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Preface

Lie algebras were originally introduced by S. Lie as algebraic structures
used for the study of Lie groups. The tangent space of a Lie group at the
identity element has the natural structure of a Lie algebra, called by Lie the
infinitesimal group. However, Lie algebras also proved to be of interest in
their own right. The finite dimensional simple Lie algebras over the complex
field were investigated independently by E. Cartan and W. Killing and the
classification of such algebras was achieved during the decade 1890-1900.
Basic ideas on the structure and representation theory of these Lie algebras
were also contributed at a later stage by H. Weyl. Since then the theory of
finite dimensional simple Lie algebras has found many and varied applications
both in mathematics and in mathematical physics, to the extent that it is now
generally regarded as one of the classical branches of mathematics.

In 1967 V. G. Kac and R. V. Moody independently introduced the Lie alge-
bras now known as Kac—Moody algebras. The finite dimensional simple Lie
algebras are examples of Kac—Moody algebras; but the theory of Kac—Moody
algebras is much broader, including many infinite dimensional examples.
The Kac—-Moody theory has developed rapidly since its introduction and has
also turned out to have applications in many areas of mathematics, includ-
ing among others group theory, combinatorics, modular forms, differential
equations and invariant theory. It has also proved important in mathematical
physics, where it has applications to statistical physics, conformal field theory
and string theory. The representation theory of affine Kac—Moody algebras
has been particularly useful in such applications.

In view of these applications it seems clear that the theory of Lie algebras,
of both finite and affine types, will continue to occupy a central position
in mathematics into the twenty-first century. This expectation provides the
motivation for the present volume, which aims to give a mathematically
rigorous development of those parts of the theory of Lie algebras most relevant

Xiii
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to the understanding of the finite dimensional simple Lie algebras and the
Kac—Moody algebras of affine type. A number of books on Lie algebras are
confined to the finite dimensional theory, but this seemed too restrictive for the
present volume in view of the many current applications of the Kac—Moody
theory. On the other hand the Kac—Moody theory needs a prior knowledge of
the finite dimensional theory, both to motivate it and to supply many technical
details. For this reason I have included an account both of the Cartan—Killing—
Weyl theory of finite dimensional simple Lie algebras and of the Kac—Moody
theory, concentrating particularly on the Kac—Moody algebras of affine type.
We work with Lie algebras over the complex field, although any algebraically
closed field of characteristic zero would do equally well.

I was introduced to the theory of Lie algebras by an inspiring course of
lectures given by Philip Hall at Cambridge University in the late 1950s.
I have given a number of lecture courses on finite dimensional Lie algebras at
Warwick University, and also two lecture courses on Kac-Moody algebras.
The present book has developed as a considerably expanded version of the
lecture notes of these courses. The main prerequisite for study of the book is
a sound knowledge of linear algebra. I have in fact aimed to make this the
sole prerequisite, and to explain from first principles any other techniques
which are used in the development.

The most influential book on Kac—-Moody algebras is the volume Infinite-
Dimensional Lie Algebras, third edition (1990), by V. Kac. That formidable
treatise contains a development of the Kac—Moody theory presupposing a
knowledge of the finite dimensional theory, and includes information on
several of the applications. The present volume will not rival Kac’ account
for experts on Kac—Moody algebras. About half of the theory covered in
the 3rd edition of Kac’ book has been included. However, for those new to
the Kac—-Moody theory, our account may be useful in providing a gentler
introduction, making use of ideas from the finite dimensional theory developed
earlier in the book.

The content of the book can be summarised as follows. The basic definitions
of Lie algebras, their subalgebras and ideals, representations and modules,
are given in Chapter 1. In Chapter 2 the standard results are proved on the
representation theory of soluble and nilpotent Lie algebras. The results on
representations of nilpotent Lie algebras are used extensively in the subsequent
development. The key idea of a Cartan subalgebra is introduced in Chapter 3,
where the existence and conjugacy of Cartan subalgebras are proved. We
make use of some ideas from algebraic geometry to prove the conjugacy of
Cartan subalgebras. In Chapter 4 the Killing form is introduced and used
to describe the Cartan decomposition of a semisimple Lie algebra into root
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spaces with respect to a Cartan subalgebra. The well-known example of the
special linear Lie algebra is used to illustrate the general ideas. In Chapter 5
the Weyl group is introduced and shown to be a Coxeter group. This leads on
to the definition of the Cartan matrix and the Dynkin diagram. The possible
Dynkin diagrams and Cartan matrices are classified in Chapter 6, and in
Chapter 7 the existence and uniqueness of a semisimple Lie algebra with a
given Cartan matrix are proved. In Chapter 8 the finite dimensional simple
Lie algebras are discussed individually and their root systems determined.

Chapters 9 to 13 are concerned with the representation theory of finite
dimensional semisimple Lie algebras. We begin in Chapter 9 with the intro-
duction of the universal enveloping algebra, of free Lie algebras and of Lie
algebras defined by generators and relations. The finite dimensional irre-
ducible modules for semisimple Lie algebras are obtained in Chapter 10 as
quotients of infinite dimensional Verma modules with dominant integral high-
est weight. In Chapter 11 the enveloping algebra is studied in more detail. Its
centre is shown to be isomorphic to the algebra of polynomial functions on a
Cartan subalgebra invariant under the Weyl group, and to the algebra of poly-
nomial functions on the Lie algebra invariant under the adjoint group. This
algebra is shown to be isomorphic to a polynomial algebra. The properties of
the Casimir element of the centre of the enveloping algebra are also discussed.
These are important in subsequent applications to representation theory. Char-
acters of modules are introduced in Chapter 12, and Weyl’s character formula
for the irreducible modules is proved. The fundamental irreducible modules
for the finite dimensional simple Lie algebras are discussed individually in
Chapter 13. Their discussion involves exterior powers of modules, Clifford
algebras and spin modules, and contraction maps.

This concludes the development of the structure and representation theory
of the finite dimensional Lie algebras. This development has concentrated
particularly on the properties necessary to obtain the classification of the
simple Lie algebras and their finite dimensional irreducible modules. Among
the significant results omitted from our account are Ado’s theorem on the
existence of a faithful finite dimensional module, the radical splitting theorem
of Levi, the theorem of Malcev and Harish-Chandra on the conjugacy of
complements to the radical, and the cohomology theory of Lie algebras.

The theory of Kac—-Moody algebras is introduced in Chapter 14, where the
Kac—Moody algebra associated to a generalised Cartan matrix is defined. In
fact there are two slightly different definitions of a Kac-Moody algebra which
have been used. There is a definition in terms of generators and relations
which appears the more natural, but there is a different definition, given by
Kac in his book, which is more convenient when one wishes to show that a
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given Lie algebra is a Kac—-Moody algebra. I have used the latter definition,
but have included a proof that, at least for symmetrisable generalised Cartan
matrices, the two definitions are equivalent.

The trichotomy of indecomposable generalised Cartan matrices into those
of finite, affine and indefinite types is obtained in Chapter 15. The Kac—Moody
algebras of finite type turn out to be precisely the non-trivial finite dimensional
simple Lie algebras, and a classification of those of affine type is given.
The important special case of symmetrisable Kac—-Moody algebras is also
introduced. This class includes all those of finite and affine types, and some of
those of indefinite type. In Chapter 16 it is shown that symmetrisable algebras
have an invariant bilinear form, which plays a key role in the subsequent
development. The Weyl group and root system of a Kac—Moody algebra are
also discussed. The roots divide into real roots and imaginary roots, and a
remarkable theorem of Kac is proved which characterises the set of positive
imaginary roots. Kac-Moody algebras of affine type are singled out for more
detailed discussion in Chapter 17. In Chapter 18 it is shown how some of
them can be realised in terms of a central extension of a loop algebra of a
finite dimensional simple Lie algebra, whereas the remainder can be obtained
as fixed point subalgebras of these under a twisted graph automorphism.

Chapters 19 and 20 are devoted to the representation theory of Kac—-Moody
algebras. The representations considered are those from the category O intro-
duced by Bernstein, Gelfand and Gelfand. In Chapter 19 the irreducible mod-
ules in this category are classified, and their characters are obtained in Kac’
character formula, a generalisation to the Kac—-Moody situation of Weyl’s
character formula. In Chapter 20 the representations of affine Kac—Moody
algebras are discussed. The remarkable identities of 1. G. Macdonald are
obtained by specialising the denominator of Kac’ character formula, interp-
reted in two different ways; one as an infinite sum and the other as an infinite
product. The phenomenon of strings of weights with non-decreasing multi-
plicities is investigated inside an irreducible module for an affine algebra.

Many of the applications of the representation theory of affine Kac—Moody
algebras use the theory of vertex operators. This theory lies beyond the scope
of the present volume. However, we have introduced the idea of a vertex
operator in Chapter 20 with the aim of encouraging the reader to explore the
subject further.

A theory of generalised Kac—Moody algebras was introduced in 1988 by
R. Borcherds. These Lie algebras were introduced as part of Borcherds’
proof of the Conway—Norton conjectures on the representation theory of the
Monster simple group. They are now frequently called Borcherds algebras.
In Chapter 21 we have given an account of Borcherds algebras, including the
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definition and statements of the main results concerning their structure and
representation theory, but detailed proofs are not given. Many of the results
on Borcherds algebras are quite similar to those for Kac—Moody algebras,
but there are examples of Borcherds algebras which are quite different from
Kac—Moody algebras. The best known such example is the Monster Lie
algebra, which we describe in the final section.

We conclude with an appendix containing one section for each of the
algebras of finite and affine types, in which the most important pieces of
information about the algebra concerned are collected.

I would like to express my thanks to Roger Astley of Cambridge University
Press for his encouragement to complete the half finished manuscript of this
book. This was eventually achieved after I had reached the status of Emeritus
Professor, and therefore had more time to devote to it. I would also like to
thank my colleague Bruce Westbury for the sustained interest he has shown
in this work.






1

Basic concepts

1.1 Elementary properties of Lie algebras
A Lie algebra is a vector space L over a field k on which a multiplication
LxL—L
(x,y) = [xy]
is defined satisfying the following axioms:

(i) (x,y)— [xy] is linear in x and in y;
(ii) [xx]=0 for all xeL;
(iii) [[xy]z]+[[yz]x]+][[zx]y] =0 for all x,y,zeL.

Axiom (iii) is called the Jacobi identity.
Proposition 1.1 [yx]=—[xy] for all x,y€L.

Proof. Since [x+y, x+y] =0 we have [xx] 4 [xy]+ [yx] 4+ [yy] =0. It follows
that [xy] 4 [yx] =0, that is [yx]=—[xy]. O

Proposition 1.1 asserts that multiplication in a Lie algebra is anticommutative.

Now let H, K be subspaces of a Lie algebra L. Then [HK] is defined as the
subspace spanned by all products [xy] with x € H and y € K. Each element of
[HK] is a sum

(x4 +[xy,]

with x,€ H, y, € K.

Proposition 1.2 [HK]=[KH] for all subspaces H, K of L.
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Proof. Let xe H, ye K. Then [xy] =[—y, x] € [KH]. This shows that [HK] C
[KH]. Similarly we have [KH] C [HK] and so we have equality. O

Proposition 1.2 asserts that multiplication of subspaces in a Lie algebra is
commutative.

Example 1.3 Let A be an associative algebra over k. Thus we have a map
AXA— A
(x,y) > xy
satisfying the associative law
(xy)z=x(yz) for all x, y, z € A.
Then A can be made into a Lie algebra by defining the Lie product [xy] by
[xy]=xy—yx

We verify the Lie algebra axioms. Product [xy] is clearly linear in x and
in y. It is also clear that [xx]=0. Finally we check the Jacobi identity.
We have

[[xy]z] = (xy—yx)z —z(xy —yx)
= XyZ — yXZ—ZXY+ZyX.
We have similar expressions for [[yz]x] and [[zx]y]. Hence
[[xy]z]+ [[yz]x] + [[zx]y] = xyz — yxz — z2xy+ 29X+ yzx — z2yx — Xy2
+xzy+zxy—xzy—yzx+yxz=0. ]

The Lie algebra obtained from the associative algebra A in this way will be
denoted by [A].

Now let L be a Lie algebra over k. A subset H of L is called a subalgebra
of L if H is a subspace of L and [HH]C H. Thus H is itself a Lie algebra
under the same operations as L.

A subset [ of L is called an ideal of L if I is a subspace of L and [IL] CI.
We observe that the latter condition is equivalent to [LI] C I. Thus there is no
distinction between left ideals and right ideals in the theory of Lie algebras.
Every ideal is two-sided.

Proposition 1.4 (i) If H, K are subalgebras of L so is HNK.
(ii) If H, K are ideals of L so is HNK.
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(iii) If H is an ideal of L and K a subalgebra of L then H+K is a sub-
algebra of L.
(iv) If H, K are ideals of L then H+K is an ideal of L.

Proof. (1) HNK is a subspace of L and [HNK, HNK]|C[HH|N[KK]C

HNK. Thus HNK is a subalgebra.

(ii) This time we have [HNK, L] C[HLIN[KL]C HNK. Thus HNK is an
ideal of L.

(ili) H+K is asubspace of L. Also [H+ K, H+ K| C[HH]+[HK]+[KH]+
[KK]C H+K, since [HH|C H,[HK|C H,[KK]|CK. Thus H+K is a

subalgebra.
(iv) This time we have [H+K, L] C[HL]+[KL]C H+K. Thus H+K is
an ideal of L. |

We next introduce the idea of a factor algebra. Let I be an ideal of a Lie
algebra L. Then I is in particular a subspace of L and so we can form the
factor space L/I whose elements are the cosets I +x for xe L. I+ x is the
subset of L consisting of all elements y+ x for y 1.

Proposition 1.5 Let I be an ideal of L. Then the factor space L/I can be
made into a Lie algebra by defining

[[+x,1+y]=I+][xy] forall x,yeL.

Proof. We must first show that this definition is unambiguous, that is if
I4+x=1+x"and I+y=1+y then I+[xy]=1+[x"y].
Now [ +x=1+x" implies that x =x"+1i, for some i, € . Similarly / +y=
I+y implies y=y'+i, for some i, € I. Thus
I+ [yl =1+[x +ip, ¥ 4]
=I+[i,y ]+ X' ]+ [0 5]+ [xY]
=1+[xy]

since [i,Y'], [x'i,], [i,i,] all lie in I. Thus our multiplication is well defined.
We also have

[[4+x, I+x]=1+][xx]=1

and the Jacobi identity in L/ clearly follows from the Jacobi identity in L.
U
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Now suppose we have two Lie algebras L;, L, over k. Amap 6:L, — L,
is called a homomorphism of Lie algebras if 6 is linear and

O] xy] =[6x, 6y] for all x,yelL,.

The map 6:L, — L, is called an isomorphism of Lie algebras if 0 is a
bijective homomorphism of Lie algebras. The Lie algebras L,, L, are said to
be isomorphic if there exists an isomorphism 6: L, — L,.

Proposition 1.6 Let 0:L, — L, be a homomorphism of Lie algebras. Then
the image of 0 is a subalgebra of L,, the kernel of 0 is an ideal of L, and
L, /ker 0 is isomorphic to im 6.

Proof. im 0 is a subspace of L,. Moreover for x, y in L, we have
[6(x), 6(y)] =0[xy] €im 6.

Hence im 6 is a subalgebra of L,.
Now ker 0 is a subspace of L,. Let xeker and ye L,. Then

0[xy]=[6(x), 0(y)]=[0, 6(y)] =0.

Hence [xy] e ker 6 and so ker 6 is an ideal of L,.
Now let x, y € L,. We consider when 6(x) is equal to 6(y). We have

O(x)=0(y) ©0(x—y)=0&x—yekerd
&kerf+x=ker6+y.

This shows that there is a bijective map 6(x) — ker 4+ x between im 6 and
L,/ker . We show this bijection is an isomorphism of Lie algebras. It is
clearly linear. Moreover given x, y, z € L, we have

[6(x), 6(y)]=6(z) & O[xy]=6(2)
< ker 6+ [xy]=ker6+z
& [ker 0+ x, ker 0+ y] =ker 0+z.

Thus the bijection preserves Lie multiplication, so is an isomorphism of Lie
algebras. |

Proposition 1.7 Let I be an ideal of L and H a subalgebra of L. Then
(1) I is an ideal of I+ H.

(ii) INH is an ideal of H.

(iii) (I+H)/I is isomorphic to H/(I1N H).
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Proof. We recall from Proposition 1.4 that /N H and I+ H are subalgebras.
We have [I, I+ H]C[IL]C, thus [ is an ideal of I+ H. Also [INH, H|C
[IHIN[HH]CINH, thus INH is an ideal of H.

Let 6: H— (I+ H)/I be defined by 6(x) =1+ x. This is clearly a linear
map, and is also evidently a homomorphism of Lie algebras. It is surjective
since each element of (/4 H)/I has form I+x for some x € H. Finally its
kernel is the set of x € H for which I +x=1, that is INH. Thus (I+ H)/I is
isomorphic to H/(I N H) by Proposition 1.6. O

1.2 Representations and modules

Let M, (k) be the associative algebra of all n x n matrices over the field k and
let [M,, (k)] be the corresponding Lie algebra. This is often called the general
linear Lie algebra of degree n over k and we write

al, (k) =M, (k)].

We have dimg[, (k) =n>.
A representation of a Lie algebra L over k is a homomorphism of Lie
algebras

p:L—gl,(k)

for some n, and p is called a representation of degree n. Two representations
p,p’ of degree n are called equivalent if there exists a non-singular n x n
matrix 7 such that

P (xX)=T"'p(x)T forall xe L.
A left L-module is a vector space V over k together with a multiplication
LxV—=>YV
(x,v) = xv
satisfying the axioms:

(1) (x,v)— xv is linear in x and in v;
(i1) [xy]v=x(yv) — y(xv) forall x,yeL and ve V.

Suppose V is a finite dimensional L-module. Let ¢, ... , e, be a basis of
V. Let

xe; =Zpij(x)ei
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with p;;(x) € k and let p(x) = (p;;(x)). Then p is a representation of L. For
we have

[xyle; = x(ve;) — y(xe;)

=X (Z ij(Y)ek) -y (Zpkj(x)ek>
k k
= Zpkj(y)xek - Zpkj(x)yek

= Zpkj(y) (Zpik(x)ez) _Zpkj(x) (Z pik(y)ez)

= Z (Z(pik(x)pkj(y) _Pik()’)ij(x))> €
=2_(p®)p() —p(»)P(x); ;-

Thus p[xy]=p(x)p(y) —p(y)p(x) =[p(x), p(y)] and p is a representation
of L.

Suppose now we take a second basis fi, ..., f, of V. Let p’ be the repre-
sentation of L obtained from this basis. Then p’ is equivalent to p. For there
exists a non-singular n x n matrix 7 such that

ijZTijei'

Thus we have

xfj:ZTijekZZTkj (Zpik(-x)ei) ZZ (Zpik(x)Tk/) ;.
k k i k

1

On the other hand
xfj= Zp;q(x)fk = Z p;cj(x) (Z Tikei) = Z ( Tikp;cj(x)) e;.
k k i i k

It follows that p(x)T =Tp'(x), that is p’(x) =T 'p(x)T for all x € L. Hence
the representation p’ is equivalent to p. |

Example 1.8 L is itself a left L-module.
The left action of L on L is defined as x-y=[xy]. Then we have

[[xylz] = [x[yz]] = [y[xz]]
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which is a consequence of the Jacobi identity. This shows that L is a left
L-module. This is called the adjoint module. We define adx: L — L by

ad x-y=[xy] for x,yeL.
Then we have
ad[xy]=ad x ad y—ad y ad x. O

Now let V be a left L-module, U be a subspace of V and H a subspace
of L. We define HU to be the subspace of V spanned by all elements of the
form xu for xe H, ue U.

A submodule of V is a subspace U of V such that LU C U. In particular
V is a submodule of V and the zero subspace O={0} is a submodule of V.
A proper submodule of V is a submodule distinct from V and O.

An L-module V is called irreducible if it has no proper submodules. V is
called completely reducible if it is a direct sum of irreducible submodules.
V is called indecomposable if V cannot be written as a direct sum of two
proper submodules. Of course every irreducible L-module is indecomposable,
but the converse need not be true.

We may also define right L-modules, but we shall mainly work with left
L-modules, and L-modules will be assumed to be left L-modules unless
otherwise stated.

1.3 Abelian, nilpotent and soluble Lie algebras

A Lie algebra L is abelian if [LL]= 0. Thus [xy]=0 for all x, y€ L when
L is abelian.
Given any Lie algebra L we define the powers of L by

L'=L, L""'=[L"L]  for n>1.

Thus L is abelian if and only if L2=O.

Proposition 1.9 L" is an ideal of L. Also

L=L'>L*>L*>---.

Proof. We first observe that if I, J are ideals of L then [1J] is also an ideal
of L.Forletxel, yeJ, ze L. Then

[[xylz] = [x[yz]] = [y[xz]] € [1]].
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It follows that L" is an ideal of L for each n > 0. Thus we have
L""'=[L"L]cL". O

A Lie algebra L is called nilpotent if L" = O for some n> 1. Thus every
abelian Lie algebra is nilpotent. It is clear that every subalgebra and every
factor algebra of a nilpotent Lie algebra are nilpotent.

We now consider a different kind of powers of L. We define

L(O) — L, L(i1+1) — [L(”)’ L(”)] for n> 0.

Proposition 1.10 L") is an ideal of L. Also

L=LO>5L0 51?5

Proof. L™ is an ideal of L since the product of two ideals is an ideal. Also
LD — [L("), L(")] c L™, 0

A Lie algebra L is called soluble if L™ = O for some n > 0.

Proposition 1.11 (a) [L"L"]C L™ for all m,n>1. (b) L™ C L* for all
n>0. (c) Every nilpotent Lie algebra is soluble.

Proof. (a). We use induction on n. The result is clear if n=1. Suppose it is
true for n=r. Then

[L"L) = [L"[L" L)) =[[L"LIL"]
C[[LL™IL"]+[[L"L L] by the Jacobi identity
C "L+ [[L"LIL]
c Lt by inductive hypothesis.

Thus the result holds for n=r+1, so for all n.
(b). We again use induction on n. The result is clear if n=1. Suppose it is
true for n=r. Then

Lo+) — [L(’)L(’)] C [LZ'ALZ"] - 72

by (a). Thus the result holds for n=r+1, so for all n.
(c). Suppose L is nilpotent. Then L>' =0 for n sufficiently large. Hence
L™ =0 by (b) and so L is soluble. O
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It is clear that every subalgebra and every factor algebra of a soluble Lie
algebra are soluble.

Proposition 1.12 Suppose I is an ideal of L and both I and L/I are soluble.
Then L is soluble.

Proof. Since L/I is soluble we have (L/I)™ = O for some n. This implies
L™ c I. Since I is soluble we have 1™ = O for some m. Hence

J (ntm) (L(n))(m) C 1™ =0

and so L is soluble. ]

Proposition 1.13 Every finite dimensional Lie algebra L contains a unique
maximal soluble ideal R. Also L/R contains no non-zero soluble ideal.

Proof. Let I, J be soluble ideals of L. Then I+ J is also an ideal of L and
(I+J)/I is isomorphic to J/(INJ) by Proposition 1.7. Now J is soluble,
thus J/(INJ) is soluble and so (I 4J)/I is soluble. Since [ is soluble we see
that /4 J is soluble by Proposition 1.12. Thus the sum of two soluble ideals
of L is a soluble ideal. It follows that L has a unique maximal soluble
ideal R.

If I/R is a soluble ideal of L/R then [ is a soluble ideal of L by Proposi-
tion 1.12. Hence /=R and I/R=0. |

The ideal R is called the soluble radical of L. A Lie algebra L is called
semisimple if R=0. Thus L is semisimple if and only if L has no non-zero
soluble ideal.

L is called simple if L has no proper ideal, that is no ideal other than L
and O.

