3� �2=�1−�2�

The root system. �=�l∪�s where

�l = 
± �−2�1+�2+�3� � ± ��1−2�2+�3� � ± ��1+�2−2�3��

�s = 
± ��1−�2� � ± ��2−�3� � ± ��1−�3�� �

The highest root. �l=−�1−�2+2�3.

The highest short root. �s=−�2+�3.

The extended Dynkin diagram.

The root lattice Q=∑��i.

Q=
{

3∑
i=1

�i�i  �i ∈�� �1+�2+�3=0

}
�
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The fundamental weights.

!1 =−�1−�2+2�3

!2 =−�2+�3�

The index of the root lattice in the weight lattice. �X�Q�=1.

The symmetrising matrix D=diag �di�.

d1=1� d2=3�

The standard invariant form on H�.〈
hi�hj

〉=Aijdj�

The standard invariant form on H�
∗.〈

�i��j

〉=d−1i Aij�

The Killing form on H�.

�x� y�K=
1
b
�x� y�

where b=8.
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DYNKIN NAME Ã1 KAC NAME Ã1

Dynkin diagram with labelling.

0 1

Generalised Cartan matrix.

0 1

0

1

⎛⎜⎝ 2 −2
−2 2

⎞⎟⎠
The integers a0� a1� � � � � al.

1 1

The integers c0� c1� � � � � cl.

1 1

The central element c.

c=h0+h1�

The basic imaginary root �.

�=�0+�1�

The element h� ∈H0
�.

h�=h1�

The element �∈ (H0
�

)∗
.

�=�1�

The Coxeter number. h=2.

The dual Coxeter number. hv=2.

The Lie algebra L0. L0=A1.

The lattice M⊂H0
�.

M=�h1�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1�

The fundamental alcove A⊂H0
�.

A={h∈H0
�  �1�h�>0� �1�h�<1

}
�

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ ={�∈ (H0
�

)∗
 � �h1�>0� � �h1�<1

}
�

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 1�

The fundamental weights !i ∈H∗� i=0�1 in terms of the fundamental
weights !̄i, i=1, of L0.

!0=�� !1= !̄1+��
The standard invariant form on H .〈

hi�hj
〉= Aij i� j=0�1

�h0�d� = 1� �h1�d�=0

�d�d� = 0�

The standard invariant form on H∗.〈
�i��j

〉= Aij i� j=0�1

��0� �� = 1� ��1� ��=0

����� = 0�
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DYNKIN NAME Ã′1 KAC NAME 2Ã2
(1st description)

Dynkin diagram with labelling.

0 1

Generalised Cartan matrix.

0 1

0

1

⎛⎜⎝ 2 −1
−4 2

⎞⎟⎠
The integers a0� a1� � � � � al.

1 2

The integers c0� c1� � � � � cl.

2 1

The central element c.

c=2h0+h1�

The basic imaginary root �.

�=�0+2�1�

The element h� ∈H0
�.

h�= 1
2h1�

The element �∈ (H0
�

)∗
�=2�1�

The Coxeter number. h=3.

The dual Coxeter number. hv=3.

The Lie algebra L0. L0=A1.

The lattice M⊂H0
�.

M= 1
2�h1�
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The lattice M∗ ⊂ (H0
�

)∗
M∗ =��1�

The fundamental alcove A⊂H0
�.

A={h∈H0
�  �1�h�>0� 2�1�h�<1

}
�

The fundamental alcove A∗ ⊂ (H0
�

)∗
A∗ ={�∈ (H0

�

)∗
 � �h1�>0� � �h1�<1

}
�

The root system � in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0� r ∈�}

�Re�l=
{
2�+�2r+1��  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 1�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=2�� !1= !̄1+��
The standard invariant form on H .〈

hi�hj
〉=ajc−1j Aij i� j=0�1

�h0�d�= 1
2 � �h1�d�=0

�d�d�=0�

The standard invariant form on H∗〈
�i��j

〉=a−1i ciAij i� j=0�1

��0� ��=2� ��1� ��=0

�����=0�
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DYNKIN NAME Ã′1 KAC NAME 2Ã2
(2nd description)

Dynkin diagram with labelling.

0 1

Generalised Cartan matrix.

0 1
0
1

(
2 −4
−1 2

)
The integers a0� a1� � � � � al.

2 1

The integers c0� c1� � � � � cl.

1 2

The central element c.

c=h0+2h1�

The basic imaginary root �.

�=2�0+�1�

The element h� ∈H0
�.

h�=h1�

The element �∈ (H0
�

)∗
.

�=�1�

The Coxeter number. h=3.

The dual Coxeter number. hv=3.

The Lie algebra L0� L0=A1.

The lattice M⊂H0
�.

M=�h1�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ = 1
2��1�

The fundamental alcove A⊂H0
�.

A={h∈H0
�  �1�h�>0� �1�h�<1

}
�

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ ={�∈ (H0
�

)∗
 � �h1�>0� 2��h1�<1

}
�

The root system � in terms of the root system �0 of L0.

�Re�s=
{
1
2 ��+�2r−1���  �∈�0� r ∈�}

�Re�l=
{
�+2r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 1�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=�� !1= !̄1+2��

The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1

�h0�d�=2� �h1�d�=0

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1

��0� ��= 1
2 � ��1� ��=0

�����=0�
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DYNKIN NAME Ãl KAC NAME Ãl l≥2

Dynkin diagram with labelling.

0

1 2 l–1 l

Generalised Cartan matrix.

0 1 2 � � � l−1 l

0

1

2

·
·
·

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 ·
· · ·

· · ·
· · ·
· 2 −1
−1 2 −1

−1 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1

1 1 1 1 1 1 1 1

The integers c0� c1� � � � � cl.

1

1 1 1 1 1 1 1 1
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The central element c.

c=h0+h1+· · ·+hl−1+hl�
The basic imaginary root �.

�=�0+�1+· · ·+�l−1+�l�

The element h� ∈H0
�.

h�=h1+h2+· · ·+hl−1+hl�
The element �∈ (H0

�

)∗
.

�=�1+�2+· · ·+�l−1+�l�

The Coxeter number. h= l+1.

The dual Coxeter number. hv= l+1.

The Lie algebra L0� L0=Al.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

�1�h�+�2�h�+· · ·+�l−1�h�+�l�h�<1�

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+��h2�+· · ·+��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i� i=1� � � � � l of L0.

!0=�� !1= !̄1+�� !2= !̄2+�� � � � � !l−1= !̄l−1+�� !l= !̄l+��
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The standard invariant form on H .〈
hi�hj

〉=Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME B̃l KAC NAME B̃l l≥3

Dynkin diagram with labelling.

1 2 3 l–1 l

0

Generalised Cartan matrix.

0 1 2 3 · · · l−1 l

0

1

2

3

·
·
·

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
2 −1

−1 −1 2 −1
−1 2 �

. . .

. . .

.
2 −1
−1 2 −1

−2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The integers a0� a1� � � � � al.

2 2 2 2 2 2 2 2

1

1

The integers c0� c1� � � � � cl.

2 2 2 2 2 2 2 1

1

1

The central element c.

c=h0+h1+2h2+2h3+· · ·+2hl−1+hl�
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The basic imaginary root �.

�=�0+�1+2�2+2�3+· · ·+2�l−1+2�l�

The element h� ∈H0
�.

h�=h1+2h2+2h3+· · ·+2hl−1+hl�
The element �∈ (H0

�

)∗
.

�=�1+2�2+2�3+· · ·+2�l−1+2�l�

The Coxeter number. h=2l.

The dual Coxeter number. hv=2l−1.

The Lie algebra L0� L0=Bl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+2��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

�1�h�+2�2�h�+2�3�h�+· · ·+2�l−1�h�+2�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+2��h2�+2��h3�+· · ·+2��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re =
{
�+r�  �∈�0� r ∈�}

�Im = 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗� i=0� � � � � l in terms of the fundamental
weights !̄i� i=1� � � � � l of L0.

!0=�� !1= !̄1+�� !2= !̄2+2�� � � � �!l−1= !̄l−1+2�� !l= !̄l+��
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The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME B̃t
l KAC NAME 2Ã2l−1 l≥3

Dynkin diagram with labelling.

2 31 l–1 l

0

Generalised Cartan matrix.

0 1 2 3 · · · l−1 l

0

1

2

3

·
·
·

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
2 −1

−1 −1 2 −1
−1 2 ·

. . .

. . .

.
2 −1
−1 2 −2
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The integers a0� a1� � � � � al.

1

2 2 2 2 2 2 2 11

The integers c0� c1� � � � � cl.

1

2 2 2 2 2 2 2 21

The central element c.

c=h0+h1+2h2+2h3+· · ·+2hl−1+2hl�
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The basic imaginary root �.

�=�0+�1+2�2+2�3+· · ·+2�l−1+�l�

The element h� ∈H0
�.

h�=h1+2h2+2h3+· · ·+2hl−1+2hl�

The element �∈ (H0
�

)∗
.

�=�1+2�2+2�3+· · ·+2�l−1+�l�

The Coxeter number. h=2l−1.

The dual Coxeter number. hv=2l.

The Lie algebra L0. L0=Cl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+2�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

�1�h�+2�2�h�+2�3�h�+· · ·+2�l−1�h�+�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+2��h2�+2��h3�+· · ·+2��hl−1�+2��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0

s � r ∈�
}

�Re�l=
{
�+2r�  �∈�0

l � r ∈�
}
�

�Im= 
2k�  k∈�� k 	=0� Multiplicity l

∪ 
�2k+1��  k∈�� Multiplicity l−1�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !i� i=1� � � � � l of L0.

!0=�� !1=!1+�� !2=!2+2�� � � � �

!l−1=!l−1+2�� !l=!l+2��
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l KAC NAME 2Ã2l−1 l≥3 575

The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME C̃l KAC NAME C̃l l≥2

Dynkin diagram with labelling.

10 2 l–1l–2 l

Generalised Cartan matrix

0 1 2 · · · l−2 l−1 l

0

1

2

·
·
·

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−2 2 −1

−1 2 ·
· · ·

· · ·
· · ·
· 2 −1
−1 2 −2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al

21 2 2 2 2 2 2 1

The integers c0� c1� � � � � cl

11 1 1 1 1 1 1 1

The central element c.

c=h0+h1+h2+· · ·+hl−1+hl�
The basic imaginary root �.

�=�0+2�1+2�2+· · ·+2�l−1+�l�

The element h� ∈H0
�.

h�=h1+h2+· · ·+hl−1+hl�
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The element �∈ (H0
�

)∗
.

�=2�1+2�2+· · ·+2�l−1+�l�

The Coxeter number. h=2l.

The dual Coxeter number. hv= l+1.