Suppose L is a Lie algebra of dimension 1 over k. Then L has a basis {x}
with 1 element. Since [xx] =0 we have L* = O. Thus L is abelian. We see that
any two 1-dimensional Lie algebras over k are isomorphic. Of course any such
Lie algebra is simple, because L has no proper subspaces. The 1-dimensional
Lie algebra is called the trivial simple Lie algebra. A non-trivial simple Lie
algebra is a simple Lie algebra L with dim L > 1.

Proposition 1.14 Each non-trivial simple Lie algebra is semisimple.

Proof. Suppose L is simple but not semisimple. Then the soluble radical R
satisfies R# O. Since R is an ideal of L this implies R = L. Thus L is soluble.
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Hence L") = O for some n > 0. This implies that L( = L since L") = L would
imply L™ =L for all n. Now L is an ideal of L, hence L = O since L is
simple. Thus [LL] = O. But then every subspace of L is an ideal of L. Since
L is simple L has no proper subspaces, so dim L = 1. Thus the only simple
Lie algebra which is not semisimple is the trivial simple Lie algebra. |



2

Representations of soluble and nilpotent
Lie algebras

2.1 Representations of soluble Lie algebras

We shall now and subsequently take the base field k to be the field C of
complex numbers. We shall also assume until further notice that L is a finite
dimensional Lie algebra over C, although at a later stage we shall also consider
infinite dimensional Lie algebras.

We first consider 1-dimensional representations of a Lie algebra L.
A 1-dimensional representation is a linear map p: L — C such that p[xy]=

[p(x), p(y)] forall x,yelL.

Lemma 2.1 A linear map p:L— C is a I-dimensional representation of L
if and only if p vanishes on L>.

Proof. Suppose p is a representation. Then for x, y € L we have

plxy]=[p(x), p(¥)]=p(x)p(y) — p(¥)p(x) =0.

Hence p vanishes on L2,
Conversely suppose that p vanishes on L2. Then

plxyl=0=[p(x), p(»)]

and so p is a representation of L. 0

We shall now prove a theorem of Lie which shows that any irreducible
representation of a soluble Lie algebra is 1-dimensional.

Theorem 2.2 (Lie’s theorem). Let L be a soluble Lie algebra and V be a
finite dimensional irreducible L-module. Then dimV = 1.

11
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Proof. Since L is soluble we have L>= L. Let I be a subspace of L such that
IDL? and dim I =dim L — 1. Then I is an ideal of L since

[IL]c[LL]=L*CL

Thus [ is an ideal of L of codimension 1.

We shall prove Lie’s theorem by induction on dim L. Suppose dim L =1
and V be an irreducible L-module. Let L=Cx and v be an eigenvector of
x in V. Then Cv is an L-submodule of V. Since V is irreducible we have
V=Cvand dimV=1.

Now suppose dim L > 1 and V is an irreducible L-module. We may regard
V as an I-module. Then V contains an irreducible /-submodule W and we
may assume dim W =1 by induction. Let w be a non-zero vector in W. Then

yw=A(y)w forall yel
where A is the 1-dimensional representation of / given by W. Let
U={ueV ;yu=Ay)u for all yeI}.
Then we have
O£WcCUcCV.
We shall show that U is an L-submodule of V. Let ue€ U, x € L. Then
(o) = x(yu) — [xyJu = A(y)xu— A([xyDu

since [xy] € I. We shall show A([xy]) =0. Once we know this we have xu € U
and so U is an L-submodule. Since V is irreducible we have U =V. Hence

yo=A(y)v forallveV,yel

Since dim I =dim L — 1 we can write L =1@® Cux, a direct sum of subspaces.
Let v be an eigenvector for x on V. Then Cv is an L-submodule of V, being
invariant under the action of both I/ and x. Since V is irreducible we have
V=Cv and so dimV =1.

In order to complete the proof we must show that A([xy]) =0 for all xe L,
yel. In fact it is sufficient to prove this for the element x chosen above such
that L=1®Cx.

Let u be any non-zero element of U. We write

Vo=u, v =xu, v,=x(xu),...

We have vy, v,, v,,...€V and so there exists p>0 such that vy, v, ..., v,
are linearly independent and v, is a linear combination of these. Consider
the subspace (v, v, ...,v,) of V spanned by these vectors. This subspace
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is invariant under the action of x. We consider the effect on this subspace of
elements y € I. We have

Yo = yu=A(y)u=A(y)v,.
We shall show
yv; = A(y)v; +a linear combination of vy, ..., v;_;.
This is true for i =0. Assuming it for v,_, we have

yu; = y(xv;_y) = x(yv;_y) = [xy]vi,

= x(A(y)v;_, +a linear combination of v, ..., v;_,)
— (a linear combination of v, ..., v;_;)
= A(y)v; +a linear combination of v, ..., v;_;.
Thus the subspace (v, v, ..., v,) is invariant under the action of y for all

yel, as well as being invariant under x. Hence it is an L-submodule of V.
Since V is irreducible we have

V= (Vg Vy, .00 5 0,).
Now [xy] € and we see from the above description of the action of I that
tracey [xy] = (p+ DA([xy]).

Thus we have (p+ 1)A([xy]) =trace, [xy]=trace,xy—trace,yx=0, since
trace, xy = trace, yx. Hence A([xy]) =0 and the proof is complete. O

Corollary 2.3 Let L be soluble and V be a finite dimensional L-module.
Then a basis can be chosen for V with respect to which we obtain a matrix
representation p of L of the form

S O %
*
*

p(x)= 0 forall xe L.

*
0O - - 00 =%

Thus the matrices representing elements of L are all of triangular form.
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Corollary 2.4 Let L be a soluble Lie algebra with dim L =n. Then L has a
chain of ideals

OZIOCIIC'“CIn—lCIn:L

with dim I, =r.

Proof. We apply Theorem 2.2 to the adjoint L-module L. The submodules of
L are the ideals of L. By taking a maximal chain of submodules we obtain
ideals of L with the required property. |

2.2 Representations of nilpotent Lie algebras

When L is a nilpotent Lie algebra we can obtain even stronger results about
its representations. Moreover these results on representations of nilpotent Lie
algebras play a crucial role in the understanding of semisimple Lie algebras,
which we shall deal with subsequently. We begin by recalling results from
linear algebra related to the Jordan canonical form. Any n x n matrix over C
is similar to a diagonal sum of Jordan block matrixes of form

Al
Al 0
-1
0 Al
A

In a similar way any linear transformation 6:V — V on a finite dimensional
vector space V over C gives rise to a decomposition of V as in the following
proposition.

Proposition 2.5 Let 0:V — V be a linear map with characteristic polynomial

x(@) =@ =AD" (1=A)" ... (1=A)™
where Ay, ..., A, are the distinct eigenvalues of 0 and m, ..., m, are their
multiplicities. Let V; be the set of all veV annihilated by some power of
0 — A;1. Then we have
Vv=V,eV,d--- V..

Moreover dimV,=m,, 0(V;) CV; and the characteristic polynomial of 6 on
Vi is (t—A;)™.
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Proof. Although this is a standard result from linear algebra we shall prove it
in view of its importance for the theory of Lie algebras.

We begin by showing that V; is equal to W;={veV ; (6—A,1)"v=0}. It
is clear that W; C V;. So let ve V,. Then

(0—X,1DYv=0  for some N.

We may choose N >m;. Also

10—, 1)"v=0

j=1

for, by the Cayley—Hamilton theorem, 6 satisfies its own characteristic equa-
tion. Now the polynomials

(t=A)". [Ia=a)™

j=1

have highest common factor (r—A;)™. Thus there exist polynomials
p(1), g(r) € C[¢] such that

(1= 0" = p(0) (= 2)" +a() [T =A™

J=1

Hence

(0—21)"v=p(0)(0—1,1)"v+q(0) [[(6—A,;1)"v=0.
j=1
Thus veW, and V,=W,.

We next show that V=V, @--- @ V.. Let f;(1)=(—A,)™ ... (t—A,_y)"!
(t—=Ag )™+ ... (t—A,.)". Then the polynomials f,(), ..., f.(¢) have high-
est common factor 1. Thus there exist polynomials p,(?), ..., p,(t) € C[t]
with 37, f;(6)p; (1) = 1.

Let ve V. Then v=7}", f;(0) p;,(0)v. Let v, = f;(0) p,(0)v. Then

(60— A;1)"v; = x(0)(p;(6)v) =0

by the Cayley—Hamilton theorem. Thus v; € V;. Hence v=v,+---4v, with
v;eV,andso V=V +.--4+V.
In order to show the sum is direct we must prove

VinVit- -+ Vi + Vi +---+V,)=0.
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Now the polynomials (¢ — A;)™ and f;(¢) have highest common factor 1, thus
there exist p(t), g(¢) € C[¢] with

p(O)(1=A)" +q(1) fi(1)=1.
LetveV,N(V,+---4+V,_+V, +---+V,). Since ve V;, we have
(6—A,1)"v=0.
Sinceve Vi +---+V,_+V, +---+V, we have
f:(0)v=0.
Hence v=p(0)(6—A;1)"v+q(6) f;(6)v=0. Thus we have shown that
V=V,&---aV,.
We next observe that 6 acts on each V,. For let ve V;. Then
O—A1D)"Ov=0(0—A,1)"v=0(0)=0,

thus Gve V..

We next show that the only eigenvalue of 6:V,— V, is A,. Suppose if
possible that A; is an eigenvalue for some j#i and let v € V; be an eigenvector
for A;. Then v#0, (0 —A;1)"v=0 and (6 —A;1)v=0. But the polynomials
(t—A;)™ and 7 — A; have highest common factor 1 so there exist p(z), q(t) €
C[#] with

p()(1=2)" +q(n)(t1=A;)=1.

Hence v=p(0)(0—A;1)"v+q(0)(0—A;1)v=0, a contradiction. So all
eigenvalues of 0;:V,— V; are equal to A;. It follows that dim V, <m; since
m; is the multiplicity of eigenvalue A; on V. But

dmV=dmV, +---+dimV,=m+---+m,.

It follows that dim V, = m,. Finally the characteristic polynomial of 6 on V; is
(r—A)™. U

The subspace V, is called the generalised eigenspace of V with eigen-
value A;. Thus the ordinary eigenspace of A, lies in the generalised eigenspace.
It is not in general true that V is the direct sum of its eigenspaces with respect
to its different eigenvalues, but Proposition 2.5 shows that this result is true
if the eigenspaces are replaced by the generalised eigenspaces.

The relevance of the decomposition into generalised eigenspaces for the
representations of nilpotent Lie algebras is shown by the following theorem.
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Theorem 2.6 Let L be a nilpotent Lie algebra and V be an L-module. Let
veL and p(y):V — V be the map v— yv. Then the generalised eigenspaces
V., of V associated with p(y) are all submodules of V.

Before proving this theorem we need a preliminary result.

Proposition 2.7 Let L be a Lie algebra and V be an L-module. Let veV,
x,yeL and a, B€C. Then

(p(y) - (a+3)1)n Xl):i <,:> ((ady—ﬁl)lx) ((p(y) _al)n—iv) )

i=0

Proof. We use induction on n. The result is clear when n=0. We assume it
for n=r. We write

x;=(ady—Bl)xelL.

Then we have

(00~ @+ B 0= (o)~ @+ AN X () o) o)~ a1) v

Now
(p(y) = (a+PB)1) p(x;) = p(lyx;]) +p(xi)p(y) — (a+B)p(x;)
=p((ady—B1)x) +p(x)(p(y) —al)
= p(xip) +p(x)(p(y) —al).
Hence

() —(a+B) 1) ' xv

=§ (:) p(xy) (p(y) —al)™ v+i (f) p(x) (p(y)—al) ™y

i=0

r+l1 r+1

N PETEREEES o (SO R

i=0

(interpreting <—rl) =0 and (r:_ 1) = 0)

r+1
=2 (751 (way=p1) () -t ).

i

This completes the induction. UJ
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Proof of Theorem 2.6. Let ve V,, x, ye L. Then

n n n . nei
00 =" x0=3 (1) (@5 (60) - A1)
j=0
by Proposition 2.7 with a=A;, 8=0. Since veV,, (p(y)—A,1)"v=0 if
n— j is sufficiently large. Since L is nilpotent (ad y)/x =0 if j is sufficiently
large. Thus (p(y) —A;1)"xv=0 if n is sufficiently large. Hence xv €V, and

1

so V; is a submodule of V. U

Corollary 2.8 Let L be a nilpotent Lie algebra and V a finite dimensional
indecomposable L-module. Then a basis can be chosen for V with respect to
which we obtain a matrix representation p of L of the form

A(x)
p(x)= . . forall xeL.

A(x)

Proof. We can choose a basis as in Corollary 2.3 with respect to which each
p(x) is triangular. The generalised eigenspaces of V with respect to p(x) are
all submodules of V by Theorem 2.6 and V is their direct sum. Since V is
indecomposable only one of the generalised eigenspaces is non-zero. Thus
all the eigenvalues of p(x) on V are equal. Let this eigenvalue be A(x). Then
the diagonal entries of the triangular matrix p(x) are all equal to A(x). [

We observe that the map x — A(x) is a 1-dimensional representation of L,
as it arises from a 1-dimensional submodule of V.

We have seen from Proposition 2.5 and Theorem 2.6 how to obtain a direct
decomposition of V into submodules for any element y € L. We may use this
result to obtain a direct decomposition of V into submodules which does not
depend on the choice of any particular element of L.

Theorem 2.9 Let L be a nilpotent Lie algebra and V a finite dimensional
L-module. For any 1-dimensional representation A of L we define V\ ={veV,
for each x € L there exists N(x) such that (p(x) —A(x)1)?v=0}. Then

V=V,
A

and each V) is a submodule of L.
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Proof. We first express V as a direct sum of indecomposable L-modules. Each
of these defines a 1-dimensional representation A of L as in Corollary 2.8.
Let W, be the direct sum of all indecomposable components giving rise to A.
Then we have

V=pWw,.
A

We shall show that W, =V, and so that W, is independent of the decom-
position chosen into indecomposable components. It is clear that W, C V,
by Corollary 2.8. Suppose if possible that W, #V,. Then there exists
veVind, ., W, with v£0. We write v=3 sw, with w, €W,, where
the set § is finite. Since w, €W, there exists N, such that (p(x)—
p(x)1)sw, = 0. Hence

[T (p(x) —p(x) 1) v=0.
MES
However, we also have (p(x) — A(x)1)Mv=0.

We recall from Lemma 2.1 that the 1-dimensional representations of L are
in bijective correspondence with linear maps L/L?>— C. The vector space
L/L* over C cannot be expressed as the union of finitely many proper
subspaces. For each ue S the set of x satisfying A(x) =pu(x) is a proper
subspace. Thus there exists x € L such that A(x) # u(x) for all w€S. Thus
the polynomials

[Te—pGD™  @=a0)™

nes

are coprime. Thus there exist polynomials a(t), b(¢) € C[¢] such that

a(0) [T (¢ =p )™ +b(0) (=A™ = 1.

MES

Hence

a(p(x) T (p(x) = w(x) )" v+ b(p(x)) (p(x) = A(x) )™ v=0.
MES
The left-hand side of this expression is zero, as we have seen above. Thus
v=0, a contradiction. Hence V, = W,, V=P, V, and each V, is a submodule
of V. ]

A 1-dimensional representation A of L is called a weight of V if V, 0, and
V, is called the weight space of A. The decomposition V=P, V, is called
the weight space decomposition of V. It follows from Corollary 2.8 that a
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basis can be chosen for V, with respect to which the matrix representation of
L on V, has form

A(x)
p(x)= ' ' for each xe L.

A(x)

We shall make frequent use of the weight space decomposition in subsequent
chapters.

We next prove a theorem of Engel which gives a useful characterisation of
nilpotent Lie algebras in terms of the adjoint representation.

Theorem 2.10 (Engel’s theorem). A Lie algebra L is nilpotent if and only if
adx:L — L is nilpotent for each x € L.

Proof. Suppose L is nilpotent. Then L" = O for some n. Let y e L. Then we
have

adx-yeL?, (adx)*-yelL’®,

and so (ad x)"~'y=0 for each y € L. Thus (ad x)"~! =0 and so ad x is a nilpo-
tent linear map.

Now suppose conversely that ad x is a nilpotent linear map for each x e L.
We wish to show L is nilpotent. We suppose if possible that this is false and
let H be a maximal nilpotent subalgebra of L. Thus H is nilpotent but any
subalgebra properly containing H is not nilpotent. We may regard L as an
H-module. Then H is an H-submodule of L and we can find an H-submodule
M of L containing H such that M/H is an irreducible H-module. We have

dim(M/H)=1 by Theorem 2.2.

Moreover the 1-dimensional representation of H afforded by M/H is the zero
representation, as otherwise ad x would fail to be nilpotent for some x € H.
Hence we have [HM] C H. Now there exists x € M such that

M=H&Cx.
We have
[MM]cC [HH]+[Hx]C H.

Thus M is a subalgebra of L and H is an ideal of M.
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We shall show that for each positive integer i there exists a positive integer
e(i) such that

Me(i) C Hi

This is true for i=1 since M*> C H. We prove it by induction on i. Assume
that M*") C H". Then

Me(r)+1 Z[Me(r)’ H+(CX] CI_Ir+l +[Me(r)’ X].

Hence MO+ c H™+! 4 ad x- M.
We shall show that

Me(r)+j CHV-H _I_(ad x).f _Me(r)

for each positive integer j. This is true for j=1. Assuming it inductively for
J we have

MO [H™ 4 (ad x) - MV, M|
C H*' +[(ad x)’M*", H +Cx]
C H™' 4 (ad x)/ ' Me®
since H'*! is an ideal of M and (ad x)’M*" C H". Thus we have shown
MO+ ¢ B+ 4 (ad x)’ M<D for all j.

Now we know that (ad x)’ =0 when j is sufficiently large. For such j we
have

Me(r)+_i C Hr+1 .

Thus we define e(r+ 1) = e(r)+ j and then M<U+D Cc H™*! as required.
Now H is nilpotent so H' = O for i sufficiently large. For such i we have

M¢® =0. Thus M is nilpotent. But this contradicts the maximality of H.

Thus our initial assumption was incorrect and so L must be nilpotent. Ul

Corollary 2.11 A Lie algebra L is nilpotent if and only if L has a basis with
respect to which the adjoint representation of L has form

0

p(x)= . forall xeL.
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Proof. Suppose L is nilpotent. Then L has a series of ideals
LOL*DL’>---DL" =0 for some r.

We refine this series by choosing a sequence of subspaces between consec-
utive terms, each of codimension 1 in its predecessor. Such subspaces are
automatically ideals of L since if L' D1 D> L*! we have

[IL]C[L'L]=L""C1I.
Thus we have a chain of ideals
L=I1,DI,,D>---D, D=0

with diml, =k and [LI,]CI,_,. By choosing a basis of L adapted to this
chain of ideals the map ad x: L — L is represented by a matrix p(x) of zero-
triangular form (i.e. triangular with zeros on the diagonal).

Conversely if L has a basis with respect to which ad x is represented by
a zero-triangular matrix p(x) for all x € L, we have p(x) nilpotent and so
ad x is nilpotent. Thus L must be a nilpotent Lie algebra by Engel’s theorem
(Theorem 2.10). Ul
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Cartan subalgebras

3.1 Existence of Cartan subalgebras

Let H be a subalgebra of a Lie algebra L. Let
N(H)={xeL; [hx]eH for all h e H}.

N(H) is called the normaliser of H.

Lemma 3.1 (i) N(H) is a subalgebra of L.
(ii) H is an ideal of N(H).
(iii) N(H) is the largest subalgebra of L containing H as an ideal.

Proof. (i) Let x, ye N(H). Then

[Alxy]]=[[yh]x]+[[hx]y] € H.

Hence [xy] € N(H) and N(H) is a subalgebra.
(ii) This is clear from the definition of N(H).
(iii) If H is an ideal of M then [HM]C H so M C N(H). O

Definition A subalgebra H of L is called a Cartan subalgebra if H is
nilpotent and H=N(H). Cartan subalgebras play a very important role in
the theory of semisimple Lie algebras. Our aim in this section is to show that
L contains a Cartan subalgebra.

Let us take an element x € L and consider the linear map adx : L — L. Let
L, be the generalised eigenspace of ad x with eigenvalue 0. Thus L, , =
{y €L ; there exists n such that (ad x)"y=0}, and L, , will be called the null
component of L with respect to x.

An element x € L is called regular if dim L, , is as small as possible. The
Lie algebra L certainly contains regular elements.

23
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Theorem 3.2 Let x be a regular element of L. Then the null component L ,
is a Cartan subalgebra of L.

Proof. Let H=L, ,. We must show that H is a subalgebra of L, that H is
nilpotent, and that H = N(H).

We first show that H is a subalgebra. Let y, z€ H. We must show that
[yz] € H. By Proposition 2.7 we have

n

(ad x)"[yz] = Z <’:> [(ad x)'y, (ad x)"—iz] .

i=0

(We take V=L, «=B=0 in Proposition 2.7 to obtain this.) Since y € H we
have

(adx)'y=0 if i is sufficiently large.
Since ze H
(adx)"'z=0 if n—i is sufficiently large.

Hence (ad x)"[yz]=0 if n is sufficiently large. Thus [yz]€ H and H is a
subalgebra of L.

We next show that H is nilpotent. To do this we shall prove that all the
matrices in the adjoint representation of H are nilpotent and use Engel’s
theorem (Theorem 2.10). Let dim H =1 and b,, ... , b, be a basis for H. Let

y:/\]b1+"'+A]bZ€H Al,...,AlEC.

Consider the linear map ady : L— L. We have ady : H— H since H is a
subalgebra and we obtain an induced map ady : L/H — L/H.

Let x(7) be the characteristic polynomial of ady on L, y,(¢) be its charac-
teristic polynomial on H and x,(¢) be its characteristic polynomial on L/H.
Then we have

X1 =x1 (D) xx(1).

Since y(f) =det(t1 —ady) and y depends linearly on A, ..., A, we see that
the coefficients of x(f) are polynomial functions of A,,..., A,. The same
applies to x;(¢) and x,(¢). Let

Xo()=dy+dt+d, "+

where d,), d|, d,, ... are polynomial functions of A, ..., A,. We claim that d,
is not the zero polynomial. For in the special case when y=x we know that
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all eigenvalues of ady on L/H are non-zero, so x,(f) has non-zero constant
term. Let

xi () =t"(co+e 14+t +-+)

where ¢, ¢|, ¢,, ... are polynomial functions of A, ..., A; and ¢, is not the
zero polynomial. We have

m<l=degx,(1).
We then have
x(t) =1"(c,d,+terms involving positive powers of ¢).

Now c¢yd, is not the zero polynomial so we can choose A;,...,A,€C to
make ¢,d, non-zero. For such an element y € H we have

dim L, ,=m.

Since x is regular and dim L, . =/ we have m > [. Since we also know m <!
we have m=1. Now y, () has degree [ and is divisible by #/, hence

x(@=1r.

It follows by the Cayley—Hamilton theorem that (ady)': H— H is zero.
Hence by Engel’s theorem we deduce that H is nilpotent.

Finally we show that H= N(H). It is certainly true that H C N(H). So let
7€ N(H). Then [xz] € H. Thus

(ad x)"[xz] =0 for some n.

But then (ad x)""'z=0 and so z€ H. Thus H=N(H) and we have shown
that H is a Cartan subalgebra of L. ]

3.2 Derivations and automorphisms
A derivation of a Lie algebra L is a linear map 6 : L — L such that
o[xy]=[bx, y]+[x, 6y] for all x,yeL.

Lemma 3.3 Let x € L. Then ad x is a derivation of L.