The Lie algebra L0. L0=Cl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =2��1+2��2+· · ·+2��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

2�1�h�+2�2�h�+· · ·+2�l−1�h�+�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+��h2�+· · ·+��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=�� !1= !̄1+�� !2= !̄2+�� � � � � !l−1= !̄l−1+�� !l= !̄l+��
The standard invariant form on H .〈

hi�hj
〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�
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The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME C̃ t
l KAC NAME 2D̃l+1 l≥2

Dynkin diagram with labelling.

10 2 l – 1l – 2 l

Generalised Cartan matrix.

0 1 2 · · · l−2 l−1 l

0

1

2

·
·
·

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2
−1 2 −1

−1 2 ·
. . .

. . .

. . .

� 2 −1
−1 2 −1

−2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 11 1 1 1 1 1 1 1

The integers c0� c1� � � � � cl.

2 21 2 2 2 2 2 2 1

The central element c.

c=h0+2h1+2h2+· · ·+2hl−1+hl�
The basic imaginary root �.

�=�0+�1+�2+· · ·+�l−1+�l�
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The element h� ∈H0
�.

h�=2h1+2h2+· · ·+2hl−1+hl�
The element �∈ (H0

�

)∗
.

�=�1+�2+· · ·+�l−1+�l�

The Coxeter number. h= l+1.

The dual Coxeter number. hv=2l.

The Lie algebra L0. L0=Bl.

The lattice M⊂H0
�.

M=2�h1+2�h2+· · ·+2�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

�1�h�+�2�h�+· · ·+�l−1�h�+�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

2��h1�+2��h2�+· · ·+2��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0

s � r ∈�
}

�Re�l=
{
�+2r�  �∈�0

l � r ∈�
}
�

�Im= 
2k�  k∈�� k 	=0� Multiplicity l

∪ 
�2k+1��  k∈�� Multiplicity 1�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i� i=1� � � � � l of L0.

!0=�� !1= !̄1+2�� !2= !̄2+2�� � � � �!l−1= !̄l−1+2�� !l= !̄l+��
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The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME C̃ ′l KAC NAME 2Ã2l l≥2
(1st description)

Dynkin diagram with labelling.

10 2 l – 1 l

Generalised Cartan matrix.

0 1 2 · · · l−2 l−1 l

0

1

2

·
·
·

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2
−1 2 −1

−1 2 ·
· · ·
· · ·
· · ·
· 2 −1

−1 2 −2
−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The integers a0� a1� � � � � al.

2 22 2 2 2 2 2 2 1

The integers c0� c1� � � � � cl.

2 21 2 2 2 2 2 2 2

The central element c.

c=h0+2h1+2h2+· · ·+2hl−1+2hl�

The basic imaginary root �.

�=2�0+2�1+2�2+· · ·+2�l−1+�l�
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The element h� ∈H0
�.

h�=h1+h2+· · ·+hl−1+hl�
The element �∈ (H0

�

)∗
.

�=2�1+2�2+· · ·+2�l−1+�l�

The Coxeter number. h=2l+1.

The dual Coxeter number. hv=2l+1.

The Lie algebra L0. L0=Cl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+ 1
2��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

2�1�h�+2�2�h�+· · ·+2�l−1�h�+�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

2��h1�+2��h2�+· · ·+2��hl−1�+2��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re�s=
{
1
2 ��+�2r−1���  �∈�0

l � r ∈�
}

�Re�i=
{
�+r�  �∈�0

s � r ∈�
}

�Re�l=
{
�+2r�  �∈�0

l � r ∈�
}

�Im= 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=�� !1= !̄1+2�� !2= !̄2+2�� � � � �

!l−1= !̄l−1+2�� !l= !̄l+2��
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The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�=2� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��= 1
2 � ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME C̃ ′l KAC NAME 2Ã2l l≥2
(2nd description)

Dynkin diagram with labelling.

10 2 l – 1 l

Generalised Cartan matrix.

0 1 2 · · · l−2 l−1 l

0

1

2

·
·
·

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−2 2 −1

−1 2 ·
. . .

. . .

. . .

.
2 −1
−1 2 −1

−2 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

2 21 2 2 2 2 2 2 2

The integers c0� c1� � � � � cl.

2 22 2 2 2 2 2 2 1

The central element c.

c=2h0+2h1+2h2+· · ·+2hl−1+hl�
The basic imaginary root �.

�=�0+2�1+2�2+· · ·+2�l−1+2�l�
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The element h� ∈H0
�.

h�=h1+h2+· · ·+hl−1+ 1
2hl�

The element �∈ (H0
�

)∗
.

�=2�1+2�2+· · ·+2�l−1+2�l�

The Coxeter number. h=2l+1.

The dual Coxeter number. hv=2l+1.

The Lie algebra L0� L0=Bl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+ 1
2�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

2�1�h�+2�2�h�+· · ·+2�l−1�h�+2�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

2��h1�+2��h2�+· · ·+2��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0

s � r ∈�
}

�Re�i=
{
�+r�  �∈�0

l � r ∈�
}

�Re�l=
{
2�+�2r+1��  �∈�0

s � r ∈�
}

�Im= 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗� i=0�1� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=2�� !1= !̄1+2�� !2= !̄2+2�� � � � �

!l−1= !̄l−1+2�� !l= !̄l+��
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The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1� � � � � l

�h0�d�= 1
2 � �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1� � � � � l

��0� ��=2� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME D̃4 KAC NAME D̃4

Dynkin diagram with labelling.