Proof. ad x[yz]=[adx-y, z]+[y, ad x- z] by the Jacobi identity. O

An automorphism of L is an isomorphism 60 : L — L. The automorphisms
of L form a group Aut L under composition.
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Proposition 3.4 Let 6 be a nilpotent derivation of L. Then exp é is an
automorphism of L.
Proof. Since 6 is nilpotent we have 6" =0 for some n. Then we have
n—1
8}”
exp 6= Z

The map exp 6 : L — L is clearly linear. Let x, y € L. Then

o[xy] =[x, y]+[x, 6y]

r : r i r—i
Fil=3 () [0
i=0
as is easily seen by induction on r. Hence

o 8- = T2 () [0 0 =2 X 1 (3. 8%]

r>0 i=l 0 i>0 j>0

|:Z 8,y — 8’:|—[exp5ox,exp8~y].

i>0 />0

Thus exp 6 : L— L is a homomorphism. Similarly exp(—§&) is a homo-
morphism and we have exp & exp(—6)=1. Thus expé:L— L is an
automorphism. |

The subgroup of Aut L generated by all automorphisms exp ad x for all xe L
with ad x nilpotent is called the group of inner automorphisms Inn L. Every
element of Inn L has form

expadx,-expadx,----- exp ad x,

where x,...,x,€L and adx,, ..., adx, are all nilpotent.
Lemma 3.5 Inn L is a normal subgroup of Aut L.

Proof. Let 6 € Aut L. It is sufficient to show that 6(exp ad x)0~' € Inn L for
all x € L with ad x nilpotent. Now we have

6(adx)0~'y=0{[x,07'y]=[6x, y]=(ad 6x)-y
for all ye L. Hence

f(ad x)0~"' =ad Ox.
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It follows that
(exp ad x)0~' =exp ad(Ax) eInn L.
Thus Inn L is normal in Aut L. J

Two subalgebras M, M, of L are called conjugate in L if there exists 6
Inn L such that 6(M,) =M,.

We wish to show that any two Cartan subalgebras of L are conjugate in L.
However, we first need some concepts from algebraic geometry.

3.3 Ideas from algebraic geometry

Let H be a nilpotent subalgebra of a Lie algebra L and regard L as an
H-module. Then we obtain a decomposition

L=EL,
as in Theorem 2.9, where

L,={xeL; for each h € H there exists n such that (ad 71— A(h)1)"x=0}.

Now H lies in L, by Corollary 2.11. We shall suppose that the nilpotent
subalgebra H satisfies the condition H = L,,. Then there exist 1-dimensional
representations A, ..., A, of H with A; #0,...,A,7#0 and

L=H®L, ® --®L, .
Given x € L we then have
X=Xg+x+--+x,

with xo € H and x; € L, fori=1,...,r. We claim that ad x; : L — L is nilpo-
tent when i#£0.

To see this let u : H— C be a weight of the H-module L and let ye L,,.
Then by Proposition 2.7 we have

(adh— ()1 = MWD ] =3 (J) [(ad h— A()1Y ;.
=0
(adh—pu(h)1)"y].

Because x; €L, then (adh— A, (h)1)/x,=0 if j is sufficiently large. Since
yeL, then (ad h —u(h)1)"/y=0if n— j is sufficiently large. Thus

(ad h— ()1 = X, () 1) [x,y] =0
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if n is sufficiently large, and so [x;y] € L, ,,. Thus we have
adx;-L, CLy -

Since A;#0 and there are only finitely many u:H— C for which
L,#0 we see that (adx;)" =0 if N is sufficiently large. Thus adx; is
nilpotent.

We deduce that exp adx;e AutL for i#0. We now define a map
f:L—Lby

Sf(x)=exp adx -expadx,---- exp ad x, - x,.

We shall discuss some properties of this function f. We choose a basis {b;;}
of L for 0 <i <r where for fixed i the elements b, i form a basis of L A\ with
respect to which the elements of H are represented by triangular matrices, as
in Corollary 2.3. Here A,=0.

Lemma 3.6 f : L — L is a polynomial function. Thus

f (Z )\,-jb,j) = Z Wijbi;

where each ;; is a polynomial in the Ay

Proof. Each map ad x; : L — L is linear. Also we have

N d 'k
expadxizzM

k=0

for some N

since ad x; is nilpotent. Thus exp ad x; : L — L is a polynomial function.
The given map f is a composition of the linear map x — x,, with polynomial
functions exp ad x; for i > 0, so is a polynomial function. Ul

We write w;; = f;;(Ay,) where f;; is a polynomial. We define the Jacobian
matrix

J(f)=(0f;;/9Au)
and the Jacobian determinant det J(f) of f. detJ(f) is an element of the
polynomial ring C[A,,].

Proposition 3.7 det J(f) is not the zero polynomial.

Proof. We shall show det J(f) is not the zero polynomial by showing that it
is non-zero when evaluated at a carefully chosen element of H. So let he H
and consider (f;;/dA;;) -



3.3 Ideas from algebraic geometry 29

First suppose k #0. Then

h+tb,) — f(h
0/, = lim w

dtb,))h—h
—1lim (exp ad tby,)

—0 t
h+t[b,,, h]|+--—
bbby Bl =
t—0 t
= [by, h]=—[hby]
= —A,(h)b,, +a linear combination of b, ..., b,_;.

Next suppose k=0. Then

h+th.)— f(h
(9f/9Ag), = 11—138 M

h+tby, —h
=liml=bo,.
t—0 t
Thus J(f), is a block matrix of form
1
o )
1

k=0 —A,(h) *

k=1 ) o
k=2 0 —A,(h)
—Ay(h) *
) o
o —A,(h)

and so (det J(f)),==%TT_, A;(h)* where d;=dimL, .
Now the linear maps A, : H— C for i=1,...,v are all non-zero. Thus
we can find an element h € H with A;(h)#0 for i=1,...,v. For such an

element & we have (det J(f)), #0. Hence det J(f) is not the zero polynomial.
O

Proposition 3.8 The polynomial functions f;; are algebraically independent.
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Proof. Suppose if possible that there is a non-zero polynomial F(x;;) € C[x;;]
such that F(f;;) =0. We choose such a polynomial F whose total degree in
the variables x;; is as small as possible. Then

J
—F(f)=0
W (fz_,)

and so
oF of;
7 0fi; 0Ay
Let v be the vector (3F/df;;). Then
vJ(f)=(0,...,0).

Since det J(f) is non-zero this implies that v=(0, ..., 0), that is
dF/df;;=0 for each f;;.

Now dF/dx;; is a polynomial in C[x;;] of smaller total degree than F. By the
choice of F' dF/dx;; must be the zero polynomial. Hence F' does not involve
the variable x;;. Since this is true for all x;; F must be a constant. Since
F(f;;) =0 this constant must be zero. Thus F is the zero polynomial and we
have a contradiction. 0

Let B=C[f;;] be the polynomial ring in the f;; and A=C[A;] the poly-
nomial ring in the A;;. We have a homomorphism 6 : B— A uniquely deter-
mined by

H(ij) Zfij()\ld) €A.

Proposition 3.9 The homomorphism 0 : B— A is injective.

Proof. Suppose F € B satisfies 6(F)=0. Then F(f;;)=0, regarded as a
function of the A;;. Since the f;; are algebraically independent this implies
that F=0. Thus 6 is injective. |

Thus we may regard B as a subring of A. A and B are integral domains
with a common identity element and A is finitely generated over B. We next
prove a general result which applies to this situation.

Proposition 3.10 Let A and B be integral domains such that BC A, A, B
have a common identity element 1, and A is finitely generated over B. Let
p be a non-zero element of A. Then there exists a non-zero element q of B
such that any homomorphism ¢ : B— C with ¢(q) #0 can be extended to a
homomorphism  : A— C with {(p) #£0.
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Proof. We may assume that A is generated over B by a single element (.
For then by iterating the process we can prove the result when A is finitely
generated over B. Thus we assume that A= B[{] for some { € A.

Suppose first that { is transcendental over B. Given a non-zero element
p=p({) € A we choose g € B to be one of the non-zero coefficients of p({).
Suppose we are given a homomorphism ¢ : B— C with ¢(q) #0. We write
¢(b) =b e C. By applying ¢ to the coefficients of p({) we obtain p(¢) € C[{].
The element p({) is not the zero polynomial since ¢(q) #0. We can find an
element 8 € C with p(B) #0. We now define a homomorphism ¢ : A— C by

¥(g(0) =2(B)-

i is well defined since { is transcendental over B, and ¢ is a homomorphism,
being a composite of the homomorphisms

A=B[{]—C[{]—>C 3.1)

8 —gl)—zB) (3.2)

i clearly extends ¢. Finally we have (p) = p(B) #0.
Next suppose that ¢ is algebraic over B. Then we can find f(¢) € B[t] of
minimal degree such that f({) =0. We write

f@)=byt"+b " +---+b, by #0.

Now let g(¢) be any polynomial in B[¢] satisfying g({) =0. We divide g(¢) by
f(¢) using the Euclidean algorithm. We are working over an integral domain B
rather than over a field. However, provided we multiply g(¢) by a sufficiently
high power of the leading coefficient b, of f(¢) we can carry out the Euclidean
process over B. We thus obtain

byg (1) = u(r) f(1) +v(7)
where u(r), v(f) € B[t] and deg v(r) < deg f(¢). Thus

v({) =bsg(d) —u(0) f()=0.
Since degv() < deg f(¢) this implies that v(#) =0. Hence

byg(1) = u(1) f(1).

Let p be the given non-zero element of A. The element p is algebraic over
B since A is generated over B by the single algebraic element . Thus there
exists a polynomial h(f) € B[f] with non-zero constant term /4, such that
h(p) =0. We define the element g € B by ¢ =b,h,,. Thus g#0. We assume
we are given a homomorphism ¢ : B— C with ¢(q) #0. Then ¢(b,) #0 and
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¢(h,) 0. We write ¢(b) =b e C. The polynomial f(¢) € B[1] gives rise to a
polynomial f(¢) € C[¢]. We choose an element 8 € C with f(8) =0. We note
that
byg(B)=u(B)f (B) =0,
hence g(8) =0 since by = ¢(b,) #0.
We now define a homomorphism

y:A—->C

by (g({)) =g(B). We note that the map ¢ is well defined, since we have
shown that g({) =0 implies g(8) =0. The map ¢ is a homomorphism since
the maps

B[t] —» C[t] > C
8(t) > g(1) —> g(B)

are homomorphisms. The definition of ¢y shows that ¢ extends ¢. Finally we
show (p) #0. Since h(p) =0 we have h(if(p)) =0. However, the constant
term of (z) is ¢(h,,), which is non-zero. Since /(f) has non-zero constant
term and A((p)) =0 we must have ¥ (p) #0. O

We now apply this result to our earlier situation. Let d =dim L and
f:C!—c!
be the polynomial function
()‘ij) - (fij(/\kl)) .
We write V =C* and for each polynomial p € C[x,;] we write

V,={veV; p(v)#0}.

Corollary 3.11 For each non-zero polynomial p € C[x;;] there exists a non-
zero polynomial q € C[x;;] such that f(V,)DV,.

Proof. We apply Proposition 3.10 to the integral domains B C A discussed
earlier. Thus A is the polynomial ring C[A;;] and B is the polynomial ring
C[f;;]- We choose a non-zero polynomial p € A. Then there exists a non-zero
polynomial g € B such that any homomorphism ¢ : B— C with ¢(¢) #0 can
be extended to a homomorphism ¢ : A— C with /(p) #0. This means that
given any veV, we have v= f(w) for some weV,. Hence V, C f(V,) as
required. Ul
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3.4 Conjugacy of Cartan subalgebras

We showed in Theorem 3.2 that the null component L, , of a regular ele-
ment x € L is a Cartan subalgebra of L. We shall now show conversely that
any Cartan subalgebra is the null component of some regular element. We
shall then prove that, given two regular elements, their null components are
conjugate in L.

Proposition 3.12 Let H be a Cartan subalgebra of L. Then there exists a
regular element x € L such that H=L, .

Proof. Since H is nilpotent we may regard L as an H-module and decompose
L into weight spaces with respect to H as in Theorem 2.9. H lies in the zero
weight space L, by Corollary 2.11. Since H = N(H) we can show that H = L,,.
For if H# L, the H-module L,/H will have a 1-dimensional submodule
M/H on which H acts with weight 0. Hence [HM]C H and so M C N(H).
This contradicts H=N(H). Thus we have H=L,. Let

L=H®L), ® &L, Ao AL #£0
be the weight space decomposition of L with respect to H. Let x € L and
X=Xy+x +--+x,

with x, € H and x; € L, for i #0. Then we can define a polynomial function
f : L— L as in Section 3.3 with

f(x)=expadx,-expadx,----- exp ad x, - x,.
We define p: L— C by

P(x) = A1 (x0) Az (x0) - -+ A, (xp).

Then p is a polynomial function on L. p is not the zero polynomial since
we can find x,€ H for which each A;(x,)#0 for i=1,...,r. Hence by
Corollary 3.11 there exists a non-zero polynomial function g : L — C such
that f(L,) D L,.

We next consider the set R of regular elements of L. Let ye L and

x(y)=det(rl —ady)=1"+u, ()" +- -+, ()

be the characteristic polynomial of ady on L. Then w,, 4,, ..., u, are poly-
nomial functions on L. There exists a unique integer k such that w, , is
not the zero polynomial but w,_,,..., &, are identically zero. The gener-
alised eigenspace of ady with eigenvalue 0 has dimension k if w,_,(y)#0
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and dimension greater than k if w,_,(y) =0. Thus y is regular if and only if

i (3) #0.
Now there exists y€ L such that ye L,NR. For we may choose y with

(gr,—)(y) #0. Since L, C f(L,) we can find x € L, such that f(x) =y. Thus
we have

expadx,-expadx,----expadx, -x,=y.

Hence x,, y are conjugate elements of L. Since y is regular, x, must also be
regular. Since x€ L, we have

A (x9) Az (xg) -+ A, (x0) #O0.

Now x,€ H and H is nilpotent, hence L, , D H by Corollary 2.11. On the
other hand L, cannot be larger than H since

A (x0) #0, ..., A,(x) #0.

Hence H=L, , where x, is regular. U
Theorem 3.13 Any two Cartan subalgebras of L are conjugate.

Proof. Let H,H' be Cartan subalgebras of L. We regard L as an
H-module and decompose L into weight spaces with respect to H. We have
seen in the proof of Proposition 3.12 that H=L,. Let the weight space
decomposition be

L=H®L, ® &L, Ay oo AL F£Q.
For each x € L we have
X=Xg+x+--+x,

with xo € H and x; € L, for i#0.

Now for each x,€ H we have L,, DH and for some x,€H we have
L ., =H since H is a Cartan subalgebra. An element x, € H is regular if and
only if L, , = H. This is equivalent to the condition

A1 (x0) A (x) -+ A, (x) #O.
We now consider the polynomial function f : L — L defined by
f(x)=expadx, -expadx,----- exp ad x, - x,.
Let p : L — C be the function given by

P(x)=A;(x) A5 (xg) -+ A, (%)
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where p is a polynomial function on L which is not identically zero, since
p(x) is non-zero when x, is a regular element of H. By Corollary 3.11 there
exists a non-zero polynomial function g : L — C such that f(L,) D L,.

We now start with the second Cartan subalgebra H'. We can define a corre-
sponding function f’ : L — L and a corresponding function p’ : L — C. There
exists a non-zero polynomial function ¢’ : L — C such that f"(L,)D L,.

Now L,NL,={xeL ; (qq')(x)#0}. Thus L ,NL, is non-empty. We
choose zeL,NL,. Thus z€ f(L,)Nf'(L,). Thus there exists x €L with
z=f(x) and p(x)#0. Similarly there exists x'€ L with z=jf"(x") and
pP'(x)#0. Thus

z=expadx, -expadx,----- exp ad x, - x,

and so z is conjugate to x,. Since p(x)#0 x, is regular. Similarly z is
conjugate to x; and x; is regular. Thus we have found regular elements x, € H
and x;, € H' such that x, x; are conjugate in L.
Now we have H=L,, and H' =L, since x,, x, are regular. Thus an
s X0 X0
inner automorphism of L which transforms x, to x; will transform H to H'.
Hence H, H' are conjugate in L. UJ

The dimension of the Cartan subalgebras of L will be called the rank of L.
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The Cartan decomposition

4.1 Some properties of root spaces

Let L be a Lie algebra and H be a Cartan subalgebra of L. We regard L as
an H-module. Since H is nilpotent we have a weight space decomposition

L=EpL,
A
as in Theorem 2.9, where

L,={xeL ; for each h € H there exists n such that (ad h — A(h)1)"x=0}.

Proposition 4.1 L,=H.

Proof. The algebra H is contained in L, by Corollary 2.11. Suppose if
possible that H # L. Then L,/H is an H-module, and this module contains
a l-dimensional submodule M/H on which H acts with weight 0. Hence
[HM]C H and so M C N(H). This implies H # N(H), a contradiction. ~ []

The 1-dimensional representations A of H such that A#0 and L, # O are
called the roots of L with respect to H. The set of roots of L with respect to
H will be denoted by ®. Thus we have

L=H® (@La>

acd

This decomposition is called the Cartan decomposition of L with respect
to H. L, is called the root space of «.

Proposition 4.2 Let A, u be 1-dimensional representations of H. Then

[L)\’ Lu] CLyp

36
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Proof. Llet yeL,,zeL,. We show that [yz]€L
Proposition 2.7 we have

a+u- Let x€ H. Then by

(@321 - Dz]= 3 () [adr= A1, (a1 ]

i=0

Since yeL, (adx—A(x)1)'y=0 if i is sufficiently large. Since zeL,
(ad x — u(x)1)""'z=0 if n—i is sufficiently large. Hence

(adx—A(x)1—p(x)1)"[yz] =0
if n is sufficiently large. This shows that [yz]€ L, Ul
Corollary 4.3 Let a, B € P be roots of L with respect to H. Then

[Lo-LglCLyp  if a+Be®

[L..Lg]CH if B=—a
[La,LB]zo if a+B#0 and a+B¢& .
Proof. This follows from Proposition 4.2 and the fact that L, =H. U

Proposition 4.4 Let a € ® and consider the subspace [L,L_,] of H. Given
any B € ® there exists a number r€Q, depending on « and [, such that
B=raon|[L,L_,]

Proof. If —a is not a weight of L with respect to H then L_, = O and there
is nothing to prove. Thus we assume —a is a weight. Then —a € @ since
a#0.

We consider the functions i« + 8 : H— C where i € Z. Since ® is finite
there exist p, g € Z with p >0, g >0 such that

—pa+B,....B8,...,qa+ B

are all in & but —(p+1)a+B, (¢g+1)a+B are not in d. If either
—(p+1Da+B=0or (g+1)a+ B =0 the result is obvious. Thus we assume
—(p+1Da+B#0, (g+1)a+B#0. Thus —(p+1)a+pB, (g+1)a+pB are
not weights of L with respect to H.

Let M be the subspace of L given by

M=L_puip® - OLyarp:
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LetyelL,,zeL_,. Let x=[yz]€[L,L_,]- Then we have
ady(M)c M by Proposition 4.2, since L, yo45=0
adz(M)CcM by Proposition 4.2, since L_,, )45 =O-

Thus

adx(M)=(ady adz—adz ady)M C M.

We calculate the trace tryadx. Since x€ H each weight space L, g is
invariant under ad x. Thus
q
trMadxziz try, ,adx.
I=—p

Now ad x acts on the weight space L;,, g by means of a matrix of form

(ia+B)x *

0 (ia+B)x
Thus tr;  adx =dim Loy p-(ia+B)(x). Thus

tr,, adx = i dim L;,, g(ic(x) +B(x))

i=—p
q q
=| Y idimL,,g|a(x)+| > dimL,,;]B(x).
i=—p i=—p
On the other hand we have
try,, adx =try,(ady adz—adz ady)
=try(ady adz)—try,(adz ady) =0.
Hence
q q
Y idimLy, g )a(x)+| D dimL,,z)B(x)=0.
i=—p i=—p
Moreover dim L,z >0 for —p <i <g. Hence for xe[L,L_,] we have

(XL, idim L, p)

(XL, dimLi,, )

i=—p

BL)=—

a(x).

Thus B(x)=ra(x) for some reQ independent of x. Hence B=ra on
[L,L_,] O

a -
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4.2 The Killing form

In order to make further progress in understanding the Cartan decomposition
of L we introduce a bilinear form on L called the Killing form. We define
a map

LxL—C
x,y—=>(x.y)
given by
(x,yy=tr(ad x ad y).
Wehaveadx : L— L,ady: L— Landadxady: L— L,sotr(adxady) e C.
Proposition 4.5 (i) (x, y) is bilinear, i.e. linear in x and y.

(i) (x, y) is symmetric, i.e. (y, x) =(x, y).
(iii) (x, y) is invariant, i.e.

([xy], z) ={x,[yz])  forall x,y,z€L.

Proof. (i) is clear from the definition.
(ii) follows from the fact that tr AB=tr BA.
(iii) ([xy], z) =tr(ad[xyladz) =tr ((adx ad y—ad y ad x) ad z)

=tr(adx ady adz) —tr(ady ad x ad z)
=tr(adx ady adz) —tr(adx adz ad y)
=tr(adx (ady adz—adz ady)) =tr(ad x ad[yz]) = (x, [yz]).
O
Proposition 4.6 Let I be an ideal of L and x,y € 1. Then

(X, ¥)r=(x )

Thus the Killing form of L restricted to I is the Killing form of 1.

Proof. We choose a basis of I and extend it to give a basis of L. With respect
to this basis adx : L — L is represented by a matrix of form

A Ay
o O
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since x € I, and similarly ady : L — L is represented by a matrix of form

Bl BZ
o O

Thus adx ady : L— L is represented by the matrix

(AIBI AIBZ>
0 (0]
Hence tr, (ad x ady) =tr A, B, =tr,(ad x ad y) and so (x, y), =(x,y), O
For any subspace M of L we define M~ by
M*={xeL; (x,y)=0 forall ye M}.

M+ is also a subspace of L.
Lemma 4.7 If I is an ideal of L then I+ is also an ideal of L.

Proof. Let xcIt, yc L. We must show that [xy] € I*. So let z€I. Then

([xy], 2) = (x, [yz]) =0

since [yz] €I and x € I*. Thus [xy] € I+ and I+ is an ideal of L. O

We see in particular that L is an ideal of L. The Killing form of L is said
to be non-degenerate if L+ = 0. This is equivalent to the condition that if
(x,y)=0 for all ye L then x=0.

The Killing form of L is identically zero if L+ =L. This means that
(x,yy=0forall x,yelL.

We now prove a deeper result on the Killing form which will be very
useful subsequently.

Proposition 4.8 Let L be a Lie algebra such that L#0 and L>=L. Let H
be a Cartan subalgebra of L. Then there exists x € H such that {x, x) #0.

Proof. We consider the Cartan decomposition of L with respect to H. Let
this be L=@L,. Then we have

Ap

L*=[LL]= [@LA, @LM} =Y [L\L,].
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Now we have [L,L,]CL,,, by Proposition 4.2. Now L,,, =0 if A4 is
not a weight. Thus each non-zero product [L ALM] lies in some weight space
L,. We consider the zero weight space L,. Since L?> =L we have

Ly= Z [LALf)\]
A

summed over all weights A such that —A is also a weight. Now L,=H by
Proposition 4.1, thus we have

H=[HH]+}_[L,L_,]

summed over all roots a € ® such that —« is also a root.

Now L is not nilpotent since L?= L. H is nilpotent and so H # L. So there
is at least one root B € ®. B is a 1-dimensional representation of H and so
vanishes on [HH] since

Blxy]|=B(x)B() —BB(x)=0  x,yeH.

But B does not vanish on H since 8#0. So using the above decomposition
of H we see that there is some root o € ® such that —a € ® and B does not
vanish on [L,L_,].

a——«a

We choose x € [L,L_,] such that 8(x)#0. Then we have

a——a

(x,x)=tr(adx adx) =) _dim L, (A(x))*
A

since ad x is represented on L, by a matrix of form

A(x) *

0 | A(x)

Now by Proposition 4.4 there exists r, , € Q such that A(x) =r, ,a(x). Thus
we have

(x,x)= <Z dim L)‘ria) a(x)’.

Now B(x)=rg ,a(x) and B(x)#0. Thus a(x)#0 and rgz,#0. It follows
that (x, x) #0. O

We shall now obtain some important consequences of this result.



42 The Cartan decomposition

Theorem 4.9 [f the Killing form of L is identically zero then L is soluble.