0

1

3

4
2

Generalised Cartan matrix.

0 1 2 3 4
0
1
2
3
4

⎛⎜⎜⎜⎜⎜⎝
2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

⎞⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1

1

1

1

2

The integers c0� c1� � � � � cl.

1 1

11

2

The central element c.

c=h0+h1+2h2+h3+h4�

The basic imaginary root �.

�=�0+�1+2�2+�3+�4�

The element h� ∈H0
�.

h�=h1+2h2+h3+h4�

The element �∈ (H0
�

)∗
.

�=�1+2�2+�3+�4�

The Coxeter number. h=6.

The dual Coxeter number. hv=6.
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The Lie algebra L0� L0=D4.

The lattice M⊂H0
�.

M=�h1+�h2+�h3+�h4�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+��3+��4�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �4

�1�h�+2�2�h�+�3�h�+�4�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+2��h2�+��h3�+��h4�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 4�

The fundamental weights !i ∈H∗� i=0�1� � � � l in terms of the fundamental
weights !i i=1� � � � � l of L0.

!0=�� !1= !̄1+�� !2= !̄2+2�� !3= !̄3+�� !4= !̄4+��
The standard invariant form on H .〈

hi�hj
〉=Aij i� j=0�1�2�3�4

�h0�d�=1� �hi�d�=0 i=1�2�3�4

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0�1�2�3�4

��0� ��=1� ��i���=0 i=1�2�3�4

�����=0�
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DYNKIN NAME D̃l KAC NAME D̃l l≥5

Dynkin diagram with labelling.

1 2 3 l – 3 l – 2

l – 1

l

0

Generalised Cartan matrix.

0 1 2 3 · · · l−3 l−2 l−1 l

0

1

2

3

·
·
·

l−3

l−2

l−1

l

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
2 −1

−1 −1 2 −1
−1 2 ·

· · ·
· · ·
· · ·
· 2 −1
−1 2 −1 −1

−1 2

−1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The integers a0� a1� � � � � al.

1

2 2 2 2 2 2 2 21

1

1

The integers c0� c1� � � � � cl.

1

2 2 2 2 2 2 2 21

1

1
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The central element c.

c=h0+h1+2h2+2h3+· · ·+2hl−2+hl−1+hl�
The basic imaginary root �.

�=�0+�1+2�2+2�3+· · ·+2�l−2+�l−1+�l�

The element h� ∈H0
�.

h�=h1+2h2+2h3+· · ·+2hl−2+hl−1+hl�
The element �∈ (H0

�

)∗
.

�=�1+2�2+2�3+· · ·+2�l−2+�l−1+�l�

The Coxeter number. h=2l−2.

The dual Coxeter number. hv=2l−2.

The Lie algebra L0� L0=Dl.

The lattice M⊂H0
�.

M=�h1+�h2+· · ·+�hl−1+�hl�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+· · ·+��l−1+��l�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � � l

�1�h�+2�2�h�+2�3�h�+· · ·+2�l−2�h�+�l−1�h�+�l�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � � l

� �h1�+2��h2�+2��h3�+· · ·+2��hl−2�+��hl−1�+��hl�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity l�

The fundamental weights !i ∈H∗�� i=0�1� � � � � l in terms of the fundamen-
tal weights !̄i� i=1� � � � � l of L0.

!0=�� !1= !̄1+�� !2= !̄2+2�� � � � �

!l−2= !̄l−2+2�� !l−1= !̄l−1+�� !l= !̄l+��
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The standard invariant form on H .〈
hi�hj

〉=Aij i� j=0�1� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0�1� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME Ẽ6 KAC NAME Ẽ6

Dynkin diagram with labelling.

1 2 3

4

0

5 6

Generalised Cartan matrix.

0 1 2 3 4 5 6
0
1
2
3
4
5
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 −1 0 0
0 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 −1 0
−1 0 0 −1 2 0 0
0 0 0 −1 0 2 −1
0 0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 2 3

2

1

2 1

The integers c0� c1� � � � � cl.

1 2 3

2

1

2 1

The central element c.

c=h0+h1+2h2+3h3+2h4+2h5+h6�

The basic imaginary root �.

�=�0+�1+2�2+3�3+2�4+2�5+�6�
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The element h� ∈H0
�.

h�=h1+2h2+3h3+2h4+2h5+h6�

The element �∈ (H0
�

)∗
.

�=�1+2�2+3�3+2�4+2�5+�6�

The Coxeter number. h=12.

The dual Coxeter number. hv=12.

The Lie algebra L0� L0=E6.

The lattice M⊂H0
�.

M=�h1+�h2+�h3+�h4+�h5+�h6�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+��3+��4+��5+��6�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �6

�1�h�+2�2�h�+3�3�h�+2�4�h�+2�5�h�+�6�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � �6

��h1�+2��h2�+3��h3�+2��h4�+2��h5�+��h6�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 6�

The fundamental weights !i ∈H∗�� i=0� � � � �6 in terms of the fundamental
weights !̄i� i=1� � � � �6 of L0.

!0=�� !1= !̄1+�� !2= !̄2+2�� !3= !̄3+3��

!4= !̄4+2�� !5= !̄5+2�� !6= !̄6+��
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The standard invariant form on H .〈
hi�hj

〉=Aij i� j=0� � � � �6

�h0�d�=1� �hi�d�=0 i=1� � � � �6

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0� � � � �6

��0� ��=1� ��i���=0 i=1� � � � �6

�����=0�
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DYNKIN NAME Ẽ7 KAC NAME Ẽ7

Dynkin diagram with labelling.