Proof. We use induction on the dimension of L. If dimL=1 then L is
soluble. So suppose dim L > 1. By Proposition 4.8 we have L# L*. L? is an
ideal of L so the Killing form of L? is the restriction of the Killing form of
L, by Proposition 4.6. Thus the Killing form of L? is identically zero. By
induction L? is soluble. Since L/L? is soluble it follows that L is soluble, by
Proposition 1.12. UJ

Theorem 4.10 The Killing form of L is non-degenerate if and only if L is
semisimple.

Proof. Suppose first that the Killing form of L is degenerate. Then L+ # O.
Now L% is an ideal of L by Lemma 4.7. Thus the Killing form of L is the
restriction of that of L by Proposition 4.6. Thus the Killing form of L* is
identically zero. This implies that L* is soluble, by Theorem 4.9. Thus L has
a non-zero soluble ideal, so L is not semisimple.

Now suppose conversely that L is not semisimple. Then the soluble radical
R of L is non-zero. We consider the chain

RORVSRP5..oREVSRW=0

where as usual R*) =[RORD]. The subspaces R are all ideals of L since
the product of two ideals is an ideal. Let I = R*~". Then I is a non-zero ideal
of L such that I>=0.

We choose a basis of / and extend it to a basis of L. Let x€/ and ye L.
With respect to this basis ad x is represented by a matrix of form

o A
o 0
since I>=0 and [ is an ideal of L, ady is represented by a matrix of form
B, B,
0O B
and ad x ad y is represented by the matrix
O AB;
O O
Hence (x,y)=tr(adx ady)=0. Since this holds for all xel and ye L we
have I C L. Thus Lt # O and so the Killing form of L is degenerate. ~ [J
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We now define the direct sum of Lie algebras L, L,. L, ® L, is the vector
space of all pairs (x,, x,) with x; € L,, x, € L, under the Lie multiplication
given by

[(x1s x%2) s )= (e ] [x030]) -

In this direct sum we define I, ={(x,,0) ; x, € L,} and , ={(0, x,) ; x, € L,}.
Then I, and 7, are ideals of L, ® L, suchthat [, N"[,=0and I, +1, =L, B L,.
Moreover I, is isomorphic to L, and I, is isomorphic to L,.

Conversely let L be a Lie algebra containing two ideals [, I, such that
I)NI,=0 and I, 4+1,=L. Then the Lie algebra I, @1, is isomorphic to L
under the isomorphism

6: LoL—L
(x15 X3) = x; +x,.

For 6 is certainly an isomorphism of vector spaces. But 6 also preserves Lie
multiplication. To see this we first observe that

[I,L]CcI,NL,=0.
Thus
[0 (xy, x5), 0 (s y2)] =[x +xp, yi + 0] =[x, 31 ]+ [x,02]
=0 ([x; 3], [0 ) =0[(x1, x2) (01, 32)]-

Thus if a Lie algebra has two complementary ideals [, I, the Lie algebra is
isomorphic to I, ®1,.

We may in a similar way consider direct sums L, &L, ® --- @ L, of more
than two Lie algebras.

Theorem 4.11 A Lie algebra L is semisimple if and only if L is isomorphic
to a direct sum of non-trivial simple Lie algebras.

Proof. Suppose L is semisimple. If L is simple then L must be non-trivial
since the trivial simple Lie algebra is not semisimple. Thus we suppose L is
not simple. Let / be a minimal non-zero ideal of L. Then I# O and I # L.
Consider the subspace I+ of L; I+ is also an ideal of L by Lemma 4.7. Now
the Killing form of L is non-degenerate by Theorem 4.10. Thus an element
x €L lies in I* if and only if the coordinates of x with respect to a basis of L
satisfy dim / homogeneous linear equations which are linearly independent.
It follows that

dim I+ =dim L —dim I.
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Now consider the subspace I NI+, This is an ideal of L. Thus the Killing form
of NI+ is the restriction of the Killing form of L, by Proposition 4.6. Hence
INTI+ is soluble, by Theorem 4.9. Since L is semisimple we have INT+= 0.
Thus

dim (/+1") = dim/ +dim I —dim (IN1*)
=dim 7 +dim - =dim L.

Hence I+ 1+ =L. Thus L is the direct sum of its ideals / and I*. Hence L is
isomorphic to the Lie algebra I ®1+.

We shall now show that [ is a simple Lie algebra. Let J be an ideal of I.
Then we have

[JL]C[JN+[J ] clincJ

since [JI*+] C[II*] CINI* = 0. Thus J is an ideal of L contained in /. Since
I is a minimal ideal of L we have J =0 or J=1. Thus [ is simple.
We show next that /* is semisimple. Let J be a soluble ideal of /1. Then

LIC [+ [t i) cJ

since [JI]C [I*I] CINI*=0. Thus J is an ideal of L. Since L is semisimple
and J is soluble we have J = 0. Thus I* is semisimple.

Now we know dim I+ < dim L. By induction we may assume I is a direct
sum of simple non-trivial Lie algebras. Since L=1& I+ and I is simple and
non-trivial, L is also a direct sum of simple non-trivial Lie algebras.

Conversely suppose that

L=L & --®L,

where each L, is a simple non-trivial Lie algebra. Each L, is semisimple so
has non-degenerate Killing form by Theorem 4.10. Now each L; is an ideal
of L. Moreover if x;€ L;, x;€L; and i % j then (x;, x;)=0. For

adx; adx;-yeL,NL;=0 forall yeL
thus (x;, xj) =tr(ad x; adx;) =0.
Now let x=x,+---+x, € L* with x; € L,. Let y, € L,. Then we have
(x5 yiy = (x,y;) =0.

Since this holds for all y; € L; we have x; =0. This holds for all i, hence x =0.
Thus L' = O and the Killing form of L is non-degenerate. This implies that
L is semisimple by Theorem 4.10. |
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4.3 The Cartan decomposition of a semisimple Lie algebra

When L is semisimple we can say much more about its Cartan decomposition
than in the general case. We shall now investigate this Cartan decomposition
in detail.

Let L be semisimple, H be a Cartan subalgebra of L, and L=¢P L, be the
Cartan decomposition of L with respect to H. We recall from Proposition 4.1
that Ly=H.

Proposition 4.12 L, and L, are orthogonal with respect to the Killing form,
provided p# —A.

Proof. LetxeL,,y€L,. We assume A+ u # 0 and must show that (x, y) =0.
Now for any weight space L, we have
adxady L, CLy,., by Proposition 4.2.

We choose a basis of L adapted to the Cartan decomposition. With respect
to such a basis ad x ad y will be represented by a block matrix of form

0
0 *
* 0
0
since A+ u+v#v. Hence we have
(x,y) =tr(ad x ad y) =0. O

Proposition 4.13 If « is a root of L with respect to H then —a is also a
root.

Proof. We recall that « is a root if a0 and L, # O. Suppose if possible that
—a is not a root. Since —a#0 we have L_, = 0. By Proposition 4.12 we
see that L, is orthogonal to all L,, hence L, C L*. But since L is semisimple
we have L' = O by Theorem 4.10. Thus L, = 0, which contradicts the fact
that « is a root. Ul

Proposition 4.14 The Killing form of L remains non-degenerate on restric-
tion to H. Thus if x € H satisfies (x,y) =0 for all ye H then x=0.
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Proof. Let x € H and suppose (x, y) =0 for all y € H. We also have (x, y) =0
for all ye L, where a#0, by Proposition 4.12. Thus (x, y) =0 for all ye L
and so x € L*. Since L is semisimple L' = O, hence x =0 as required. ~ [J

Note that the Killing form of L restricted to H does not coincide with the
Killing form of H. The latter is degenerate since H is not semisimple.

Theorem 4.15 [HH]|= O. Thus the Cartan subalgebras of a semisimple Lie
algebra are abelian.

Proof. Let xe€[HH] and y € H. Then we have
(x,y)=tr (adx ady)=) dimL, A(x)A(y)
X

since ad x ady is represented on L, by a matrix of form

A(X)A(y) *

o

A(X)A()
However, A is a 1-dimensional representation of H and x€[HH], hence
A(x) =0. Thus {x, y) =0 for all y € H. This implies x =0 by Proposition 4.14.
Thus [HH] = 0. U

Let H*=Hom(H, C) be the dual space of H. This is the vector space of
all linear maps from H to C. We have dim H*=dim H.

We define a map H — H* using the Killing form of L. Given he H we
define h* € H* by

h*(x)=<{h, x) for all xe H.

Lemma 4.16 The map h— h* is an isomorphism of vector spaces between
H and H*.

Proof. The map is certainly linear. Suppose & € H lies in the kernel. Then
(h,x)=0 for all x€ H. This implies #=0 by Proposition 4.14. Thus the
kernel is O. Hence the image must be the whole of H*, since dim H* =dim H.
Hence our map is bijective. |

Now we have a finite subset ® C H*, the set of roots of L with respect
to H. For each a € ® there is a unique element 4/, € H such that

a(x)=(h,, x) for all xe H.
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(The notation h, might seem more natural, but this will be reserved for the
coroot of «, to be discussed in Chapter 7.)

Proposition 4.17 The vectors hl, for a € ® span H.

Proof. Suppose if possible that the %/, lie in a proper subspace of H. Then
there exists an element x € H with x#0 and (4, x) =0 for all a« € ®. Thus
a(x)=0 for all « € ®. Let y € H. Then we have

(x,yy=tr (adx ady)=> dimL, A(x)A(y)=0

since A(x)=0 for all weights A. Thus (x, y) =0 for all y€ H. This implies
x=0 by Proposition 4.14, a contradiction. |

Proposition 4.18 1) €[L,L_,]| for all a € .

Proof. L, is an H-module. Since all irreducible H-modules are 1-dimensional
L, contains a 1-dimensional H-submodule Ce,. We have [xe,] = a(x)e, for
all xe H.

Let yeL_,. Then [e,y]le[L,L_,]CH. We shall show that [e,y]=

a——a

(e, y) M. In order to prove this we define
z=[e,y]—(eq y) i, €H.
Let xe H. Then
(x,2) = (x. [e,)]) — (€q> ¥) {x. h,)
= ([xe,]. y) = (ean y) a(x)
= a(x) (&4, y) — (€4, y) 2(x) =0.
Thus (x, z) =0 for all x € H, and it follows that z=0. Hence
e, y]={es y) I, forall yeL_,.

Now we can choose y € L_, such that (e,, y) #0. Otherwise ¢, would be
orthogonal to L_,, so orthogonal to the whole of L by Proposition 4.12. Then
e, € L. But L+ =0 since L is semisimple. Thus e, =0, a contradiction. Thus
we can find ye L_, with (e, y) #0. Then

h, = [eay] €[LoL ] u

(€qs ¥)
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Proposition 4.19 (%, k) #0 for all o€ P.

Proof. We suppose that (&), h/,) =0 for some o € ® and obtain a contra-
diction. Let 8 be any element of ®. By Proposition 4.4 there is a number
rg.o € Q such that B=rg ,a when restricted to [L,L_,]. Since h, €[L,L_,]
by Proposition 4.18 we obtain

B (hy) =rg o (hy)

that is (h}g )= rgo (M, h,) =0.
This holds for all 8 € ®. But by Proposition 4.17 the elements hj for 8 € ®
span H. Thus we have (x, i) =0 for all x € H. This implies that 4/, =0 by

Proposition 4.14. This in turn implies that @ =0, which contradicts o € ®.
U

Having obtained a number of results on the Cartan decomposition of a
semisimple Lie algebra, each depending on previous results, we are now able
to obtain one of the most important properties of the Cartan decomposition.

Theorem 4.20 dim L, =1 for all a € ®.

Proof. We choose a 1-dimensional H-submodule Ce, of L, as in Propo-
sition 4.18 and, as in the proof of that proposition, we can find an element
e_,€L_, with [eje_,|=Hh,,.

We consider the subspace M of L given by

M=Ce, ®Ch,BL_,®L_,,®---

There are only finitely many summands of M since @ is finite and there are
only finitely many non-negative integers r with L_,, # O.

We observe that ade,M C M. For
[ea€,]=0
leoh,]=—a(h,)e,
leey]=(eey) by forallyel ,,
by the proof of Proposition 4.18, and
ade,-L_,, CL_(_), for all r>2,

by Proposition 4.2.
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Similarly we can show that ade_,M C M. For we have
le_oea] =—h,
le_ohe]l=a(h)e,

and ade_,L_,,CL_(, ), forall r>1.

- —ra

Now A/, =[e,e_,] and so

—ade_, ade

adh, =ade, ade_, o ade,.

Hence ad h,M C M. We shall calculate the trace of ad 4/, on M in two
different ways. On the one hand we have

try (ad ) = @ (W) +dim L (—ax (1)) +dim Ly, (~2a (H}) +- -
=a(h,)(l—-dimL_,—2dimL_,,—---).
On the other hand we have
try, (ad b)) =tr, (ade, ade_,—ade_, ade,) =0.
Thus
a(h,)(l1—dimL_,—2dimL_,,—---)=0.
Now « (h),) = (h.,, h,,) #0 by Proposition 4.19. Thus
l-dimL_,—-2dimL_,,—---=0.

This implies that dimL_, =1 and dimL_,, =0 for all r>2. Now a € ® if
and only if —a € @, by Proposition 4.13. Thus dimL,=1 forall a e ®. []

Note that although all the root spaces L, are 1-dimensional the space
H =L, need not be 1-dimensional.

Proposition 4.21 If a € ® and ra € ® where r € Z then r=1 or —1.

Proof. This follows from the proof of Theorem 4.20, where we showed that,
for all @ € @, —ra ¢ ® for all r>2. This, together with the fact that ra € ®
if and only if —ra € ®, gives the required result. U

We shall now obtain some further properties of the set ® of roots. Let
o, B € ® be such that S « and 8 # —a. Then B cannot be an integer multiple
of a, by Proposition 4.21. There exist integers p>0, g>0 such that the
elements

—pa+fB,....,—a+pB, B,a+B,...,qu+p
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all lie in @, but —(p+1)a+B and (¢+ 1)+ B do not lie in ®. The set of
roots

—pa+8,...,qu+B

is called the a-chain of roots through . Let M be the subspace of L defined by
M= L—pa+[3 DD quH—B'

Then we have ade,M C M. This follows from the fact that ade,L,,,zC
L i1yarp @0d Ligi1)q15=0since (¢+1)a+B ¢ P and (¢+ 1)+ B #0. Sim-
ilarly we see that ade_ M C M.

We assume that [e,e_,] =1, as in the proof of Theorem 4.20. Then we
have

adh),=ade, ade_,—ade_, ade,

and so ad h,, M C M. We calculate the trace of ad i), on M in two different
ways. We have

q

try (ad b)) = >° (ra+B) (y,)

r=—p

since dim L, s =1. We also have
try, (ad k) =tr, (ade, ade_,) —try (ade_, ade,) =0.

Thus

q

> (ra+B) () =0,

r=—p

that is

(q(q+1)_p(p+1)
2 2

)a(M)+%p+q+4)BU¢)=0

Since p+g+1+#0 we obtain

(q_p) ’ ’ ’ ’
2 <ha’ha>+(ha’hﬁ>zo’
that is
(1> 1)
iy~ P71

since (K, h),) #0 by Proposition 4.19. Thus we have proved the following
result.
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Proposition 4.22 Let «, 3 be roots such that B# « and B# —a«. Let

—pa+pB,...,8,...,qu+B
be the a-chain of roots through 3. Then
)
(Bes )
This result has some useful corollaries. The first gives a strengthening of
the result of Proposition 4.21.

=p—q. U

Proposition 4.23 If a € ® and (o € ® where (€ C, then { =1 or —1.

Proof. Suppose if possible that {#+1. We put 8=« and apply Proposi-
tion 4.22. This gives

(s )
(B )
Hence 2{ € Z. If { € Z then {==1 by Proposition 4.21. Hence { ¢ Z. Then
the a-chain of roots through S is

—(p——;])a,...,ﬁz(p—;1>a,...,<pT+q>a

Now p, g are not both 0 since 87£0. So all the roots in the a-chain are odd
multiples of %a. Since the first and the last are negatives of one another
and consecutive roots differ by « it is clear that %a lies in the chain. Hence
%a € ®. Since a € ® we have a contradiction to Proposition 4.21. Hence {
must be 1 or —1. Ul

20=2 =p—q.

Thus the only roots which are scalar multiples of a root « are « and —a.
Proposition 4.24 (1, h;) € Q for all a, B ®.

Proof. We know from the outset that (h; hk) € C. Now we have

ZM ez by Proposition 4.22
(hg 1) o
(s 1) . .
Thus TN € Q. It will therefore be sufficient to show that (A, i},) € Q.

Now we have

(W ) =tr(ad W, ad h) = 3" (B(H,))*= 3 (M. ).

Bed Bed
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AN A
T iy h'> ?( wy) €%

Hence (%, h,,) € Q and the result is proved. O

If follows that

4.4 The Lie algebra s(,(C)

We shall now illustrate the general results about the Cartan decomposition of
a semisimple Lie algebra by considering in detail the Lie algebra 3[,(C). The
special linear Lie algebra 3(,(C) is the Lie algebra of all n x n matrices of
trace O under Lie multiplication [AB] = AB— BA. 3(,(C) is a subalgebra of
al,(C)=[M,(C)]. We have
dimgl, (C)=n?, dims(,(C)=n*—1.

We shall assume n > 2. Then 3[,(C) has a basis

Ell _E22’ E22_E33’ R Enfl,nfl _Enn’ Eij l#]

where the E;; are elementary matrices.
Theorem 4.25 3[,(C) is a simple Lie algebra.

Proof. We have g[,(C)=3l,(C)®CI,. Now every ideal of 3[,(C) is an
ideal of gl,(C). For [1, 3(,(C)] I implies [I, g, (C)]C I since [x,1,]=0
for all x € 1. It will therefore be sufficient to show that the only non-zero ideal
of g[,(C) contained in 3(,(C) is equal to 3[,(C).

Let I be a non-zero ideal of g[,(C) contained in 3[,(C). Let x € with
x#0. Then

x=) x,E, with x,, € C.

Not all x,, are zero.
Suppose first that there exist i # j with x;; 0. Then

[ ”’prq p‘I] thq iq ZXI’IE el

Also

[[Ei» x],E;;] =x,E;+x,E; €l

i® ij=ij Jit=ji
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Hence

[Ei—E,;. x;;E;;+x,E;|=2x,E;—2x,E; €.

Ji» JUT gt ij=ij JUT

Thus 4x;;E;; € I. Since x;; #0 we have E;; € 1.

ijij

Now suppose that x;; —O for all i # j. Then x=3x,,E,,.
and not all x,, =0 the x,, are not all equal. Suppose x;; # x;;. Then

Since Y_x,, =0

rr

[x, ;] = (xi—x;,) E;j €1

and so E;; €l.
Thus in either case there exist i # j with E;; € I. Let g #1, j. Then

[E;.E, | =E, €l

l]’

Thus E,, €1 for all g#i. Now let p#i, g. Then
[E,..E, | =E, €l

pi>

Hence E,, €1 for all p#gq. Also

[E,-E,|=E,,—E,<cl forall p#gq.

rq’

But the E,,—E,, for p#q and the E,, for p#q generate 3[,(C). Thus
I1=3[,(C) and 3(,(C) is simple. O

We next determine a Cartan subalgebra of 3(,(C). We write L =3[, (C).

Proposition 4.26 Let H be the set of diagonal matrices in L. Then dim H =
n—1 and H is a Cartan subalgebra of L.

Proof. The vector space of diagonal n x n matrices of trace 0 clearly has
dimension n — 1. It is a subalgebra H of L with [HH] = O. Thus H is nilpotent.
To show H is a Cartan subalgebra we must show H = N(H).

Let 3, ; A;;E;; lie in N(H). Suppose if possible that A;; #0 for some i # j.
We have

|:Z M Eres Z )‘l, lj]

for all 3, uiEy, € H. The coefficient of E; in this matrix is (u,— ;) A,
Thus if we choose (i, j) such that i# j and A;; #0 and choose »°; u, Ey, € H
with u;7# u; we obtain a contradiction. Hence A;;=0 for all i j. Thus
N(H)=H and H is a Cartan subalgebra of L. U

We next obtain the Cartan decomposition of L with respect to H.
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Proposition 4.27 Let H be the subalgebra of diagonal matrices in L. Then
the Cartan decomposition of L with respect to H is

L=H®) CE,;.
i#j

Proof. This is certainly a decomposition of L into a direct sum of sub-
spaces. To show it is a Cartan decomposition it is sufficient to verify that
the 1-dimensional subspaces CE;; for i # j are H-submodules of L. Now we
have

|:Z AEpgs Eij:| = ()‘i - )‘j) E;

k=1

and so CE;; is indeed an H-submodule. U
We next obtain the roots of L with respect to H.

Proposition 4.28 The roots of L with respect to H are the functions H— C
given by

A %)

Proof. This follows from the Cartan decomposition given in Proposition 4.27.

O

We next calculate the value of the Killing form (x, y) when x, ye€ H.

Proposition 4.29 Let x=)"_ | \,E
2n tr(xy).

y=>1 wE; lie in H. Then {(x,y)=

i’

Proof. We have

(x,yy=tr(adx ad y) = Z ()\i — )\j) (Mi _Mj)
Py

since ad x adyEijz()\i—/\j) (,ui—,u,j) E; fori#j,and adx ady H=0.
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Hence

(x,y)= Z (A= A)) (i —m))

=Z)\il’«i"‘z)\jﬂj_z)\iﬂj_z)‘j“i
ij i ij ij

o)) )
=2n tr(xy), since Z)\I-=Zp,i=0. O

We may use this knowledge of the Killing form of L restricted to H to
determine the elements s, € H corresponding to the roots « € ®.

Proposition 4.30 Ler o;; € O satisfy

;1
Then I, = >~ (E;—Ej).

Proof. Let x=3}_}_, A\,E; € H. Then we have
1

1
P (E;—E;),x)=2ntr P (E;—E;)x
= A, —A;=q;;(x), by Proposition 4.29.
However, h/a,-/ € H is uniquely determined by the condition <h;il_, x>=aij (x)

1
for all x € H. Hence h;, = > (Ei—E}). 0
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The root system and the Weyl group

5.1 Positive systems and fundamental systems of roots

As before, let L be a semisimple Lie algebra and H be a Cartan subalgebra.
Let ® be the set of roots of L with respect to H. We know by Proposition 4.17
that the elements /), « € ®, span H. Thus we can find a subset which forms
a basis of H. Let h;],..., h;l form a basis of H.

Proposition 5.1 Let o € ®. Then h), =Z§:1 wihy, where each ; lies in Q.

w; €C. Let <h;‘_, h;‘1> =§,;- Then &;; € Q by Proposition 4.24. We consider the
system of equations:

Proof. We know that h),=3"_, p;h, for uniquely determined elements

(1 hix,):l'l’lé:ll +uro+ o+
(A, h;2>=M1§12+M2§22+‘"+,U«1§12

(A, h;,> =mi &yttt €y

This is a system of [ equations in [ variables w,, ..., pu,. Now det (§;) #0
since the Killing form on L is non-degenerate on restriction to H, by Propo-
sition 4.14. Thus we may solve this system of equations for u,, ..., u; by
Cramer’s rule. Since <h’a, h/a,) €Q and all §;;€Q we deduce that u; € Q for
i=1,...,L U

We denote by Hy, the set of all elements of form Zf;l wih, for p; € Q and
Hy, the set of all such elements with w; € R. Proposition 5.1 shows that H
and Hy, are independent of the choice of basis h;, . Also Hy, is the set of all

56
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rational linear combinations of the %, o € ®, and Hy is the set of all real
linear combinations of such elements.

We show next that the Killing form of L behaves in a favourable manner
when restricted to Hy.

Proposition 5.2 Let x € Hy. Then (x, x) € R and {(x, x) > 0. If {x, x) =0 then
x=0.

Proof. Letx=Y_, w;h, . Then we have

[
(x,x) = ZZI—MM;’ <h/a,-’ hév,)

i=1 j=1

=3 S pam, t (adl, ad i )
—ZZMMZA(”) ()

Aed

—ZZZMM, () A (n,)

Aed i

2
=2 (Z/-Li)‘ (h;)) :
Aed i
Now A(h;/_):(h;, h;i>e(@ by Proposition 4.24. Thus we have (x, x) € R,
and also (x, x) >0.