1 2 3

5

4 6 7 0

Generalised Cartan matrix.

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 −1
0 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 −1 0
0 0 0 0 −1 2 0 0
0 0 0 0 −1 0 2 −1
−1 0 0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 2 3

2

4 3 2 1

The integers c0� c1� � � � � cl.

1 2 3

2

4 3 2 1

The central element c.

c=h0+h1+2h2+3h3+4h4+2h5+3h6+2h7�

The basic imaginary root �.

�=�0+�1+2�2+3�3+4�4+2�5+3�6+2�7�
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The element h� ∈H0
�.

h�=h1+2h2+3h3+4h4+2h5+3h6+2h7�

The element �∈ (H0
�

)∗
.

�=�1+2�2+3�3+4�4+2�5+3�6+2�7�

The Coxeter number. h=18.

The dual Coxeter number. hv=18.

The Lie algebra L0. L0=E7.

The lattice M⊂H0
�.

M=�h1+�h2+�h3+�h4+�h5+�h6+�h7�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+��3+��4+��5+��6+��7�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �7

�1�h�+2�2�h�+3�3�h�+4�4�h�+2�5�h�+3�6�h�+2�7�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � �7

��h1�+2��h2�+3��h3�+4��h4�+2��h5�+3��h6�+2��h7�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 7�

The fundamental weights !i ∈H∗�, i=0� � � � �7 in terms of the fundamental
weights !̄i, i=1� � � � �7 of L0.

!0=�� !1= !̄1+�� !2= !̄2+2�� !3= !̄3+3�� !4= !̄4+4��

!5= !̄5+2�� !6= !̄6+3�� !7= !̄7+2��
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The standard invariant form on H .〈
hi�hj

〉=Aij i� j=0� � � � �7

�h0�d�=1� �hi�d�=0 i=1� � � � �7

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0� � � � �7

��0� ��=1� ��i���=0 i=1� � � � �7

�����=0�
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DYNKIN NAME Ẽ8 KAC NAME Ẽ8

Dynkin diagram with labelling.

0 1 2

6

3 4 5 7 8

Generalised Cartan matrix.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 0
0 0 0 0 −1 2 −1 −1 0
0 0 0 0 0 −1 2 0 0
0 0 0 0 0 −1 0 2 −1
0 0 0 0 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 2 3

3

4 5 6 4 2

The integers c0� c1� � � � � cl.

1 2 3

3

4 5 6 4 2

The central element c.

c=h0+2h1+3h2+4h3+5h4+6h5+3h6+4h7+2h8�

The basic imaginary root �.

�=�0+2�1+3�2+4�3+5�4+6�5+3�6+4�7+2�8�
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The element h� ∈H0
�.

h�=2h1+3h2+4h3+5h4+6h5+3h6+4h7+2h8�

The element �∈ (H0
�

)∗
.

�=2�1+3�2+4�3+5�4+6�5+3�6+4�7+2�8�

The Coxeter number. h=30.

The dual Coxeter number. hv=30.

The Lie algebra L0. L0=E8.

The lattice M⊂H0
�.

M=�h1+�h2+�h3+�h4+�h5+�h6+�h7+�h8�

The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+��3+��4+��5+��6+��7+��8�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �8

2�1�h�+3�2�h�+4�3�h�+5�4�h�+6�5�h�

+3�6�h�+4�7�h�+2�8�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � �8

2��h1�+3��h2�+4��h3�+5��h4�+6��h5�

+3��h6�+4��h7�+2��h8�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 8�

The fundamental weights !i ∈H∗�, i=0� � � � �8 in terms of the fundamental
weights !̄i, i=1� � � � �8 of L0.

!0=�� !1= !̄1+2�� !2= !̄2+3�� !3= !̄3+4�� !4= !̄4+5��

!5= !̄5+6�� !6= !̄6+3�� !7= !̄7+4�� !8= !̄8+2��
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The standard invariant form on H .〈
hi�hj

〉=Aij i� j=0� � � � �8

�h0�d�=1� �hi�d�=0 i=1� � � � �8

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=Aij i� j=0� � � � �8

��0� ��=1� ��i���=0 i=1� � � � �8

�����=0�
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DYNKIN NAME F̃4 KAC NAME F̃4

Dynkin diagram with labelling.

0 1 2 3 4

Generalised Cartan matrix.

0 1 2 3 4
0
1
2
3
4

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −2 2 −1
0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 2 3 4 2

The integers c0� c1� � � � � cl.

1 2 3 2 1

The central element c.

c=h0+2h1+3h2+2h3+h4�

The basic imaginary root �.

�=�0+2�1+3�2+4�3+2�4�

The element h0 ∈H0
�.

h�=2h1+3h2+2h3+h4�

The element �∈ (h0
�

)∗
.

�=2�1+3�2+4�3+2�4�

The Coxeter number. h=12.

The dual Coxeter number. hv=9.

The Lie algebra L0. L0=F4.

The lattice M⊂H0
�.

M=�h1+�h2+�h3+�h4�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+2��3+2��4�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �4

2�1�h�+3�2�h�+4�3�h�+2�4�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
A∗ = {

�∈ (H0
�

)∗
 � �hi�>0 for i=1� � � � �4

2 ��h1�+3��h2�+2��h3�+��h4�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 4�

The fundamental weights !i ∈H∗� i=0� � � � � l in terms of the fundamental
weights !i� i=1� � � � � l of L0.