Suppose that (x, x) =0. Then we have ), u;A (h/a) =0 for all Ae®. In

particular Y, ,a; (k) =0 for j=1,..., 1. This gives ¥, /ui<h;l, h;/):O,

that is Y, u,&;=0. Since the matrix (&) is non-singular we deduce that
=0 for all i. Thus x=0. U

This proposition shows that the Killing form restricted to Hp is a map
Hy x Hy — R which is a symmetric positive definite bilinear form. The vec-
tor space Hy endowed with this positive definite form is a Euclidean space.
This Euclidean space contains all vectors h,, for o € ®.

We recall from Lemma 4.16 that we have an isomorphism # — h* from H
to H* given by h*(x)=(h, x). We define H} to be the image of Hy under
this isomorphism. H}; is the real subspace of H* spanned by ®. We may also
define a symmetric positive definite bilinear form on Hy by

(hi, h3) =(hy, hy) €R.
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Thus Hj becomes a Euclidean space containing all the roots a € ®. We shall
investigate the configuration formed by the roots in the Euclidean space H.
We shall, for the time being, write V = H}.

A total ordering on V is a relation < on V satisfying the following axioms.

(1) A<p and p < v implies A <.
(ii) For each pair of elements A, uw €V just one of the conditions A <pu,
A=, <A holds.
(iii) If A<p then A+v<pu+v.
(iv) If A< p and £ € R with >0 then €A < €u, and if £ <0 then &u < €A.

Every real vector space has such total orderings. If v, ... , v, are a basis of V
and A=Y Av;, u=> pu;v; with A # u then we may define A < if the first
non-zero coefficient w, — A, is positive. This gives us a total ordering on V.

A positive system & C ® is the set of all roots a € ® satisfying 0 < «
for some total ordering on V. Given such a positive system dt we define
the fundamental system IIC ®* as follows: a €Il if and only if o€ ®*
and « cannot be expressed as the sum of two elements of ®*. ®~ is the
corresponding set of negative roots.

Proposition 5.3 Every root in ®* is a sum of roots in TL.

Proof. Let a € ®*. Then either a €Il or a=B+7y where B,y dt and
B < a, ¥y < a. We continue this process, which must eventually terminate since
®* is finite. Thus « is a sum of elements of II. |

Proposition 5.4 Let a, B €1l with a+ . Then {(a, B) <0.

Proof. We first observe that « — 3 ¢ ®. For if o — 3 € ® we would have either
a—Bedtor —aecdt. If a—Bed then « =(a— B)+ B which contra-
dicts a e IL.If B — a € d* then B = (B — ) + @ which contradicts 8 € I1. Hence
a— B & P. We now consider the a-chain of roots through . This has form

B.,a+pB,...,qa+p
since —a+ 3 ¢ ®. By Proposition 4.22 we deduce

(hyys hy) '
However, (h),, h,) >0, hence (h’a hk) <O0. It follows that (&, B) <O0. O

Thus any two distinct roots in the fundamental system II are inclined at an
obtuse angle.
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Our next result shows the importance of the concept of a fundamental
system of roots.

Theorem 5.5 A fundamental system 11 forms a basis of V = Hj,.

Proof. We first show that II spans V. We know by Proposition 4.17 that
® spans V. Since @ € ® if and only if —a € ® we see that T spans V. By
Proposition 5.3 we deduce that II spans V.

We show now that the set II is linearly independent. Suppose this were
false. Then there would exist a non-trivial linear combination of the roots
a; €1 equal to zero. We take all the terms with positive coefficient to one
side of this relation. Thus we have

e e e A R A

Where,u,il,... U T R ,/.LjA>OaI1d e N TR . TRRTIN . ) are distinct

L2

elements of II. We write
U QG e QG = O A

Then we have(v, v) =(,ul-] ottt aj-l). We deduce
(v, v) <0 by Proposition 5.4. Since the form is positive definite this implies
that v=0. However, 0 <v since we have 0 <q; for all o, €Il and u,;> 0.
This gives a contradiction. Thus II is linearly independent. Ul

We see in particular that [I1| =/=dim H. Thus the number of roots in a
fundamental system is equal to the rank of the Lie algebra L.

Corollary 5.6 Let I1 be a fundamental system of roots. Then each o € ® can
be expressed in the form a=)_ n,a; where o, €ll, n,€Z and either n;>0
for all i or n; <0 for all i.

Proof. The roots a € ®* have all n; >0 and the roots « € - have all n, <0.
U

5.2 The Weyl group

Inside the root system @ a positive system ®* can be chosen in many different
ways. However, we shall show that any two positive systems in @ can be
transformed into one another by an element of a certain finite group W which
acts on .
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For each a € ® we define a linear map s, : V— V by

(@, x)

(a,

s,(x)=x-2 forall xe V.

As before, V = Hp. This map s, satisfies
s,(a) = —a
s,(x)=x if {a, x)=0.

There is a unique linear map satisfying these conditions — the reflection in
the hyperplane of V orthogonal to «. Thus s, is this reflection.

The group W of all non-singular linear maps on V generated by the s, for
all a € @ is called the Weyl group. This group plays an important role in the
Lie theory. It is a group of isometries of V, that is we have

(wx, wy) =(x, y) forall x,yeV.

Proposition 5.7 W permutes the roots. Thus if « € ® and we W then w(a) €
P.

Proof. 1t is sufficient to show that s,(8) e ® for all o, B P since the
elements s, generate W. If B =« or —a this is clear. Thus suppose 3 # *«.
Let the a-chain of roots through S be

—pa+B,...,B,...,qu+B.

Then we have

(@, B)
(a, @)
by Proposition 4.22. Now —(p—¢g)a is one of the roots in the a-chain
through B. Thus s,(8) € ®.

In fact we observe that s, inverts the above a-chain of roots. In particular
we have

5,(B)=p—2 a=B—(p—q«

Sa(qa+B)=—pa+B, s,(—pa+p)=qa+p. 0
Proposition 5.8 The Weyl group W is finite.
Proof. W permutes ®@ and & is finite. If two elements of W induce the same

permutation of @ they must be equal, since ® spans V. Since there are only
finitely many permutations of ®, W must be finite. |
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Now suppose that ®7 is a positive system in ® and that IT is the corre-
sponding fundamental system.

Lemma 5.9 Let acll. If Be ®F and B+# «a then s,(B) € DT.

Proof. We can express 3 in the form

1

B=>_ne; a,ell, n,eZ, n>0
i

by Corollary 5.6. Since B# « there must be some n,#0 with o; #a. We
then consider

B
(B=B-27"

and express this as a linear combination of the elements of I1. The coefficient
of a; in s,(B) remains n;. Since n; >0 we deduce from Corollary 5.6 that
Sa(B) € DT O

Theorem 5.10 Let ®, @ be two positive systems in ®. Then there exists
weW such that w (®}) = 5.

Proof. Let m=|® Nd;|. We shall use induction on m. If m=0 we have

® = ® and so w=1 has the required property. Thus we may assume m > 0.
Let I1, be the fundamental system in ®;. We cannot have I, C ®; as this

would imply @ C @, contrary to m > 0. Thus there exists a € [T, N ®;.
We consider s, (CDT) This is also a positive system in ®. By Lemma 5.9

s, (CDT) contains all roots in @} except «, together with —a. Thus we have

5o (®F)NDy | =m—1.

By induction there exists w’'€ W such that w's, (®])=®;. Let w=uw's,.
Then w (@) =®; as required. O

Corollary 5.11 Let I1,,1I1, be two fundamental systems in ®. Then there
exists we W such that w (11,) =11,.

Proof. Let ®, ®F be positive systems containing I1,, IT, respectively. Let
®F =w (®;). Then w(Il)) is a fundamental system contained in @3, so
w (I1,) =11,. O

Proposition 5.12 Let I1 be a fundamental system in ®. Then for each a € ®
there exist o; €Il and we W with a =w («;).
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Proof. Let ®1 be the positive system with fundamental system II. First
suppose @ € ®*. Then we have

l

a=Y nme; o €ll, neZ, n>0
i

by Corollary 5.6. We define the height of a by
hta=) n,.

We shall argue by induction on hta. If hta=1 then @ =q; for some i and
a €lIl. The result is obvious in this case. Thus suppose hta > 1. Then we
have n; > 0 for at least two values of i by Proposition 4.21. Now

(a, @)= an(a, a;).

Since (@, @) >0 and each n;>0 there exist «; €Il with (@, @;)>0. Let
s;(a)=p. Then B € ® and

(), @)

()

Since {(a;, @) >0 we see that ht 8 <hta. On the other hand B € ®* since
only one coefficient n; is changed in passing from « to 3, thus at least one
coefficient remains positive in 8. By Corollary 5.6 this is sufficient to show
that B € ®*. By induction there exist &; € [l and w’ € W such that 8=/’ (a j).
Then

B=a—-2—""-=

a=s;(B)=su (aj)
as required.

Finally we suppose that « € ®~. Then a=s,(—«a) and —a € ®*. Thus
—a=w'(«;) for some w' € W, a; €Il. Hence a=s,w' (¢;) as required. [

Thus each root is the image of some fundamental root under an element of
the Weyl group.

We show next that W is generated by the reflections corresponding to roots
in a given fundamental system.

Theorem 5.13 Let [1={«,, ..., «,} be a fundamental system in ®. Then the
corresponding fundamental reflections s, ... , s,, generate W.

Proof Let W, be the subgroup of W generated by s S4,- Since the
. generate W for all a € @ it is sufficient to show that each s, lies in W,,.
We may assume « € Ot since s, =s_,. Now the proof of Proposition 5.12

[ TRIRE)

ar
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shows that a =w (e;) for some «; €Il and some we W,. We consider the
element ws, w™' € W,. We have

ws,, w! (a) = ws,, (@) =w () = —a.

We shall also show wsaiw‘l(x)zx if {a,x)=0. For (@, x)=0 implies
(w™'(a), w™ ' (x)) =0, that is (e, w'(x))=0. This gives s, w™'(x)=
w'(x), ie. ws,w ' (x)=x. Thus ws, w™"' is the reflection in the hyper-
plane orthogonal to «, that is u;saitu‘1 =s,. This shows that s, € W,. Hence
Wy=W. O

We now wish to obtain further information about the way in which the
Weyl group W is generated by a set of its fundamental reflections. As before
we let [1={«,, ..., «,;} be a fundamental system of roots and consider the
corresponding set of fundamental reflections. For simplicity we write

S| =Sas 2= Says  cees S =Sg-

Then each element of W can be expressed as a product of elements s;. (We
do not need to introduce inverses since s; ' =s,.) For each we W we define
[(w) to be the minimal value of m such that w can be expressed as a product
of m fundamental reflections s;. /(w) is called the length of w. It is clear
that /(1) =0 and [ (s;) =1. An expression of w as a product of fundamental
reflections s; with /(w) terms is called a reduced expression for w.

We shall relate /(w) to another integer n(w). We recall that each element
we W permutes the elements of ®. We define n(w) to be the number of
roots & € & for which w(a) € ®~. Thus n(w) is the number of positive roots
made negative by w. We aim to show that I(w) =n(w).

Proposition 5.14 n(w) <Il(w) for all we W.

Proof. We shall first compare n(w) with n (ws;). We recall from Lemma 5.9
that s; transforms «; to —a; and all positive roots other than «; to positive
roots. It follows that

n(ws;) =n(w)x1.

In order to determine the sign we consider the effect of w and ws; on ;. If
w (a;) € Pt then w transforms «; to a positive root and ws; transforms «; to
a negative root. Hence n (ws;) =n(w)+ 1. On the other hand if w(e;) € &~
then we get the reverse situation and n (ws;) =n(w) — 1.
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Now let us take a reduced expression

W=s; 5 ...5; r=1I(w).
Then we have
n(w)y<n(s,...s; )+1=<n(s, ...s;, )+2=<---<r
Thus n(w) <I(w) as required. 0O

In order to prove the converse result /(w) <n(w) we shall first prove a
result called the deletion condition which is important in its own right.

Theorem 5.15 Let w=s; ...s; be any expression of we W as a product of
Sfundamental reflections. Suppose n(w) < r. Then there exist integers j, k with
1 <j<k<r such that

L

W= 8 Sy S,

where ~ denotes omission.

Proof. We recall from the proof of Proposition 5.14 that, for all we W,
n (ws;) =n(w) £ 1. Consider the given expression

Since n(w) < r there exists k with 1 <k <r such that

n(s,-l ...s,-k):n(s,-I ...s,-H)—l.

This implies s; ...s; | (a,-k) € ®~ as in the proof of Proposition 5.14. Since

@, € ®F there exists j with 1 <j<k such that

S8 () e®t

i "t Vi

s (aik) ed.

Si i Si
By Lemma 5.9 s; transforms only one positive root into a negative root,
J
namely «; . Thus we have
J

5oy (@) =ay.

It follows that the reflections Sip> S

i associated with the roots «; , a; are
related by

1

=8 ...8

i 88 A
i Lt U1 U Pl Pijy
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This implies

Si iy S = Si e Sy iy
Thus we have
Siy e S S8 S S i Siy e S,
and so w=s; ...5 ...5; ...s; asrequired. O
1 J k r

Corollary 5.16 n(w)=1(w).

Proof. We know from Proposition 5.14 that n(w) < I(w). Suppose if possible
that n(w) <l(w). Let w=s; ...s; be a reduced expression, thus r=1I(w).
Since n(w) < r we may apply Theorem 5.15 to show that w is a product of
r —2 fundamental reflections. This contradicts the definition of I(w). Ul

Thus the length of w is equal to the number of positive roots made nega-
tive by w.

Proposition 5.17 (a) The maximal length of any element of W is |®7|.
(b) W has a unique element w, with I (w,) = |D*|.

(©) w (®) ="

(d) wi=1.

Proof. Since I(w) =n(w) we have I[(w) <|®7|. For each fundamental system
ITC ®, —II is also a fundamental system, coming from the opposite total
ordering. Thus by Corollary 5.11 there exists w,€ W with w,(IT) =—II.
Hence w, (®7)=®~ and n(w,)=|P*|. Thus I (w,)=|P*| also and w, is
an element of W of maximal length.

Now let wyeW also have [(wy)=|®*|. Then n(wy)=|P*| and so
w) (@) =d". Let w=(w)) " w,. Then w(d*)=d* and so n(w)=0.
Hence /(w) =0 and so w=1. Thus w,=w, and the element w, of maximal
length is unique.

Finally we have wj (®*)=®" and so n(wj)=0. Hence ! (w}) =0 and
wi=1. O

5.3 Generators and relations for the Weyl group

In this section we shall give a description of the Weyl group W by means of
generators and relations. Let the order of the element s;5;, € W be m;; when

i].
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Theorem 5.18 W is isomorphic to the abstract group given by generators
and relations:

<S1,~--,51§Si2=1, (sisj)’”i./zl fOI‘l;ﬁ])

A group defined by generators and relations of this form is called a Coxeter
group. Thus the theorem asserts that the Weyl group is a Coxeter group.

Proof. Since W is generated by s,,...,s, and the relations s?=1 and
(si5;)"" =1 hold in W it is sufficient to show that every relation

s, =1

si I
in W is a consequence of the defining relations. Now each s; is a reflection,

thus dets;=—1. Hence det (s; ...s; )=(—1)". If 5, ...s; =1 we deduce that
r must be even. Let r =2¢g. We shall show that

is a consequence of the defining relations, by induction on ¢. If g=1 the
relation is 5; 5, =1, hence s, =s; ' =5, . Our relation is thus 57 =1, which is
one of the defining relations.

We may therefore assume inductively that all relations in W of length less
than 2g are consequences of the defining relations.

Now the given relation can be written
i S S = Siy, e Siy

Thus [ (si] e siqs,-ﬁ]) < g+ 1. Hence, by the deletion condition Theorem 5.15,

we have

e Si =S Si e S S
for certain j, k with 1 <j<k<g+1. Now unless j=1 and k=g +1 this is
a consequence of a relation with fewer than 2¢ terms. It can therefore be
deduced from the defining relations. The relation

~ ~
S oS auS LS =S8 LS
B L Lk tg+1 2q Ig+2

has 2g — 2 terms, so is also a consequence of the defining relations. Thus the
given relation

will be a consequence of the defining relations, unless we have j=1 and
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We may therefore assume that j=1 and k =g+ 1. Thus we have

Sy e Sy =Siy e Si
that is
Sip e S =S8
We now write the original relation
Siy e Sy, = 1
in the alternative form
) s =1

In exactly the same way this relation will be a consequence of the defining
relations unless

e Si = Siy S
If this relation is a consequence of the defining relations then the relation

=1

i+ Sin, Siy
will also be a consequence of the defining relations, by the above argument,
and we are done.

Now s; ...s; =s; ...s; _ is equivalent to
2 q+1 3 q+2

L5 =1

N I PO N T
3 Ig " lg+1 lg42 g+l 4

i35, S,

and this will be a consequence of the defining relations unless

S$;.8,. 8 8 =S

iSi Sy oS i S e S8
i3 Vi3 iq ip¥is ig gt

We may therefore assume this to be true. But we also have

Sy SiySiy - o Sj =S, S8 Si

and so s; =s;.. Hence the given relation

Siy - Sy, =
will be a consequence of the defining relations unless s; =s;..
However, the given relation can be written in the equivalent forms
Siy oo S0y, Sy =1

1

S; S; 8

R ¥ . ., =
3 LR )
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and so on. Thus this relation will be a consequence of the defining relations
unless we have

Thus we may assume that the given relation has form

iy SiySiySiy - 8iy S, =1

si2

that is (silsiq)qz 1. Now the order of s; s, is m,;, hence m;; divides g.
Thus the relation (silsiq)qzl is a consequence of the defining relation
(sils,-z)m"“'2 =1. This completes the proof. O

This remarkable proof, due to R. Steinberg, shows that the Weyl group W
is a finite Coxeter group.
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The Cartan matrix and the Dynkin diagram

6.1 The Cartan matrix

We shall now investigate in more detail the geometry of the system of roots
® in the vector space V =Hj. We recall from Proposition 5.2 that V is a
Euclidean space with respect to the scalar product (, ). The roots ® span V
but are not linearly independent. Any fundamental system IIC ® forms a
basis of V.

We first consider the possible angles between pairs of roots «, 8 € ® and
the relative lengths of the roots a, 8. The angles will be taken to satisfy
0<o<m.

Proposition 6.1 Let o, B € ® be such that B# ta. Then:

(i) the angle between a, B is one of w/6, w/4,w/3, w/2,2w/3,3w/4,57/6
(i) if a, B are inclined at w/3 or 2m/3 then «, B have the same length
(iii) if , B are inclined at w/4 or 31/4 then the ratio of their lengths is \/2
(iv) if a, B are inclined at w/6 or 57/6 then the ratio of their lengths is /3.

Proof. Let 6 be the angle between «, 3. Then we have

(o, B) =|a|[B]cos f
where |a| =./{«, a). Hence

(@B (@B (Ba)
(0, a)(B.B) (@) (B.B)

cos’f =

and so

2y o (aB) (B.a)
4 cos 9_2<a,a> 2<B”B>.

69
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Now we recall from Proposition 4.22 that 2 235 i and 2 Egg; are integers. Hence

4cos’* e Z. Since 0 <4cos’> 6 <4 and B # £ a we have 4cos? 6 {0, 1,2, 3}.
We consider in each case the possible factorisations of 4 cos? @ into the product
of two integers.
First suppose 4 cos? 9=0. Then 0 =/2.
1 1
Next suppose 4 cos? @ = 1. Then cos § = 7 or —3 hence 6 =m/3 or 2m/3.

The possible factorisations of 4 cos? § are
I=1-1 or I=—1-—1.

In either case we have
@By (B
(@, a)  (B.B)
and so («, a) ={(B, B) and «, B have the same length.

Next suppose 4cos>0=2. Then cos=1/,/2 or —1/./2, thus 6 =m/4 or
3m/4. The possible factorisations of 4 cos? 6 are

2=1-2 or 2=—1--2.

In either case, by choosing «, 8 in a suitable order, we have

LBy ) aB)
(B.B) (@, a)
that is (a, @) =2(B, B) and |a| =+/2|B|. Thus the ratio of the lengths of «, B
is /2.
Finally suppose that 4 cos> @ = 3. Then cos 6 = \/3/2 or —/3/2,s0 0 =m/6
or 57/6. The possible factorisations of 4 cos® § are

3=1-3 or 3=—1--3

In either case, by choosing «, 8 in a suitable order, we have

J(Bea) ()
(B, B) (a, @)
that is (e, @) =3(B, B) and |a| = ./3|B|. Thus the ratio of the lengths of «, B
is 4/3.
This completes the proof. We do not obtain any information about the
relative lengths of «, B in the case when § =m/2. |

Corollary 6.2 Let 11 be a fundamental system of roots and let a, B € I1 with
B # a. Then the angle between «, B is one of w/2,2w/3,3mw/4, 5T/6.
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Proof. This follows from Proposition 6.1 together with the fact, proved
in Proposition 5.4, that the angle 6 between two distinct fundamental roots
satisfies /2 <0 <. O

Let II={«,,...,a,;} be a fundamental system. We incorporate the infor-
mation about the angles between the «; and their relative lengths in the form
of a matrix. We define A;; by

_ (a;, aj>
(@;, a;)

Thus A;; € Z. The I x | matrix A= (A,;) is called the Cartan matrix.

ij=1,...,1

ij

Proposition 6.3 The Cartan matrix A has the following properties.
(1) A;=2 forall i.

(i) A;€{0,—-1,-2, =3} ifi#].

(iii) If A;;=—2 or =3 then A;=—1.

(iv) A;;=0 if and only if A; =0.

Proof. Properties (i), (iv) are obvious and (ii), (iii) follow from the proof of
Proposition 6.1. |

If we number the fundamental roots in II in a different way we may
well get a different Cartan matrix A. However, apart from this ambiguity of
numbering, the Cartan matrix A is uniquely determined by the semisimple
Lie algebra L.

Proposition 6.4 The Cartan matrix of L depends only on the numbering of
the fundamental roots. It is independent of the choice of Cartan subalgebra
H and fundamental system I1.

Proof. The independence of the choice of Cartan subalgebra follows from
the conjugacy of Cartan subalgebras, proved in Theorem 3.13.

Let IT" be a second fundamental system. By Corollary 5.11 there exists
we W with w(II) =1II". Let w (e;) = @}. Since w is an isometry of V we have

2 (a,., 0‘/) . (aﬁ’ “})

(a;, a;) B (aj, @)

Thus the Cartan matrices defined by II and II" with respect to these labellings
are the same. U
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The only possible 1 x 1 Cartan matrix is (2). We also see that any 2 x 2
Cartan matrix must be one of the following:

G2 G2) (23) G (53) G
Ten e

are obtained from one another by reversing the labelling 1, 2, and so are the
pair

2 -1 2 -3

-3 2 -1 2

6.2 The Dynkin diagram

In order to determine the possible / x / Cartan matrices for larger values of
[ it is useful to introduce a graph called the Dynkin diagram. The Dynkin
diagram is determined by the Cartan matrix. It is a graph with vertices labelled
L,..., L. If i the vertices i, j are joined by n;; edges, where

n,«j:A,-jAji.

We see from Proposition 6.4 that the Dynkin diagram is uniquely determined
by the semisimple Lie algebra L.

The Dynkin diagrams of the Cartan matrices of degrees 1 and 2 are as
follows.

Cartan matrix Dynkin diagram

) o
20
(O 2) o [¢]
2 -1
G2 e
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Proposition 6.5 n;; € {0, 1,2, 3} for all i # j.

Proof. This follows from Proposition 6.3 and the fact that n,;;=A;A;. ]

Thus the number of edges joining any two distinct vertices of the Dynkin
diagram is either O, 1, 2 or 3.

Now the Dynkin diagram need not be a connected graph. However, if it is
disconnected it will split into connected components. If we number the vertices
so that those in each connected component are numbered consecutively, the
Cartan matrix will split into blocks of the form

QI*|Q|Q
*|QIQIQ

QIQ|*|Q

Q| Q| *

with one diagonal block for each connected component. This diagonal block
will be the Cartan matrix for the given connected component. The set 1=
{a;,...,a;} will be partitioned into subsets in a corresponding way, such
that roots in different subsets are mutually orthogonal.

Now the set of graphs which can occur as Dynkin diagrams of semisimple
Lie algebras turns out to be quite restricted. In order to determine the possible
Dynkin diagrams it is useful to introduce a quadratic form Q(x,,...,x;)
which is defined in terms of the Dynkin diagram. We define

1 1
Q(xpsee s X)=2D"x7 = 3 /nyx,x;.
i—1 i =1
L "

We illustrate this definition in the cases /=1, 2.

Dynkin diagram Quadratic form
o ZX%
o o 2x% + 2x§
o—o 27 —2x, X, +2x3
o——0 2xf—2\/2x1x2+2x§

— 2x2 —2/3x,x,+2x3
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Proposition 6.6 The quadratic form Q (x,, ..., x;) is positive definite.

Proof. We have, for i+ j,

ny=A,A, _2< w%‘) 2(“1‘7“1‘)
= aa) aga)

A 2,
hence —/n;; = |<a.||zj.>| (a[ a/>_
il

since (a;, a;) <0. For i=j we have
|ai||aj|

Thus the quadratic form may be written

i,j=1 | J| i=1 j=1

1 2 X
Qxpseveux) =Y <a| ) x_2<z|z_a’2 Ja|1>

!
=2(y,y) where y:X:ﬂ

i lail
Thus Q(x;,...,x;)>0. Moreover if Q(x,,...,x;)=0 then y=0. Since
ay,...,a; are linearly independent this implies that x; =0 for all i. Thus the
quadratic form is positive definite. |

Now the connected components of the Dynkin diagram of any semisimple
Lie algebra satisfy the following conditions:

(A) The graph is connected.
(B) Any pair of distinct vertices are joined by 0, 1, 2 or 3 edges.

(C) The corresponding quadratic form Q (x,, ..., x;) is positive definite.

We shall approach the problem of finding the possible Dynkin diagrams by
determining all graphs satisfying conditions (A), (B), (C). Having determined
all such graphs we shall consider subsequently which ones occur as Dynkin
diagrams.

6.3 Classification of Dynkin diagrams

The main result which we shall obtain in this section is as follows.

Theorem 6.7 The graphs satisfying conditions (A), (B), (C) shown in Section
6.2 are just those in the following list.
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0 0—0 0—o0—o0 o—o0—o0—o0 o0—o0—o0—0—o0
A A Ay Ay As
ac—oD» o—a—o o—o—o—o o—o0—o0—o—o0
B, B, B, Bs
Dy Ds D¢
Eq E, Eg
oO—COC—o0o—O0
Fy
[e=—=0)
Gy

Proof. We shall show first that the graphs on this list satisfy conditions
(A), (B), (C). It is obvious that they satisfy (A) and (B). We shall therefore
concentrate on condition (C).

We recall from linear algebra that a quadratic form ) a;x;x; is positive
definite if and only if all the leading minors of its symmetric matrix (aij)
have positive determinant. This condition is

ap dyp

la;| >0, >0,..., det(aij)>0.

ay An

Given a graph I' with [ vertices on the list in Theorem 6.7 we shall show
that Q (x, ..., x;) is positive definite by induction on [. If /=1 then '= A,
and Q(x;)=2x? is positive definite. If /=2 then T is A,, B, or G,. The
symmetric matrix representing Q (x,, x,) is then

(52) (%) ()
A, B, G,

In these cases the leading minors have positive determinant.

Now assume /> 3. Then inspection of the list of graphs in Theorem 6.7
shows that I' contains at least one vertex which is joined to just one other
vertex of I', and joined to it by a single edge. Let such a vertex be labelled /,
and let the vertex it is joined to be labelled [ — 1. We write I' =1, and the graph
obtained from I', by removing the vertex / by I';_,, and the graph obtained from
I',_, by removing the vertex /—1 by I,_,. Let det I, be the determinant of the
symmetric matrix representing the quadratic form Q (x,, ..., x,) associated
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to I',. We observe from the list of graphs that I';,_, and I';_, also lie in the list.
Moreover we have

detl, = 0 |=2detT,_, —detT,,
2 -1
0...0—-1 2

by expanding the determinant by its last row. This gives us an inductive way
of calculating detI;. In particular we have

detA, =2, detA,=3, detA,=2detA,_,—detA,_,.
Thus det A, =1+1.
detA, =2, detB,=2, detB;=2, detB,=2detB,_;—detB,_,.
Thus det B, =2.
detA; =4, detD,=4, detDs=4, detD,=2detD,_,—detD,_,.
Thus det D, =4.

det Eg =2det Ds —det A, =3
detE, =2det Dg—det A; =2
detEg =2det D, —det Ag=1
detF, =2detB;—detA,=1.

Thus we have shown that detI; >0 for all T}

Now the leading minors of the symmetric matrix associated to I, are the
symmetric matrices associated to certain subgraphs of I'. The numbering
can be chosen so that all these subgraphs are connected. However, the list
of graphs has the property that any connected subgraph of a graph on the
list is also on the list. Thus the determinant of every leading minor of the
given symmetric matrix is positive. Hence the quadratic form Q (x,, ..., x))
associated to I is positive definite.

Thus we have shown that the graphs on our list satisfy conditions (A),
(B), (C). We wish to prove the converse, i.e. that any graph satisfying con-
ditions (A), (B), (C) is on our list. Before being able to prove this we shall
need some lemmas.



6.3 Classification of Dynkin diagrams 77

Lemma 6.8 For each of the graphs on the following list the corresponding
quadratic form Q (x,, ..., x;) has determinant 0.

AHQQ
>m>m>+m

oc—o—o 2 C—o—OC—0 OT—Oo—0—C—0

><Z>—<f>—<—<i

E; Eg
oO0—~O0—0—0o—0 (oo ——o}
F, é,

Proof. First consider the graphs I'= A ;- Each row of the symmetric matrix of
the given quadratic form contains one entry 2, two entries — 1, and remaining
entries 0. Thus the sum of the columns is zero and det A, =0.

In all the other graphs I' on the list we can find a vertex [ joined to just one
other vertex [ — 1. Moreover [ is joined to / — 1 by a single edge or a double
edge. If there is a single edge we may use the formula

detl’;=2detI,_; —detI,_,
as before. If there is a double edge we obtain instead
detl;=2detI,_, —2detI)_,.
We may use these formulae to calculate all the determinants inductively.
det B;=2det A;—2(detA,)*=0
det B,=2detD,—2detD, ;=0 forl>4
det C,=2det B, —2det A, =0
detC,=2detB,—2detB, ;=0 forl>3
detD,=2det D, — (detA,)’ =0



78 The Cartan matrix and the Dynkin diagram

detD,=2det D,—detD, ,-detA, =0 forl>5
det E,=2det E,—det Ay =0
det E,=2det E, —det Dy =0
det E;=2det E; —det E; =0
det F, =2det F, —det B, =0

det G, =2det G, —det A, =0.

Lemma 6.9 Let I' be a graph satisfying conditions (A), (B), (C) and I" be
a connected graph obtained from I" by omitting vertices or decreasing the
number of edges between vertices or both. Then 1" satisfies conditions (A),
(B), (C) also.

Proof. T clearly satisfies (A) and (B). We must show it satisfies (C). Let
Q(x,, ..., x;) be the quadratic form of I" and Q' (x,, . .. , x,,) be the quadratic
form of IV, where m <[. We have

l

1
Qx,... X)) =2 "x7— Y /nxx,

i=1 ij=1

i#]
Q(xy...x,) =22x? — Z \/n;-jxixj
i=1 ij=1
i;éj
where n;; <n;; fori, j € {1, ..., m}. Suppose if possible that Q' is not positive
definite. Then there exist y,, ... , y,, € R, not all zero, with Q" (y,, ... , y,,) <O0.
Consider Q (|y] - [¥ml, 0, ... ,0). We have

QUwils -5 [ywls0,...,0) = 22|)’i|2_ Z «/”ij|yz'||)’j|
i=1

ij=1
i
m m
<23y = glillyl
i=1 ij=1
i
m m
= 223’1'2_ > \/”;_,')’iyj
i=1 i, j=1
i#]

ZQ/(yl’“- ’ym)fo
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Hence Q (|y]--» |[¥l» 0, ..., 0)<0but (|y;],... . |¥l,0,...,0) is not the
zero vector. This contradicts the fact that Q (x,, ..., x;) is positive definite.
Hence Q' (x, ..., x,,) must be positive definite also. U

Having Lemmas 6.8 and 6.9 at our disposal we are now able to complete
the proof of Theorem 6.7.

Let I" be a graph satisfying conditions (A) (B) (C) Then, by Lemmas 6.8
and 6.9, I" can have no subgraph of type A,, B,, C,, D, E,, E,, Eg, F, or G2
(By a subgraph of I" we mean a graph obtainable from I" by removing vertices,
or removing edges, or both.) We shall use this information to show that "
must be one of the graphs on the list in Theorem 6.7.

In the first place we see that I' contains no cycles, otherwise it would
contain a subgraph of type A, for some /> 2.

Suppose that I' contains a triple edge. Then I' must be the graph G,,
otherwise I' would contain a subgraph 62.

Thus we may assume that I" contains no triple edge. Suppose I' contains
a double edge. Then I' cannot have more than one double edge, otherwise
it would contain a subgraph ff, for some [>2. Now I' cannot contain a
branch point in addition to a double edge, as otherwise it would contain a
subgraph B, for some [>3. Thus I is a chain containing just one double
edge. If the double edge occurs at one end of the chain then I'= B, for some
[>2. If not then we must have I'=F,, since otherwise I' would contain a
subgraph F,.

Thus we may assume that I" contains no double or triple edges. If I" contains
no branch point then I'= A, for some /> 1. Thus we suppose that I" contains
at least one branch point. Now I' cannot contain more than one branch point,
as otherwise it would contain a subgraph D, for some /> 5. Thus I" contains
exactly one branch point. There must be exactly three branches emerging
from this branch point, since otherwise I" would contain a subgraph D,. Let
the number of vertices on the three branches be /,, [,, [; with [, >, > [;. Then
the total number of vertices of I'is [ =1, +1,+ 15+ 1.

Now we must have [;=1, as otherwise we have [;,>2 for i=1,2,3 and
I contains a subgraph E,. If I, =1 then I'= D, for some [ >4. Thus we may
assume /, > 2. In fact we must have [, =2, as otherwise we have [, >3,1,>3
and T contains a subgraph E,. Thus we may assume [, =1, [, =2. We must
have I, <4 since otherwise T contains a subgraph E. Thus I has type Ej, E;
or Eq.

Thus we have now determined all possibilities for I', and seen that I must
be one of the graphs which appear on the list in Theorem 6.7. This completes
the proof. |



80 The Cartan matrix and the Dynkin diagram

Corollary 6.10 Let A be the Dynkin diagram of a semisimple Lie algebra.
Then each connected component of A must be one of the graphs

A, I>1; B, 1=2; D, I>=4; E;; E;; Eg; F,; G,.

We shall consider later whether all these graphs actually occur as Dynkin
diagrams.

6.4 Classification of Cartan matrices

We recall that the Dynkin diagram is determined by the Cartan matrix by the
property
n;=A;A; i#£]J.

lj jl

However, the Cartan matrix is not always uniquely determined by the Dynkin
diagram. If we know the integers n;; € {0, 1,2,3} for all i, j with i#£j we
consider to what extent the A;; are determined. If n,; =0 then we must have
A;;=0and A;=0since A;;=0 if and only if A;=0.If n;; =1 then we must
have A _—1 and A _—1 since A e, A EZ AUSO A <0. However,
if n;; _2 there are two possibilities for the factorlsatlon n;; _A, ;jA ;- Either
we have 2=—1-—2 or 2=—-2-—1. Thus we have either A,j_—l Ay=-2
or A;;=—2,A;=—1. Similarly if n;;=3 we have either A;;=—1,A;,=-3
orA;=-3,A;,=—1.

In the connected graphs in Corollary 6.10 the only ones which give rise
to such an ambiguity are B;,, [>2; F, and G,. In these graphs we shall
place an arrow on the double or triple edges. The direction of the arrow is
determined as follows. The arrow points from vertex i to vertex j if and only
if |, > ||, that is |A ;| > |A

Thus in the situation

1/|

o

i J

we have |a;|=./2]q;|, A;=—1, A;=-2.In the situation

===

i J

we have |o;|=./3|a;|, A;=—1, A;=-3. The arrow may thus be
regarded as an inequality sign on the lengths of the fundamental roots at the
vertices.
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The set of possible connected Dynkin diagrams, including arrows, is shown
on the following standard list.

6.11 Standard list of connected Dynkin diagrams

A A 43 Ay As
C ) O— ) O——O0——0C—>—0 O0—O0——O0—0C—>—0
B, B, B, Bs

=0
G,

We note that, since the diagrams of types B,, F,, G, are symmetric, it does
not matter in which direction the arrow is drawn in these cases.

The connected components of the Dynkin diagram of any semisimple Lie
algebra must appear on this standard list.

We next obtain a standard list of corresponding Cartan matrices. We say
that two Cartan matrices (A,;), (A;) are equivalent if they have the same
degree [ and there is a permutation o of 1, ...,/ such that

A= Astiyot)-

Equivalent Cartan matrices come from different labellings of the same Dynkin
diagram. For each Dynkin diagram on the standard list 6.11 we choose a
labelling and obtain a corresponding Cartan matrix which is uniquely deter-
mined. These Cartan matrices appear on the following list.
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6.12 Standard list of indecomposable Cartan matrices

2 -1
-1 2 -1
-12 -1
~1
A=
2 -1
-12 -1
-12 -1
—1
B, =
2 —1
-12 -1
—12 —1
~1
C =
2 -1
-12 -1
-12 -1
~1
D, =

-1 2

—1

-1

-1 2 -1
-1 2

-
—12 -1

~12 -1
22

S -1
12 -1

~12 =2
~12

- =1

-12 -1

-1 2 —-1-1
-12 0
-10 2
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2 —1
-1 2 -1
—12 —1-1
E =
6 -12
-1 2 —1
-12
2 —1
-1 2 -1
—-12 -1
E, = -1 2 —1-1
-1 2
-1 2 —1
-1 2
2 —1
-1 2 -1
-1 2 —1
-1 2 —1
Ey= —12 —1-1
-12
-1 2 —1
-12
2 —1
-1 2 -1
Fi= -2 2 —1
-12

2 —1
o-(27).

A Cartan matrix is called indecomposable if its Dynkin diagram is con-
nected. Any Cartan matrix will determine a set of indecomposable Cartan
matrices, unique up to equivalence, whose Dynkin diagrams are the connected
components of the Dynkin diagram of the given Cartan matrix.

If A is the Cartan matrix of any semisimple Lie algebra, each indecom-
posable component of A will be equivalent to some Cartan matrix from the
above standard list.

Proposition 6.13 If a semisimple Lie algebra L has a connected Dynkin
diagram then L is simple.
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Proof. Let L=H®) ,.4 L, be a Cartan decomposition giving rise to the
Dynkin diagram A. Let I be a non-zero ideal of L. We shall show that /=L,
thus proving that L is simple.

We first aim to prove that /N H # O. Suppose if possible that INH = 0.
Let e, be a non-zero element of L, and choose a non-zero element x € I with

x=h+) p,e, heH p,eC
acd

such that the number of non-zero u, is as small as possible. Since INH =0
there exists some wg# 0. Then we have

[Wox] =3 a[gea] = 3 paet () €q-

acd acd

Now by Proposition 4.18 we can choose egeLg and e_geL_g such
that [ege_g]= hg. Thus [[hbx] e )= new Mol (hk) [ee_p]=mpB (h;;) hg +
Zai% JIN (hk) N, _ge,_p Where [eae,B] = N, _pe,g- Now we have
[[Apx]e_g] €l since xel and [[hpx]e_g]#0 since pg#0 and B(h,)=
(h/B, h/B);éO. Moreover the number of non-zero terms coming from the root
spaces L, is less for [[hx] e_z] than it was for x. This contradicts the choice
of x. We can therefore deduce that INH # O.

The next step is to show that / D H. Suppose if possible this is not so. Then

O#INH#H.

This implies that there exist «; € IT and x € INH such that (h, , x)#0. For if
INH were orthogonal to each A, it would be orthogonal to the whole of H
and would therefore be O. Then we have

[xeai] =a;(x)e,, =(h;i, x) e, €1

Since (, , x)#0 we deduce that e, €. Thus [e,e_, |="h, €.

We can therefore divide the «; € II into two classes, those with h;i el and
those with h;, ¢I. Both classes are non-empty. Furthermore if &, €1 and
h,, &1 then {h, , h;, )=0. This means that vertices i, j are not joined in the

Dynkin diagram A, so A is disconnected. This is a contradiction, thus we
deduce that / D H.
Finally we show that /=L. Let a € ®. Then we have
[h/aea] = (h;) ea = <h:1’ h:x> ea'

Since k), € I we have [h/e,] €1, and since (/, i) #0 we deduce that ¢, € I.
This is true for all &« € ® and so I =L. Thus L is simple. |
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We next consider what happens when the Dynkin diagram of L is discon-
nected.

We first define an action of the Weyl group on H. The Weyl group was
introduced in Section 5.2 as a group of non-singular linear transformations
on the real vector space Hy. This action can be extended by linearity to give
an action of W on H* by C-linear transformations. We also define an action
of W on H by h— wh where

AMwh) = (w_lx\) h forall heH AcH ", weW.
There is a unique element wh € H satisfying this condition, and
w; (wyh) =(w,wy) h for all w,, w, e W.

The actions of W on H* and H are compatible with the isomorphism H* — H
given by A — k), where A(x)=(h, x) for all x€ H. For suppose w(A)=pu
for A, we€ H*. Then

(w(hy), x) = (I, w'(x))=A(w(x)) = (wA)x
:,u(x):(hL,x) for all xe H.

Hence w(A) = implies w (1)) =h,,.
Since we know that

, A
s =A—235 M 0 o aed ren

(a, a)
it follows that

K.,
5,(x) =x—2ﬁh; for xe H.

Proposition 6.14 Let L be a semisimple Lie algebra whose Dynkin diagram
A splits into connected components A, ... ,A,. Then we have

L=L & --®L,

a direct sum of Lie algebras, where L, is a simple Lie algebra with Dynkin
diagram A,.

Proof. We have A=A;UA,U---UA,. Let I, be the subset of II correspond-
ing to the vertices in A;. Then we have

=11,0TL,U- - UIL,.
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Moreover we have (@, ) =0 if a €Il;, B€ll; and i# j. Let H; be the sub-
space of H spanned by the elements %/, with @ € II,. Then we have

H=H ®H,® - ®H,

where (h, h')=0if he H;, " € H; and i # j.

Now let a €II; and consider the fundamental reflection s, € W. It is clear
that s, transforms H; into itself and fixes each vector in H; for all j#i. Thus
we have

s (H)=H; j=1,....rn

Since the elements s, generate the Weyl group W we deduce that

w(H)=H;, j=1,....r weW

J J

Now for all @ € ® we have A, =w (k) for some ; €Il and some we W,
by Proposition 5.12 and the definition of the W-action on H. It follows that
each 7, o € @, lies in H; for some i. Let ®; be the set of all & € ® such that
h, € H;. Then we have

P=P,UdD,U..-Ud,.

We define L; to be the subspace of L spanned by H,; and the e, for all

1

a e ®,. We deduce from the Cartan decomposition of L that
L=L,®L,&®---®L,

a direct sum of vector spaces. In fact we can see that each L, is a subalgebra
of L. It is sufficient to verify that [eaeﬁ] elL;ifa,Bed,. If a+ B €D then
we have a+B e ®; since hy, ,=h,+hyeH;. If a+B=0 then [eaeﬁ] is a
multiple of /), and so lies in H;, thus in L,. If a+ B is non-zero but not a root
then [e,ez]=0. In either case we have [e,eg] € L;. Thus L, is a subalgebra
of L.

We show next that [LI-LJ-]=0 if i#j. Let ae®; and Be ®;. Then we
have

[rees) =B (h,) eg =, 1) eg =0

and similarly [e,h,]=0. We also have [e,ez]=0. For a+B¢® since
h.,+ hj; does not lie in any subspace H, of H. It follows that [L,L;]=0.
We now know that each L, is an ideal of L, since

[L,L]C Y [LL;]C[L.L]CL,.
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This implies that
[xl + : '+xr’ yl+ : +yr]=[xlyl]+ '+['xryr]
where x;, y; € L,;. Hence
L=L,®L, & --®L,

is a direct sum of Lie algebras.

Now each L, is a semisimple Lie algebra. For let I be a soluble ideal of L,.
Since [IL;]=O for all j# i the ideal ] is an ideal of L. Since L is semisimple
we have I = 0. Hence L, is semisimple.

We next observe that H; is a Cartan subalgebra of L,. The subalgebra H; is
abelian, hence nilpotent. Let x € L, satisfy x € N (H,). Then [xh] € H, for all
h e H;. We also have [xh] =0 for all h € H; with j #i. It follows that [xh] € H
for all i€ H. Since H is a Cartan subalgebra of L we have N(H) = H. Hence
xeH. Thus xe HNL;=H,. Thus H, is a Cartan subalgebra of L,.

We now consider the Cartan decomposition

Li=H,® )_ Ce,
aecd;
of L; with respect to H;,. We see that @, is the root system of L, with respect
to H,, that II; is a fundamental system of roots in ®,, and that A, is the
Dynkin diagram of L,. Now A, is connected. Thus the Lie algebra L; must
be simple, by Proposition 6.13. Thus we have obtained a decomposition of
L as a direct sum of simple Lie algebras L;, whose Dynkin diagrams are the
connected components A; of A. UJ

Corollary 6.15 A semisimple Lie algebra L has a connected Dynkin diagram
if and only if L is simple.

Proof. This follows from Propositions 6.13 and 6.14 |
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The existence and uniqueness theorems

We have seen that each non-trivial simple Lie algebra L has a Dynkin diagram
A which appears on the standard list 6.11 of connected Dynkin diagrams. In
the present chapter we shall consider the converse question. Given a Dynkin
diagram A on the standard list, is there a simple Lie algebra L with Dynkin
diagram A? If so, is L uniquely determined up to isomorphism? We shall
show that both the existence and uniqueness properties hold. The proof of
the uniqueness property is somewhat easier, and we shall prove this first. In
order to do so we shall need some properties of the structure constants of the
Lie algebra L.

7.1 Some properties of structure constants

Let L be a simple Lie algebra with Dynkin diagram A. Let H be a Cartan
subalgebra of L and

L=H®) L,
acd

be the Cartan decomposition of L with respect to H. We know from The-
orem 4.20 that dim L, =1 for each a € ®. Let ¢, be a non-zero element of
L,. Let I1 be a fundamental system of roots in ®. Then the elements /;, for
a; € 11 form a basis for H. It will be convenient to choose a slightly different
basis consisting of scalar multiples of the h/a’_. We define h; € H by

2h,,
T (hy, b )
We note that «;(h;)=2. Then {h;, i=1,...,l;e,, ac®d} is a basis
of L. By Proposition 4.18 we know that 4/ € [L,L_,] for all « € ®. Thus,

88
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if we have already chosen the e, for all @ € d*, we may choose the e_
uniquely for @ € 7 to satisfy the condition

2hn,
(hys )
(This relation will then be satisfied for o € ®~ also.)

We define h, € H for each o € @ by

2k,

C ()
The element #,, is called the coroot corresponding to the root a. In particular
we have h;=h, . We then have

o

[ell e—a]
h

[e,e_,]=h

a”—a

for all a € P.