!0=�� !1=!1+2�� !2=!2+3�� !3=!3+2�� !4=!4+��
The standard invariant form on H .〈

hi�hj
〉=ajc−1j Aij i� j=0� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME F̃ t
4 KAC NAME 2Ẽ6

Dynkin diagram with labelling.

0 1 2 3 4

Generalised Cartan matrix.

0 1 2 3 4
0
1
2
3
4

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −2 0
0 0 −1 2 −1
0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎠
The integers a0� a1� � � � � al.

1 2 3 2 1

The integers c0� c1� � � � � cl.

1 2 3 4 2

The central element c.

c=h0+2h1+3h2+4h3+2h4�

The basic imaginary root �.

�=�0+2�1+3�2+2�3+�4�

The element h� ∈H0
�.

h�=2h1+3h2+4h3+2h4�

The element �∈ (H0
�

)∗
.

�=2�1+3�2+2�3+�4�

The Coxeter number. h=9.

The dual Coxeter number. hv=12.

The Lie algebra L0. L0=F4.

The lattice M⊂H0
�.

M=�h1+�h2+2�h3+2�h4�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2+��3+��4�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1� � � � �4

2�1�h�+3�2�h�+2�3�h�+�4�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1� � � � �4

2��h1�+3��h2�+4��h3�+2��h4�<1� �

The root system � in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0

s � r ∈�
}

�Re�l=
{
�+2r�  �∈�0

l � r ∈�
}

�Im= 
2k�  k∈�� k 	=0� Multiplicity 4

∪ 
�2k+1��  k∈�� Multiplicity 2�

The fundamental weights !i ∈H∗� i=0� � � � � l in terms of the fundamental
weights !i� i=1� � � � � l of L0.

!0=�� !1=!1+2�� !2=!2+3�� !3=!3+4�� !4=!4+2��

The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0� � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � l

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0� � � � � l

��0� ��=1� ��i���=0 i=1� � � � l

�����=0�
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DYNKIN NAME G̃2 KAC NAME G̃2

Dynkin diagram with labelling.

10 2

Generalised Cartan matrix.

0 1 2
0
1
2

⎛⎝ 2 −1 0
−1 2 −1
0 −3 2

⎞⎠
The integers a0� a1� � � � � al.

21 3

The integers c0� c1� � � � � cl.

21 1

The central element c.

c=h0+2h1+h2�

The basic imaginary root �.

�=�0+2�1+3�2�

The element h� ∈H0
�.

h�=2h1+h2�

The element �∈ (H0
�

)∗
.

�=2�1+3�2�

The Coxeter number. h=6.

The dual Coxeter number. hv=4.

The Lie algebra L0� L0=G2.

The lattice M⊂H0
�.

M=�h1+�h2�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+3��2�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1�2

2�1�h�+3�2�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1�2

2��h1�+��h2�<1� �

The root system � in terms of the root system �0 of L0.

�Re=
{
�+r�  �∈�0� r ∈�}

�Im= 
k�  k∈�� k 	=0� Multiplicity 2�

The fundamental weights !i ∈H∗� i=0� � � � � l in terms of the fundamental
weights !̄i� i=1� � � � � l of L0.

!0=�� !1= !̄1+2�� !2= !̄2+��
The standard invariant form on H .〈

hi�hj
〉=ajc−1j Aij i� j=0� � � � � l

�h0�d�=1� �hi�d�=0 i=1� � � � � l

�d�d�=0�

The standard invariant form on H∗〈
�i��j

〉=a−1i ciAij i� j=0� � � � � l

��0� ��=1� ��i���=0 i=1� � � � � l

�����=0�
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DYNKIN NAME G̃t
2 KAC NAME 3D̃4

Dynkin diagram with labelling.

10 2

Generalised Cartan matrix.

0 1 2
0
1
2

⎛⎝ 2 −1 0
−1 2 −3
0 −1 2

⎞⎠
The integers a0� a1� � � � � al.

21 1

The integers c0� c1� � � � � cl.

21 3

The central element c.

c=h0+2h1+3h2�

The basic imaginary root �.

�=�0+2�1+�2�

The element h� ∈H0
�.

h�=2h1+3h2�

The element �∈ (H0
�

)∗
.

�=2�1+�2�

The Coxeter number. h=4.

The dual Coxeter number. hv=6.

The Lie algebra L0. L0=G2.

The lattice M⊂H0
�.

M=�h1+3�h2�
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The lattice M∗ ⊂ (H0
�

)∗
.

M∗ =��1+��2�

The fundamental alcove A⊂H0
�.

A= {
h∈H0

�  �i�h�>0 for i=1�2

2�1�h�+�2�h�<1� �

The fundamental alcove A∗ ⊂ (H0
�

)∗
.

A∗ = {
�∈ (H0

�

)∗
 � �hi�>0 for i=1�2

2��h1�+3��h2�<1� �

The root system �0 in terms of the root system �0 of L0.

�Re�s=
{
�+r�  �∈�0

s � r ∈�
}

�Re�l=
{
�+3r�  �∈�0

l � r ∈�
}

�Im= 
3k�  k∈�� k 	=0� Multiplicity 2

∪ 
�3k+1��  k∈�� Multiplicity 1

∪ 
�3k+2��  k∈�� Multiplicity 1�

The fundamental weights !i ∈H∗� i=0� � � � � l in terms of the fundamental
weights !̄i i=1� � � � � l of L0.