[

We next consider the product [eaeﬁ] when a+ 3#0. We have [LQLB] =0
ifa+B#0and a+B¢ P. If a+ P we have [LaLﬁ] CL, 5 We define
N, g € C by the condition

[eaeﬁ] = Na’Bea+B.
The numbers N, ;4 for @, B, a+ € ® will be called the structure constants
of L. They clearly depend upon the choice of the elements e, € L,,.
We now consider the multiplication of the basis vectors {#;, e,} of L. We
have

h]=0
e, ]=a(h)e,

eae a] -

[
[
[
[eaeﬁ] Ny pasp if a,B,a+Be®

[eaeﬁ]:O if a+B#0and a+ B & P.

In order to express [e,e_,] as a linear combination of basis elements we may
express /1;, as a linear combination of the /;, , a; €11, and so also express h,,
as a linear combination of the #,.

We shall now derive some relations between the structure constants N, g

Proposition 7.1 The structure constants N, g satisfy the following relations.
(1) NB,D{ = _Na,B'

. : N, g Ng, N
(i) If a, B, y € D satisfy a+B+7y=0 then ==

Y.«

(v.7)  (a.a)  (B.B)
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(iii) N, gN_, _p=—(p+1)> where the a-chain of roots through B is
—pa+B,...,B,...,qa+pB.
(iv) If a, B, vy, 6 € D satisfy a+B+vy+86=0 and no pair are negatives of
one another, then
le,ﬁNy,B Nﬁ,yNa,S Ny,c{NB,S _

(a+B.a+B)  (B+y.B+y) (y+a,y+a)

Proof. (i) This relation is clear.
(ii) Suppose @+ B+y=0. We consider the Jacobi identity

[leaes] ey] +[Leses] eal +[[esen] 5] =0-

This gives
Noglearpeiarp]+Npyle_aeal + N, o [e_peg] =0
that is
N e oy ey :
aﬁ<h;+ﬁ’h;+ﬁ> Y (s 1) ., )

Now the roots «, 3 are linearly independent since, if they were not,
a+p could not be a root. Thus A, hjy are linearly independent and

Wy, p=h,+hj We deduce that
Na,ﬁ — Nﬁ,v — Ny
(yogs Hsg) (i )~ (B, h)
that is

v,

(vy) {ea) (B.B)

(iii) Now suppose «, 3 € ® are linearly independent. We consider the Jacobi

Nog — Ngy N

identity

[leae_alep]+[[e-acp] ea] +[[epec] -] =0.
This gives

[h;eﬁ]

2 Uy ~|—N_a,BN_a+B!aeB +NB’aNa+B,_aeB =0.
We deduce that
(A )
2 +N_o gN_aipatNgoaNoip—a=0.

(B b))
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Using relations (i) and (ii) this may be written

(B, B) (—a+B,—a+pB)
Nesloaslat g arp)  Neoesees g )
(@, B)
=2 .
(@, a)

(If —a@+p is not a root N_, 4 is interpreted as O so the middle term
disappears.) We now consider the a-chain of roots through . Let it be

—pa+B,...,B,...,qa+pB.

Weapply the same formulato the pairs («, 8)(«, —a+ ) ... (o, —pa+ )
and obtain

(B, B) (—a+B,—a+p) (@ B)
NooNeblorg arpy NeoeNoat ™™g g ~2la a)
(—a+B,—a+pB) (—2a+B, —2a+B)
Na.foH»BNfa,afBW _Na,72a+ﬁNfa,2afﬁ <—0l+ﬁ, —Ol+,3>
o, —a+pB)
= )
N N (—pa+B, —pa+B) _ 2{a, —pa+pB)
GopetbTare B (p—a+B, —(p—a+p) (@a) 7

(The last equation has only one term on the left since —(p+ 1)+ is
not a root.) Adding these equations we obtain

(B. ) G
e latpiath) (.

However, we know from Proposition 4.22 that 2% =p—gq. Thus we
have

_, Pt

=2(p+1) o) 3

BB _
Na,ﬁN—a,—Bm =—(p+1gq.

In order to obtain the required result N, gjN_, z=—(p+ 1)? we must
show
(a+B,a+B) p+l
(B.B) q
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(iv)

The existence and uniqueness theorems

We recall from the proof of Proposition 6.1 that

@B) LB, o,

Yaa) BB

where 6 is the angle between «, 8 and hence that 2 (@B) o {0,—-1,-2,-3}.

(@,a@)

Also from Proposition 4.22 we know that 2% =p—gq. If we choose
B to be the initial root in its a-chain we have p=0 and hence g <3.
This shows that each a-chain has at most four roots. Thus the possible
positions of B in its a-chain are

B a+p p=0  g=1
oO——O0

B atB  2a+pB p=0  g=2
(e} e]

—a+p B at+pB p=1 g=1
(e} O

B a+B 20+ 3a+p p=0 q=3
(e, O

—a+p B a+B 2a+p p=1 qg=2
O O

—2a+B —a+f B a+p p=2 g=1
O O

In the first case we have (a+ 3, a+B) = (8, B) since 5,(8)=a+B.In
the remaining cases the first and last roots in the a-chain are long roots
and the remainder are short roots. The relative lengths are given in the
proof of Proposition 6.1. We have

(a+B,a+B)

BB "

=

in the above six cases respectively. Thus in each case we have

(a+B,a+B) p+l
BB g

and so N, yN_, g=—(p+1)°
Now suppose that «, B, v, 6 € ® satisfy a+ B+ y+6=0 with no pair
equal and opposite. Consider the Jacobi identity

[leaes] ey] +[Leses] eal +[Lesen] 5] =0-
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This gives

Na.pNaipyt NoyNpsyat NyalNyiap =0.

Using relations (ii) this gives

N(X,BN'}/,S NB,'YNQ,B N NBB _
(a+B.a+B) | B+y.B+y)  (yray+a)

(As usual we interpret N, , as 0 if 6+ ¢ is not a root.) O

Proposition 7.1 (iii) has a very useful corollary.

Corollary 7.2 If a, B, a+B € ® then N, 3 #0. Thus [L,Lg| =L,

7.2 The uniqueness theorem

We shall now use the above relations between the structure constants to show
that the Lie algebra L is uniquely determined up to isomorphism. A Dynkin
diagram on the standard list 6.11 is given, and this determines uniquely a
Cartan matrix A=(A;;) on the standard list 6.12. Now the Cartan matrix
determines the set ® of roots as linear combinations of the fundamental roots
IM={a,, ..., a;}. For each root @ € ® has form a=w («;) for some «a;, €Il
and some we W, by Proposition 5.12. Moreover each element we W is a
product of elements sy, ..., s, by Theorem 5.13. The actions of s;,...,s; on

the fundamental roots a;, ... , ; are given in terms of the Cartan matrix by
S; (aj) =a;—A;q;.

Thus by applying the fundamental reflections successively to the fundamental
roots we obtain all roots as linear combinations of the fundamental roots.
We next observe that all scalar products (h/ n ) for «, B € ® are determined

by the Cartan matrix. By Proposition 4.22 2< - hf’>> is determined by the
root system, hence by the Cartan matrix as shown above. Then (%, k) is

determined by the formula

[ (s )
(i 1) h/> B§)<<h >>
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of Proposition 4.24. Thus (/) hj;) is also determined by the Cartan matrix.
Thus we see that if the structure constants N, g are known the multiplication
of basis elements

[Aih;] =0

[hie.]=a(h)e,

lece—o]=

[eats] =Nupearp  if @.B,at+Be®
[ene5]=0 if a+B#0and a+B¢P

will be completely determined.

We shall show that for certain pairs (a, 8) of roots the structure constants
N, g can be chosen arbitrarily, and that the remaining structure constants are
uniquely determined in terms of these by the relations of Proposition 7.1.

We choose a total ordering on the vector space V =Hj as in Section 5.1
giving rise to the positive system ®* and fundamental system IT of roots. An
ordered pair («, B) of roots will be called special if « +8€ ® and 0 < @ < .
The pair («, 8) will be called extraspecial if («, 8) is special and if, in
addition, for all special pairs (7, 6) such that «+ 3 =7y+ 6 we have a <.

Lemma 7.3 The structure constants N, g for extraspecial pairs (a, B) can
be chosen as arbitrary non-zero elements of C, by appropriate choice of the
elements e,,.

Proof. We choose the e, for @ € @ in the order given by <. Suppose (a, 3)
is an extraspecial pair. Then we have

[eaes] =Napasp
and e,, eg have already been chosen. Moreover there is only one extraspecial

pair with given sum a+ . Thus e, can be chosen to give any non-zero
value of N, g. U

Proposition 7.4 All the structure constants N, g are determined by the struc-
ture constants for extraspecial pairs.

Proof. We consider the set of all pairs of roots (e, ) such that a4+ 3 is a root.
Let («, B) be such a pair and let y = —a — 8. Then the following 12 pairs of
roots are of the given type.

(a, B) (B, y) (v, @) (B, @) (v, B) (a,7)
(_a’ _B) (_B’ _7) (_7’ _a) (_:87 _a) (_V, _B) (_a’ _7)
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Since a+ B4y =0 either two or one of «, 3,y are positive. Thus either
two of a, B, y are positive or two of —a, —f3, —vy are positive. By choosing
two positive roots from «, 8,y or from —a, —8, —y and by writing them
in the appropriate order we obtain a special pair. Thus just one of the above
12 pairs of roots is a special pair.

Now the relations in Proposition 7.1 (i), (ii), (iii) enable us to express
Ng o> Ng o> Ny o and N_, _g in terms of N, 5. Thus these relations enable us to
express N, 4 for all the 12 pairs (6, ¢) above in terms of N, , for the special
pair (6, ¢).

The next stage is to show that the N, g for all special pairs (a, 8) are
determined in terms of the N,z for extraspecial pairs. Suppose (a, B) is
special but not extraspecial. Then there exists an extraspecial pair (v, ) such
that « + 3=+ 6. Thus @+ B+ (—vy) + (—6) =0 and no pair of «, B, —7y, —6
are equal and opposite. By Proposition 7.1 (iv) we have

Na,ﬁNf’y,fg Nﬁ,nyﬂt,fs N 8 NB,76 — )
(a+B,a+B) (B—v.B—v) (—v+a,—y+a)
Now the roots «, 3, y, 6 are ordered by

O<y<a<fB<o.

Thus we may use relations (i), (ii), (iii) of Proposition 7.1 to express N_, _5 in

terms of N, 53 Ng _, interms of N, 5_,; N, _s interms of N, 5_,; N_, , in terms

of N, ,_,;and Ny _s interms of N 5_g. Thus N, g is expressed in terms of
N%S’ N%B—w Na,B—w N%a—y’ NBﬁ—B'

Now (7, 6) is an extraspecial pair and (y, B—7), (o, 6 —«), (7, a—y) and
(B,6—B) are all pairs of positive roots whose sums are roots less than
a+ B =+y+46 in the given ordering. We may therefore argue by induction on
a+ 3, using the given order, that N, ; can be expressed in terms of N, 4 for
extraspecial pairs (6, ¢). UJ

We can now state our uniqueness theorem.

Theorem 7.5 Any two simple Lie algebras with the same Cartan matrix are
isomorphic.

Proof. We choose the basis elements {/;, e,} of such a Lie algebra L such
that N, g =1 for all extraspecial pairs of roots («, 8). We may do this by
Lemma 7.3. The remaining structure constants N, 5 are all then uniquely
determined by Proposition 7.4. Thus the formulae expressing a Lie product of
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basis elements as a linear combination of basis elements are completely deter-
mined by the Cartan matrix. Thus the Lie algebra L is uniquely determined
up to isomorphism.

7.3 Some generators and relations in a simple
Lie algebra

We now turn to the question of the existence of a simple Lie algebra with
Cartan matrix on the standard list 6.12. A proof of the existence theorem has
been given by J. Tits (IHES Publ. Math. 31 (1966)) along the lines of the
arguments used so far. The details are technically quite complicated, however,
and so we prefer to give a different proof of the existence theorem.

Let L be a simple Lie algebra with Cartan matrix A. Let H be a Cartan
subalgebra of L and

L=Ha®Y L,

acd

be the Cartan decomposition. As before we consider the elements h; € H
given by

2h,
Co(n )
where I1={«,, ..., a,} is a fundamental system in ®. As in Section 7.1 we
can choose elements e, € L, , f; € L_, such that [e;f;] =h;.
We shall show that the elements e, ... , e, hy, ..., b, f|, ..., f; generate L.
(Of course this is equivalent to saying that e,, ..., ¢, fi,..., [, generate L,
but it will be useful to include 4, ..., h; in the generating set.)

Lemma 7.6 If a € ®* and a €11 there exists a; €11 such that o — «; € OT.
Thus every positive non-fundamental root is the sum of a fundamental root
with a positive root.

Proof. Suppose if possible that the result is false. Then o —«; is not a root
and is non-zero for each i. (We can use Corollary 5.6 to see that @ — «; cannot
be a negative root.) Consider the ¢;-chain of roots through «. This has form

a,o,+a,...,qu;,+a.
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By Proposition 4.22 we have
(a;, @) _
(o, ;) B

This implies that (a;, @) <0. Now @€ ®' has form a=)",n;a, with all
n;>0. Thus

(a,ay=) n;{(a;, ) <0.
This gives a contradiction, since we know («, «) > 0. ([
Proposition 7.7 The elements e, ... e, hy,... h, fi,..., [, generate L.

Proof. Since h, ..., h; span H it will be sufficient to show that each L, for
a € ®7 lies in the subalgebra generated by ¢, ... , ¢, and each L, for « € d~
lies in the subalgebra generated by fi, ..., f;.

Let a € d*. If @ =, for some i we have L, =Ce;. If @ ¢II we can write
a=q;+ B for some «; €I and some B € ®* by Lemma 7.6. We then have
[La,-LB] =L, by Corollary 7.2. Thus we may choose e, = [ei, eﬁ] for some
eg#0 in Lg. By repeating this process we obtain

e,=|[e; €] e ]

for some sequence ij,...,i,. Thus each L, for @ € ®" lies in the subalge-
bra generated by e, ..., e, Similarly each L, for € @~ lies in the sub-
algebra generated by fi, ..., f;. 0
Proposition 7.8 The generators e, ..., e, hy,..., h, fi,..., f; of L satisfy
the following relations.

(a) [hihj] =0

(b) [h,.ej]:A,-jej

(c) [hifj] = _Aijfj

@) [efi]=h;

(e) [eifj]z() ifi#j

(f) [e,- [ei...[el—ej]]]zo ifi#j

<—1—Al-j—>

@ [l [hanlll=0 iz,
«~1-A;—
Note that in relations (f), (g) there are 1—A,; occurrences of e;, f; respec-

tively. Since A;; <0 for i# j this number 1 —A;; is a positive integer.
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Proof. Relation (a) follows from [HH]=0. For relation (b), we have

[hix,ej] 9 Q; (h;[) .

<h/a ’ h;i) a <h£1i’ h/O‘i) g

L= e.= @,
(ot} oy Y

Relation (c) is obtained similarly. Relation (d) holds by definition of f;.
Relation (e) holds because [el- fj] €Ly q, and a; —a; is not a root when i # j,
as follows from Corollary 5.6. In order to prove relation (f) we consider the
a;-chain of roots through «;. Since —a; + «; is not a root this chain has form

aj,ai—i-aj,... ,qai—i—aj.

By Proposition 4.22 we have A;;=—gq. Thus (l —A,-j) @;+a; is not a root.
Since the element [, [e; ... [el-ej]]] lies in L(lfA”)aiﬂf this element must
be 0. Relation (g) is obtained similarly. ' ' O

7.4 The Lie algebras L(A) and L(A)

Let A be a Cartan matrix on the standard list 6.12. Motivated by Proposi-
tions 7.7 and 7.8 we shall construct a Lie algebra L(A) which will be shown
to be a finite dimensional simple Lie algebra with Cartan matrix A.

Suppose A is an [ x [ matrix. Let % be the free associative algebra over C on
the 3/ generators e, ..., e, hy, ..., h;, fi,..., f;. The set of all monomials
in these generators form a basis for §. Let [&] be the Lie algebra obtained
from F by redefining the multiplication in the usual way and let ¥ be the
subalgebra of [¥] generated by the elements e, ..., e, Ay, ..., by, fis.. s fr
Let J be the ideal of ¥ generated by the elements

[hih)]
[hie;]=Aye,
[hf]+A,,f
le.fi]—

[eif;]  fori#j
[eilei - [ee)]]]  forizj
LAilfi LAl for i)
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where the number of occurrences of e;, f; respectively in the last two elements
is 1—A;.

We define L(A) =2/J. We shall eventually be able to show that L(A) is
the Lie algebra we require to prove the existence theorem. This description
of L(A) by generators and relations is due to J. P. Serre.

In order to investigate the Lie algebra L(A) itis convenient to define a second,
larger, Lie algebra L(A). Let J be the ideal of £ generated by the elements

[e.f;] for i j.
Let L(A)=/J. Since J C J we have surjective Lie algebra homomorphisms
L— L(A)— L(A)
We shall investigate the properties of the Lie algebra L(A). This is generated
by the images of the generators of £ under the above homomorphism. These

images will continue to be written e,,...,e;, hy, ..., h, fi,..., f;. These
elements satisfy the relations

[hih/‘] =0
[hie;]=Aye;
[nf]=—=Asf;
le.fil=h;

[e.f;]=0  fori#j

Proposition 7.9 Let §~ be the free associative algebra over C with gen-
erators f, ..., f. Then 3~ may be made into an L(A)-module giving a
representation p: L(A) — [End &~] defined by:

p) i S, =fifi - i

»

p(h)fiy-- - fi, =~ (ZA,;A) fi -1,
k=1

r

p(ei)fi]"'fi, :_Zaiik ( Z Aii,,)fi J?zkfz
k=1

h=k+1

where as usual the symbol jA”«k means that f; is omitted from the product.

)
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Proof. Since the monomials f; ...f; form a basis for = the endomor-

phisms p (f;), p (h;), p(e;) are uniquely determined by the above formulae.
Thus there is a unique homomorphism ¥ — End &~ mapping e;, ;, f; to
p(e),p(h;),p(f;) respectively. This induces a Lie algebra homomorphism
[&]— [End & ] and so, by restriction, a Lie algebra homomorphism £ —
[End §~]. In order to obtain a homomorphism L(A)— [End 3] we must
verify the following relations.

@ [p(h)p(h;)]=0

() [p(h)p(e )] P (e))
© [p(h)p(f;)]=—Asp (f)
@ [p(e)p(f)l=p(h)

(e) [P (ei)P(fj)]—O for i j

Relation (a) is trivial since p (/) multiplies each basis element of ¥~ by a
scalar.
To prove relation (b) we have

p(hi)p(ej)fi] flr :_Zéjik< Z Am) (_ZA%)JC,‘] ]Aflkfl,
k=1

h=k+1
ple)p(h)fiy - fr, ==28; ( > Am) <_2Aiig) I A
k=1 h=k+1

Thus
(p(h)p(e)—p(e)p(h)) fi---f,

= A, (—Z% ( 3 Aj,.h>>f,.l ik S
k=1 h=k+1

=A,-jp(ej)fil...fi.

"

To prove relation (c) we have

p(hi)p(fj)fil fz, = (Aij+ZAiik>fjﬁl fz,

r

p(f)p(h) fiy- - fi, == (ZAi,-k>fjf,.l oy

k=1

Thus
() p(f)—p(f)p(h)) fi, - [ =—Aufifs - fi =—Ayp (fi) i, - ] -
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We next consider relation (d). We have

P(ei)P(fi)f;, fl, =—- (ZAn,,>fi1 fz,
h=1

h=k+

_ZSiik< Aiih>fifi1"'fik'”fi
k=1 1

r

p(fi)p(ei)fi] fz, = _Zaiik ( Aii,l> f:fz, JACzk ot
k=1

h=k+1

Thus

r

(ple)p(f)=p(f)p () fi - fi,=— (ZA,-,-,,)f;, o S=p () fi -
h=1

Finally we consider relation (e). Suppose i # j. Then

p(ei)p(fj)fil fz, Z_Z‘siik< Z Aiih>fjfi1 }tkfz,

k=1 h=k+1

=p(fi)p(e) S -1

r

Thus all the relations are preserved and we have a homomorphism L(A) —
[End F~]. O

We can deduce useful information about L(A) from the existence of this
homomorphism.

Proposition 7.10 The elements h,, ... , h, of L(A) are linearly independent.
Proof. We show that the elements p (%), ..., p(h;) of End & are linearly

independent. We have

p(hi)sz_Aijfj'

Thus if 3~ A;p (h;) =0 we would have } ; \;A;;=0 forall j=1,..., /. Since
the Cartan matrix A= (A,- j) is non-singular this implies that A; =0 for each i.

Hence p (h,), ..., p(h,) are linearly independent, and so 4, ..., h, must be
linearly independent also. UJ
Let H be the subspace of L(A) spanned by h,,...,h, Then we have

dim H=1. Moreover [HH]= 0, thus H is an abelian subalgebra of L(A).
We consider the weight spaces of L(A) with respect to H. We are no longer
dealing with a finite dimensional H-module as in Theorem 2.9, but analogous
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ideas apply in our situation. Elements of Hom(H, C) will be called weights.
For each weight w:H — C we define the corresponding weight space
L(A), by

i(A)M:{er,(A) : [hx]=m(h)x for all he H).

Proposition 7.11 I:(A):@M Z,(A)M. Thus L(A) is the direct sum of its
weight spaces.

Proof. We first show that L(A) = > L(A) - A vector which lies in a weight
space will be called a weight vector. We observe that, if x,ye L(A) are
weight vectors of weights A, u respectively, then [xy] is a weight vector of
weight A+ u. For we have

[A[xy]] = [[Ax]y]+ [x[Ry]] = A(R) [xy]+ p(R)[xy]
= (A+w)(h)[xy] for he H.

Now L(A) is generated by elements ¢;, h,, f. Let a,e Hom(H, C) be
defined by

ozl-(hj)zA

it

Then e; is a weight vector of weight «;, f; is a weight vector of weight —
and h; is a weight vector of weight 0. Thus all Lie products of generators e;,
h;, f; are weight vectors. Since every element of L(A) is a linear combination
of such products we deduce that

L(A)=3"L(A),.

We next show that this sum is direct. If this is not so we can find a non-zero
vector x € L(A), such that x=3_, x, where x, € L(A), and v runs over a
finite set of weights all distinct from . Since x € L(A),, we have

(adh—pu(h)1)x=0.
Since x=Y", x, with x, € L(A), we have
[T(ad h—v(h)1) x=0.
Now we can find an element & € H such that w(h) # v(h) for all such v. For

the elements satisfying w(h) = v(h) for some fixed v lie in a proper subspace
of H, and the finite dimensional vector space H over C cannot be expressed
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as the union of a finite number of proper subspaces. Thus we choose h € H
such that w(h) #v(h) for all such v. Then the polynomials

—u(h),  []=v(m)
in C[¢] are coprime. Thus there exist polynomials a(¢), b(t) € C[¢] with
a(t)(t—p(h) +b(O[(t —v(h)=1.

If follows that

a(ad h)(ad h—u(h)1)x+b(ad h)[ [(ad h—v(h)1)x =x.

We deduce that x =0, a contradiction. Thus the sum }, L(A) p is direct.  [J

We next obtain information about the kind of weights u which can occur,
that is for which L(A), #0. The weights a, ... , &, € Hom(H, C) are linearly
independent since the Cartan matrix A is non-singular. Thus any weight has
form n,a,+---+na; for n,e C. We shall show that all weights p which
occur in L(A) have this form with n, € Z and with either n, >0 for all i or
n; <0 for all i.

Let
O={ma,+--+mna,; n,eZ}.
Q" ={ma,+---+ma,#0; n,;>0 forall i}
QO ={nja,+---+na;#0; n,<0 for all i}.
Let

LA = 3 L(4),

peQt

LA =Y I:(A)H.
peQ™
It follows from Proposition 7.11 that the sum L(A)™ +H +L(A)* is direct.
We shall show that in fact

L(A)=L(A)  ®@HDL(A)".