!0=�� !1= !̄1+2�� !2= !̄2+3��

The standard invariant form on H .〈
hi�hj

〉=ajc−1j Aij i� j=0�1�2

�h0�d�=1� �hi�d�=0 i=1�2

�d�d�=0�

The standard invariant form on H∗.〈
�i��j

〉=a−1i ciAij i� j=0�1�2

��0� ��=1� ��i���=0 i=1�2

�����=0�



Notation

Symbol Meaning Page of definition

�xy� Lie product of elements 1
�HK� Lie product of subspaces 1
�A� the Lie algebra of an associative

algebra A 2
v⊗v′ tensor product 152
v∧v′ exterior product 271
�� � the Killing form on a finite

dimensional Lie algebra 39
�� � the standard invariant form on a

Kac–Moody algebra 367
�� �t a bilinear form on the loop algebra 418
�� �0 a contravariant form 520

� � a symmetric scalar product 121
" partial order on weights 185
�V � L���� the multiplicity of L��� in V 459
a0� a1� � � � � al vector associated with an affine

Cartan matrix 386
ad x the adjoint map 7
A= (Aij

)
a Cartan matrix 71

A= (Aij

)
a generalised Cartan matrix (GCM) 319

AJ a principal minor of A 344
A0 the underlying Cartan matrix of an

affine Cartan matrix A 394
A the fundamental alcove 410

610



Notation 611

Symbol Meaning Page of definition

Ā the closure of the fundamental
alcove 413

A∗ the fundamental alcove in the dual
space 415

A∗ the closure of the fundamental dual
alcove 415

� the set of alcoves 411
B the subalgebra H⊕N 177
c the Casimir element 238
c the canonical central element 391
c0� c1� � � � � cl vector associated with an affine

Cartan matrix 388
c��� scalar action of generalised Casimir

operator 487
chV the character of an L-module V 241
chV the character of a module in

category � 459
C the fundamental chamber 112, 247, 378
C̄ closure of the fundamental chamber 247, 378
C�V� the Clifford algebra 282
C�V�+ positive part of the Clifford algebra 283
C�V�− negative part of the Clifford algebra 283
�
[
t� t−1

]
the algebra of Laurent polynomials 417

d the scaling element 388
d1� � � � � dl degrees of the basic polynomial

invariants 222
d0��� the Weyl dimension of an

L0-module 491
D= �di� a diagonal matrix 110, 390
D0 an endomorphism in the basic

representation 516
e� a root vector 88
ei a fundamental root vector 96
ei a generator of L̃�A� or L�A� 323, 332
e� a characteristic function 242
e��� the characteristic function e� 487
Ei a generator of L0 421
fi a root vector for −�i 96



612 Notation

Symbol Meaning Page of definition

fi a generator of L̃�A� or L�A� 323, 332
Fi a generator of L0 421
FL�X� the free Lie algebra on a set X 161
��n�k� the general linear Lie algebra of

degree n over k 5
G the adjoint group 207
h the Coxeter number of a simple

Lie algebra 252
h the Coxeter number of an affine

algebra 485
hv the dual Coxeter number of an

affine algebra 485
hi a fundamental coroot 88, 320
h� the coroot of the root � 89, 397
h′� the element of H corresponding to

� in H∗ 46
h� the coroot of � 405
h��n� an endomorphism of the basic

module 513
h�0� an endomorphism of the basic

module 515
ht � the height of a root � 62
H a Cartan subalgebra of a Lie algebra 23
H a Cartan subalgebra of a

Kac–Moody algebra 334
H∗ the dual space of H 46
H� a rational vector space in H 56
H� a real vector space in H 56
H∗� the dual space of H� 57
Hi a generator of L0 421
Hi a hyperplane 112
H+i the positive side of hyperplane Hi 112
H−i the negative side of hyperplane Hi 112
H̃ the diagonal subalgebra of L̃ 324
I the kernel of the map from L̃�A� to

L�A� 105, 331
I+ the positive subspace of I 105, 479
I− the negative subspace of I 105, 479
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Symbol Meaning Page of definition

J an orbit 166
J��� the maximal submodule of M��� 185, 455
j�$� the modular j-function 533
K a set of positive imaginary roots 380
K� the kernel of the map from ��L� to

M��� 178
KA the set of vectors u with Au≥0 339
� the generalised partition function 473
l the rank of L 59
l�w� the length of w 63
L a Lie algebra 1
Ln a power of the Lie algebra L 7
L�n� a power of the Lie algebra L 8
L0�x the null component of x in L 23
L� a root space of L 36, 333
L�X�R� the Lie algebra with generators X

and relations R 163
L�A� the simple Lie algebra with Cartan

matrix A 99
L�A� the Kac–Moody algebra with

GCM A 331
L�A�′ the derived subalgebra of the

Kac–Moody algebra L�A� 335
L̃�A� a Lie algebra associated with Cartan

matrix A 99
L̃�A� a Lie algebra associated with

GCM A 323,
L�A�� the fixed point subalgebra of � on

L�A� 166
L��� the irreducible module with highest

weight � 186, 455, 525
L̃� a root space of L̃�A� 328
L0 the simple Lie algebra with Cartan

matrix A0 416
L� a reflecting hyperplane 246
L��k an affine hyperplane 409
L��1 a wall of the fundamental alcove 409
L0�L1� � � � �Ll the walls of the fundamental alcove 412



614 Notation

Symbol Meaning Page of definition


 a set of affine hyperplanes 409

∗ a set of affine hyperplanes in the

dual space 414


(
L0
)

the loop algebra of L0 417

̃
(
L0
)

a central extension of the loop
algebra 420


̂
(
L0
)

realisation of an untwisted
Kac–Moody algebra 420


̂
(
L0
)$

realisation of a twisted Kac–Moody
algebra 432

m� a highest weight vector in a Verma
module 180, 452

m� multiplicity of a root � 454
M a lattice 407
M∗ a lattice in the dual space 413
M��� a Verma module 178, 452
M⊥ the orthogonal subspace of a

subspace M 40
� Monster Lie algebra 535
ni an automorphism of L�A� 373
n�w� the number of positive roots made

negative by w 63
N��� structure constant 89
Ñ positive subalgebra of L̃�A� 103, 324
Ñ− negative subalgebra of L̃�A� 103, 324
N positive subalgebra of L�A� 107, 331
N− negative subalgebra of L�A� 107, 331
N�H� normaliser of a subalgebra H 23
� Bernstein–Gelfand–Gelfand

category of modules 452
p�k� the number of partitions of k 507
pl�k� the number of partitions of k into

l colours 508
P�L� algebra of polynomial functions

on L 208
P�L�G G-invariant polynomial functions

on L 210
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Symbol Meaning Page of definition

P�H�W W-invariant polynomial functions
on H 211

PSL2��� the modular group 531
���� the number of partitions of � into

positive roots 182
Q the root lattice 103, 328
Q+ positive part of the root lattice 103, 328
Q− negative part of the root lattice 103, 328
Q0 root lattice of L0 404
Q�x1� � � � � xl� quadratic form 73
 a ring of functions on H∗ 242
si fundamental reflection 63, 373
s� reflection 60
s� reflection corresponding to root � 405
s��k affine reflection 410
��n��� special linear Lie algebra of degree

n over � 52
supp� support of a root � 378
Suppf support of a function f 241
S�L� symmetric algebra of L 201
S�L�G G-invariants in the symmetric

algebra of L 223
S�H�W W -invariants in the symmetric

algebra of H 223
tx a linear map on H 406
t� a linear map on H∗ 413
t�M� translation subgroup of the affine

Weyl group 407
t �M∗� translation subgroup of the affine

Weyl group 413
T�L� tensor algebra of L 152
T�V� tensor algebra of V 324
T a subalgebra of L�A� 500
T− the negative part of T 500
��L� universal enveloping algebra of L 153
��L�+ the ideal L��L� of ��L� 475
V ∗ the dual module of V 306
w0 longest element of the Weyl group 65
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Symbol Meaning Page of definition

�w0�J longest element of WJ 170
wi the weight of �i 267
W the Weyl group of a semisimple

Lie algebra 60
W the Weyl group of a Kac–Moody

algebra 373
W 0 the Weyl group of L0 394
WJ a Weyl subgroup of W 170
W� the group of �-stable elements of W 169
X the weight lattice 190, 466
X+ dominant integral weights 190, 466
X++ strictly dominant integral weights 469
Y��z� a vertex operator 514
Z�L� the centre of the enveloping algebra 226
�1� � � � ��l fundamental roots of a semisimple

Lie algebra 62
�1� � � � ��n fundamental roots of a Kac–Moody

algebra 377
�v dual root 150
� the fundamental weight !0 of an

affine algebra 389
���j� component in a vertex operator 515
� the basic imaginary root of an

affine algebra 384
� the Weyl denominator 245
� the Kac denominator 469
� the Dynkin diagram of a semisimple

Lie algebra 80
��A� the Dynkin diagram of a

Kac–Moody algebra 353
��$� Dedekind’s delta function 533
��q� Euler’s �-function 491
� the root system of a finite

dimensional Lie algebra 36
� the root system of a Kac–Moody

algebra 377
�+ set of positive roots 58, 377
�− set of negative roots 58, 377
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Symbol Meaning Page of definition

�v the dual root system of � 148
�Re the real roots in � 377
�Im the imaginary roots in � 377
�Re�s the short real roots in � 395
�Re�l the long real roots in � 395
�Re�i the intermediate real roots in � 395
�0 the root system of L0 394
�0

s the short roots in �0 400
�0

l the long roots in �0 400
�� a central character 226
�0��� an irreducible character of L0 487
#�V � the exterior algebra of V 271
#i�V � the i th exterior power of V 271
� fundamental roots of a semisimple

Lie algebra 58
� fundamental roots of a Kac–Moody

algebra 320, 334
� fundamental roots of a Borcherds

algebra 524
�v fundamental roots in �v 148
�v fundamental coroots of a

Kac–Moody algebra 320, 397
�0 fundamental roots in �0 394
�re real fundamental roots of a

Borcherds algebra 525
�im imaginary fundamental roots of a

Borcherds algebra 527
	 sum of the fundamental weights 228
	 an element satisfying 	�hi�=1 460
	 an element in Borcherds’ character

formula 526
� the element �−a0�0 404
�i an automorphism of L 108
�l the highest root 251
�s the highest short root 251
�0 an orbit representative 433
! an automorphism of L�A� 333
!̃ an automorphism of L̃�A� 323



618 Notation

Symbol Meaning Page of definition

!1� � � � �!l the fundamental weights of a simple
Lie algebra 190

!0�!1� � � � �!l the fundamental weights of an
affine Kac–Moody algebra 494

& generalised Casimir operator 461
&0 an operator on a T -module in

category � 500
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