Let N be the subalgebra of L(A) generated by e,,...,e, and N~ th
subalgebra generated by f, .. f, Since e; has weight «; and f; has welght
—a; we have N CL(A)* and N~ CL(A)". Thus the sum N~ +H+N is
direct.
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Proposition 7.12 (i) L(A)=N"®@H®N
(i) N=L(A)*", N =L(A)~, H=L(A),
(iii) Every non-zero weight of L(A) lies in Q" or in Q™.

Proof. The relations [hie;]= Auel show that [h N] C N since the e; generate

N. Thus we have [H, N]C N. It follows that H+ N is a subalgebra of L(A),
since
[H+N,H+N]|C[HH]+[HN])+[NN]CH+N.
Similarly N~ + H is a subalgebra of L(A). We now consider the subspace
N~ +H+N. The relations [e, f;]=h, and [e,-fj] =0 if i # j show that
[ N-]C N+ 1.
For this is true for the generators of N~, and the relation

le:lxyll =[lex] y]+[x[ev]]

then shows it is true for all elements of N~ since N~ + H is a subalgebra. It
follows that

[e. N"+H+N|]CN +H+N
since H+ N is a subalgebra. Similarly we have

[f- N"+H+N]CN +H+N
and the relation

[, N"+H+N]CN +H+N
is clear. It follows that the set of all x € L(A) such that

[x, N~+H+N|CN +H+N
contains e;, h;, f;. However, the relation

[[xylz] = [[xz]y] + [x[yz]]

for ze N~ +H+ N shows that the set of such x is a subalgebra. This sub-
algebra must be the whole of L(A). Thus N~ +H+ N is an ideal of L(A).
Since L(A) is generated by e;, h;, f; it follows that N~ + H+ N =L(A). We
know that this sum is direct, so we have

L(A)=N"@H®N.
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Since N~ CL(A)~, NC L(A)* and the sum L(A)"+H4L(A)* is direct
we deduce that N~ =L(A)~ and N=L(A)*. Since L(A)=L(A) ®H®
L(A)*, HC L(A),, and the weights occurring in L(A)~ and L(A)" are all
non-zero, we deduce from Proposition 7.11 that H = L(A),. Thus all parts of
the proposition have been proved. |

Proposition 7.13 dim L(A), =1 and dimL(A)_, =1

Proof. We know that eieZ(A)ai. Also the element e, € L(A) is non-zero,
since it induces a non-zero endomorphism p(e;) on the L(A)-module &~
considered in Proposition 7.9. Hence dim Z(A)a‘_ > 1. On the other hand we
have

L(A), CL(A)" =N,

Now N is generated by e,...,e; so is spanned by monomials in these
elements. All such monomials are weight vectors. The only monomial which
has weight «; is e;, since the «; are linearly independent. Thus we have
dim I:(A)a, = 1. The relation dim I:(A)_ai =1 is obtained similarly. O

7.5 The existence theorem

We now turn to a study of the Lie algebra L(A), in order to show that it
is a finite dimensional simple Lie algebra with Cartan matrix A. From the
definitions of L(A), L(A) we see that L(A) is isomorphic to L(A)/I where I
is the ideal of L(A) generated by the elements

for all i j. As usual we have 1—A;; factors e; or f;.

Proposition 7.14 (i) Let I* be the ideal of N generated by the elements

[ei]e: .. [e,.ej]]] for all i< j. Then I is an ideal of L(A).

(ii) Let I be the ideal of N~ generated by the elements [f, [f, e [f,fj]]]
for all i# j. Then I~ is an ideal of L(A).

(iii) I=I"®I .
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Proof. We write X, =[¢,[e;...[eie;]]] and Y;;=[f,[fi...[fif;]]]- Then I*

is the set of all linear combinations of elements

[[X,-jekl] ... ek'_]

for all i#j and all ky,...,k, in {l,...,!}. For such linear combinations
certainly lie in /™, and form an ideal of N.

Now X;; is a We1ght vector, being a Lie product of weight vectors e¢;, e;.
Similarly [[ ; jek]] ... eky] is a weight vector. It is therefore transformed by
each of hy, ..., h, into a scalar multiple of itself. In order to show that I is
an ideal of L(A) it will therefore be sufficient to show

[fk’ [[ijek]] . ek']] el”

for all i, j, k,,...,k,, k. We shall prove this by induction on r, beginning

with r=0. In the following lemma we shall show that [f;, X;;] =0, thus
beginning the induction. So let r>1 and write [[X,e, ]|...¢, ]=y. We
assume [f,y] € IT by induction. Then

[fk [yek,]] = [[fky] ek,] + [y [fkek,.]] .
If k, #k then [f,e, | =0 and so
[fk [yek,]] = [[fky] ek,.] el
If k, =k then
[fk [yek,.]] = [[fk)’] @k,] +[ylel™.

This completes the induction. Thus I is an ideal of L(A). Similarly /- is an
ideal of L(A). Hence I* @1~ is an ideal of L(A) containing the elements X;;
and Y;;. Moreover any ideal of L(A) containing the X;; and Y;; must contain
It and] Hence IT®I~=1. O

In order to complete the proof of Proposition 7.14 we need the following
lemma.

Lemma 7.15 [f,, X,;]=0 for all i, j, k with i #].

Proof. If k ¢ {i, j} this relation is obvious since [fie;]=0 and [ fie;]=
So suppose k= j. Then we have

[f[ee ] =[e:[Fre]]=[he]=Ae,
[flei e 1] =ei[f; eies]]]=0
[fileiler-- - [ee]]]] =0 for r=2

—r—>
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by induction on r. Hence [f;, X,;| =0if 1 —A;;>2, thatis A; < —1.If A; =0
then A;=0 and [f;, X;;] =0 in this case also.
Finally suppose that k =i. In this case we shall show that, for r > 1,
[fi [e,- [ei...[eiej]]]]z—r(Aij—l—r— 1) [ei [ei;i'[eiej]]]'

For r=1 we have
[f: [e,-ej]] =[[fie:] ej] == [hie/] =—Aye;.
For r>1 we use induction. We have

[file:[e:--- [ee;]]]]

«—r—>

= —[hi [ei [ei . [eiej]]]] —(r—1) (Aij+r—2) [ei [ei . [eiej]]]

—r—1— —r—1—

= (— (2r—2+Al—j) —(r—1) (A,-j—i—r—Z)) [e,- [e,- e [el-ej]]]

=—r (Ai_i+r_ 1) [ei [ei e [eiej]]]

«—r—1—

as required. We now put r=1—A;; and obtain [f,-, X,-j] =0.

Corollary 7.16 L(A)=N-"@®H®N where H is isomorphic to H, N~ is
isomorphic to N~ /I~ and N is isomorphic to N/I*.

Proof. This follows from the facts that L(A) is isomorphic to L(A)/I, L(A) =
N - ®H®N,and I=1"&®1. O

We shall continue to denote the generators of L(A) by e;, h;, f;. These are
the images of the generators of £ under the natural homomorphism & — L(A).

Proposition 7.17 The maps ade;: L(A) — L(A) and ad f,: L(A) — L(A) are
locally nilpotent.

Proof. To show that ade; is locally nilpotent we must show that, for all
x € L(A), there exists n(x) such that (ad ;)" x=0. Now if ad ¢, acts locally
nilpotently on x and y it also acts locally nilpotently on [xy]. For

(e’ (=2 (") e . ey

(ade;)" x will be O if r is sufficiently large and (ade;)""y will be 0 if n—r
is sufficiently large. Thus (ad ¢;)" [xy] will be O if n is sufficiently large.
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It follows that the set of elements of L(A) on which ade; acts locally
nilpotently is a subalgebra. However, we have
ade;-e;=0
(ade) ™e, =0  ifi]
(ade;)? h;=0 for all j
(ade,)’ f,=0
ade;- f;=0 if i)

Thus this subalgebra contains all the generators e;, h;, f; of L(A), so is the
whole of L(A).

We see similarly that ad f; is locally nilpotent on L(A). O

Now the proof of Proposition 3.4 shows that if § : L— L is a locally
nilpotent derivation of a Lie algebra L then exp 6 is an automorphism of L.
Thus expade; and expad f; are automorphisms of L(A). We define 6, €
Aut L(A) by

0,=expade;-expad (—f;)-expade;.

Proposition 7.18 (i) 0,(H)=H
(ii) 0,(h)=s;(h) for all he H where s; : H— H is the linear map given by
s;(h;)=h;—A;h,

Proof. We have

expadei-hj:(l—i—ade[.) hi=h;—Ae,
expad (—f;)-expade;-h;=expad (—f,)- (h;— A;e,)

(1— df+(adf) )(h —Ae)

=h;—Ae;—A;fi—Ah+Afi=h;—A;h,—Aje,
expadei-expad(—fi)-expadei-hjzexpadei(h —A;h—A; e)

Jiti

=(1+ade) (h;— Azhi—Aze) =h;— Ayh— Ae,— Aye,+2A e,

Jivi Jiti

=h,—A;h,. O
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Now the action of s; on H is precisely that of the fundamental reflection
5;=,, defined in Section 6.4. We recall that

(i, » h)
si(h) =h—2-—1
(h:?ll ’ hil,‘)

= h—(h, . h)h,.

h,, for he H

In particular

()
)
J J

Thus Proposition 7.18 shows that the automorphism 6, of L(A) induces the
fundamental reflection s; on H.

We now consider the decomposition of L(A) into weight spaces with
respect to H. This time the weights are elements of Hom(H, C). For each
weight u: H — C we define the weight space L(A), by

s;(h;)=h;— (R, hj)h,=h;—2

a;> 't

hy=h;—A;h,.

L(A),={xeL(A); [hx]=pn(h)x for all heH}.
Proposition 7.19 L(A)=(D, L(A),.

Proof. The algebra L(A) is the sum of its weight spaces, since its generators
e;, h;, f; are weight vectors. Moreover the sum of weight spaces is direct, just
as in the proof of Proposition 7.11. |

It also follows from Proposition 7.12 and Corollary 7.16 that L(A)=
N-®H®N where all weights coming from N are in Q" and all weights
coming from N~ are in Q. We also have H = L(A),.

Proposition 7.20 dim L(A), =1 and dim L(A)_, =1.

Proof. By Proposition 7.13 we certainly have dim L(A),, < 1. However, the
ideal I* of N such that N/I* = N has the property that I* is a sum of weight
spaces, and all weights occurring in I™ are sums of «;, ..., ¢, involving at
least two terms. This is clear from the proof of Proposition 7.14. Thus «; is
not a weight of ™. Hence

dim L(A),, =dim L(A),, =1.
One shows similarly that dim Z(A),a‘_ =1. O

Proposition 7.21 The automorphism 0, of L(A) transforms L(A),, to L(A);,.
Hence dim L(A), =dim L(A), ,.
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Proof. Let x€ L(A),. Then [hx]=pu(h)x for all he H. We apply the auto-
morphism 6,. This fixes H by Proposition 7.18. We have

[0:h, 0,x]=pn(h)0x.
Hence
[h, 0;x]=p (ei_lh) Oix=p (Si_lh) 0;x = (s;u(h)) 0,x,

again by Proposition 7.18. Thus we have 6,x € L(A), ,. Hence

0; (L(A),) CL(A),,.
Replacing 6; by 6;', u by s;u and recalling that s? =1 we also obtain

0" (L(A),,) CL(A),.
Hence 6, (L(A),) D L(A),, and we have 6, (L(A),) =L(A), ,. O

We now define W to be the group of non-singular linear transformations

of H*=Hom(H, C) generated by s,,...,s; and define ® to be the set of

elements w(eq;) for we W and i€{l,...,[l}. Then ® is the root system
determined by the given Cartan matrix A and W is its Weyl group.

Proposition 7.22 dim L(A),=1 for all a € .

Proof. We have a=w («;) for some i and some we W. Since W is gen-
erated by s, ..., s, w is a product of such elements. Thus it follows from
Proposition 7.21 that

dim L(A), =dim L(A), =1. O

We aim to show that the Lie algebra L(A) is finite dimensional. As a step
in this direction we shall show that the Weyl group W is finite. W is iso-
morphic to the group of non-singular linear transformations of Hy generated
by sy,...,s, where Hy =Rh;+---+Rh;,. We have dim Hy =I/. We do not
have the scalar product on Hy available from the Killing form, so we define
a scalar product directly from the Cartan matrix A.

Proposition 7.23 The Cartan matrix can be factorised as A= DB where
D is diagonal and B is symmetric. D is the diagonal matrix with entries
dy,...,.d €{l1,2,3} defined as follows.

If the Dynkin diagram has only single edges then all d,=1.

If the Dynkin diagram has a double edge then d,=1 if a; is a long root
and d; =2 if a; is a short root.
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If the Dynkin diagram has a triple edge then d, =1 if a; is a long root and
d; =3 if a, is a short root.

Proof. This may be checked from the standard list 6.12 of Cartan matrices.
U

For example in type G, we have

(5 2)=L)E )

We now define a bilinear form on Hy by (h h ):d :d B;;. This form is

i T
symmetric since B is a symmetric matrix.

Proposition 7.24 This scalar product is positive definite.

Proof. We have n;;=A;;A;=d,d;B},, thus —/n;;=/d;\/d;B;;. The matrix

il i jee
of our scalar product is
Vd, 2 Vd,
) N )
DBD =
) —Jn; - )
Vd, 2 v,
2
This matrix is congruent to the matrix (_ - _wl") of the quadratic
ij
form Q(x,, ..., x;) of Proposition 6.6, which is positi\fe definite. Thus DBD
is also positive definite. 0

Proposition 7.25 Our scalar product on Hy is invariant under W.

Proof. We first observe that
(h;, x) =d,;a;(x) for all x € Hy.
For (h h-):d-d-B =dA;=da; (hj) It is sufficient to show that

i 'ty i jEij
(s;x, 8;y) ={x,y) for all x,ye Hy. We note that s;(x)=x—a;(x)h; since

s;(h;)=h;—A;h,. Hence
(s;x, 8,y) = (x—a;(D)h;, y — a;(y)hy)
=(x, ) —;(x) (hyy y) — o (y) (g, x) + e (0);(v) (hys )
=(x,y) —dia;(x)a;(y) — d;o;(x)e;(y) + 2d;0;(x) o (y) = (x, y). [
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Thus the Weyl group W acts as a group of isometries on the Euclidean
space Hp.
We define certain subsets of Hy as follows:

H,={x € Hyg; (h;, x) =0}
H"={x e Hy; (h;, x) >0}
H ={xeHy; (h;, x) <0}
C=H/Nn---NH}.

C is called the fundamental chamber.

Let W, b.e the .subgroup of W generated b}./ s;» 8;, Where i # j. 5;5; has finite
order m;; given in terms of the Cartan matrix by 2cos(m/m;;) =/n;;. Thus
W;; is a finite dihedral group.

Lemma 7.26 Let weW,; with i j. Then either w(H;NH)CH;} or

1

w(HNH)CH; and [ (s;w)=1(w)— 1.

Proof. Let U be the 2-dimensional subspace of Hy spanned by #;, h; and
U+ be the orthogonal subspace. Then Hp =U @ U+ and the elements of Wi
act trivially on U*. It is therefore sufficient to prove the result in U. Let
I'=UNH;"NH;. We obtain a configuration of chambers in U as shown in
Figure 7.1.

S; Sj (F)

Figure 7.1 Configuration of chambers in U
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S
The chambers T, s;(I), s;5;(I), ..., ;5. . (I") lie in H;" and the cham-

bers

5; (1), 5;5,(0), 8:8;5,(F), ..., s;8;... (T)

—mj—>

lie in H; . The elements s;, 5;5;, ..., s;5;... of W,; all satisfy [ (s;w) = I(w) —

<_mif_>

1. Thus for each w € W;; we have either w (H;" NH}") C H orw (H' NH") C
H; and [ (s;w) =1(w) — 1. ]

1

Proposition 7.27 (a) Let we W. Then either w(C) C H;” or w(C) C H; and

[ (s;w)=I(w)—1.

(b) Let weW and i#j. Then there exists w' €W, such that w(C)C
w (H NH) and l(w) =1(w)+1 (w'~"w).

Note. Part (a) is the result we shall need. To prove it we must also prove part
(b) at the same time.

Proof. We prove both statements together by induction on I(w). If I(w)=0
then w=1 and (a), (b) are true. So suppose /(w)>0. Then w=s,w" with
[ (w')=1l(w)—1 for some j. We prove (a).

First suppose j =i. By induction w'(C) C H;” or w'(C) CH; and [ (s;u') =
I(w)—1. But I(s;w)=1(w)+1, so w(C)CH;. Then w(C)CH~ and
[ (s;w)=1(w)—1.

Now suppose j#i. By induction there exists w”e W, with w'(C)C
w’ (HNH) and I (w') =1(w")+1 (w"~'w’). Thus w(C) Cs;w” (H; N HY).
By Lemma 7.26 we have either s;w” (H NH;") CH;" or s;w” (H NH) C
H; and [ (s;5;w”)=1(s;w”) — 1. In the first case w(C) C H;. In the second
case w(C)CH; and [(sw)=I(s;s;w)=1(s;s;w'w " w) <I(s;s5;u")+
Hw'w)=1(sw") =1+ (w""'w) <l(w")+1(w"'w)=1(w)=1(w)—1.
Thus I (s;w) =I(w) — 1 and (a) is proved.

We now prove (b). If w(C) C H;" NH; then (b) holds with w'=1. Thus
we may assume without loss of generality that w(C) ¢ H;". So by (a), which
is now proved under the assumption of the inductive hypothesis, w(C) C H;
and [ (s;w) =I(w) — 1. By induction there exists w’' € W;; such that s;w(C) C
w (H NH}) and [ (s;w) =1 (w') +1 (w'~'s;w). Thus w(C) C s;w’ (H NHJ)
and

I(w) = 1+1(sw) = 1+1 () +1 (w " sw) > I (s;) +z((siw/)*‘ w) > I(w).

Thus we have equality throughout and I(w) =1 (s,w’) +1 ((s,-w’)_l w) Hence
s;w’ € W,; is the required element and (b) is proved.
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Proposition 7.28 If we W satisfies CNw(C) is non-empty, then w=1.

Proof. Suppose w## 1. Then w=s;w with [(w')=I(w)—1. By Proposi-
tion 7.27 (a) w'(C) C H;". Thus w(C) C H; . Hence

CNnw(C)CH NH =o.
So if CNw(C) is non-empty, w=1. |
Now the Euclidean space Hy has an orthonormal basis, and the isometries
of Hy are represented by orthogonal matrices with respect to this basis. Thus

W C O, where O, is the group of [ x [ orthogonal matrices. O, C M,, the set
of all [ x [ matrices over R.

For any matrix M:(mij) €M, we define |[M|=,/3";; mlzl and for any
column vector v=(A,, ..., A,) € R' we define ||v]| =/ A%

Lemma 7.29 (a) If M € O;, veR! then |Mv| = |v||.
(b) If MO, N €M, then |MN| = |N|.
(c) If MeM;,veR' then | Mv| < | M]||v]|

Proof. Straightforward. UJ

Proposition 7.30 (a) W is finite.
(b) D is finite.

Proof. Since ® = W(II) where [1={«,, ..., a,} it is clear that (a) implies (b).

Thus we show that W is finite. We consider the W-action on the Euclidean
space Hy. We give elements of Hp coordinates relative to our orthonormal
basis. Let v=(A,, ..., A;)"' € C. By definition of C there exists 7> 0 such that
B,(v) C C where

B.(v)= {xeRl; lx—v| < r} .

Let weW with w#1. Then w(C)NC=& by Proposition 7.28. Thus
w(v) ¢ C so

[w() —vf >r.
Hence

lw=1][|[v]l = [lw(v) —vl| =~
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so Jlw—1|| > o Put =75 Then |lw—1|| =€ for all w#1 in W. Now let

w, w € W have w# w'. Then
lw—w'=w (W w=1)=w"w-1]=e¢

since w’ € O,. Thus distinct elements of W are separated by a distance of at
least €. Since O,, and hence W, is bounded it follows that W is finite. [

We now return to our Lie algebra L(A). We know that dim L(A), =/ and
dimL(A), =1 for all a € ®.

If we can prove that L(A), = O for all we H* with u g ®U{0} we shall
be able to deduce that L(A) is finite dimensional.

Proposition 7.31 Suppose wpeH* satisfies uw#0 and nwg®. Then
L(A),=0.

Proof. We assume that u#0 and L(A), # O. Since dim L(A), <dim Z,(A)M
we see by Proposition 7.12 (iii) that w € O or w € Q™. In particular u lies in
the vector space Hy of real linear combinations of «, ... , a;.

Suppose first that w is a multiple of some root a € ®. Then u =na or —na
with n> 0 and a € ®*. Now a=w («;) for some w e W and some «; € IT and
we have dim L(A),, =dim L(A),,, by Proposition 7.21. Hence L(A),,, # O.
Now N is generated by elements e, ... , ¢; and no non-zero Lie product of
these can have weight na; unless n=1. Thus u = or —a, that is u € P.

Secondly suppose w is not a multiple of a root. Let
H,={heH ; p(h)=0)
H,={heHy; a(h)=0}.

Then H, is distinct from all the H,, @ € ®. Since ® is finite we can find
he H, such that h ¢ H, for all a € ®. It follows that w(h) ¢ H,, for all a € ®,
since W permutes the H,,.

We claim there exists w € W such that o;(w(h)) >0 foralli=1,...,1 To
see this we define the height of an element of Hy by

ht (Y nh) =3 "n,.

We choose an element w € W such that ht w(#) is maximum. This is certainly
possible as W is finite. Then

si(w(h)) =w(h) —a;(w(h))h;.
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Since hts;(w(h)) <htw(h) we have «;(w(h))>0. However, «;(w(h))=0
would imply w(h) € H, which is impossible. Thus «;(w(h)) >0 for each i
and so w(h) € C.

Now we have (w(w))(w(h)) =un(h) =0. We write w(uw) = Zﬁzl m;a;. Then
we have

Xl: m;a;(w(h)) =0.

i=1

Since a;(w(h)) > 0 for each i we must have some m, >0 and some m; <0 in
the sum. Thus w(w) ¢ 0" and w(u) € Q. Hence L(A),,) = O. By Proposi-
tion 7.21 we deduce L(A),= O, and so L(A), = 0. This gives the required
contradiction. U

Corollary 7.32 (i) L(A)=H® )
(if) dim L(A)=1+|P|.

L(A),.

acd

Proof. This is evident since L(A) is the direct sum of its weight spaces. The
0-weight space is H and this has dimension /. The only non-zero weights are
the elements of ® and the corresponding weight spaces are 1-dimensional.
Thus we have the required formula for the dimension of L(A). |

We now know that L(A) is a finite dimensional Lie algebra — indeed it has
the dimension required for a simple Lie algebra with Cartan matrix A. We
shall now be readily able to show that L(A) has the required properties.

Proposition 7.33 The Lie algebra L(A) is semisimple.

Proof. Let R be the soluble radical of L(A) and consider the series
R=R">R">...oR"Vo5R"W=0

where R(+D=[ROR®]. We write I=R""". We suppose if possible that
R # O. Then I is a non-zero abelian ideal of L. Moreover [ is invariant under
all automorphisms of L.

Since [HI| C I we may regard I as an H-module. We decompose it into its
weight spaces. This weight space decomposition is

I=HN)® > (L,NI).

acd
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For let x € I have x=x,+Y_ . X, Where x, € H and x, € L,. We show x, €/
and each x, €. There exists h € H such that a(h) #0 and B(h) # a(h) for
all B e ® with B+ . Then

ad h [T (ad h—B(h) 1) x=a(h) [T ((h) ~B(h)) x,
= i

and this is an element of /. Hence x, € I. Since this is true for each o € ® we
also have x, € I. Hence

I=HND)® > (L ,NI).

aed

We claim that L, NI = O for each a € ®. Otherwise we would have L, C 1.
Now a=w («;) for some we W and some i=1, ..., /. By Proposition 7.21
we can find an automorphism of L(A) which transforms L, to L, . Since [ is
invariant under all automorphism we would obtain L, C 1. Hence ¢; € I. But
then [e;f;]=h, €I and we would have [h;e;] =2¢, €I, contradicting the fact
that 7 is abelian. Hence L,NI =0 for all « € ® and so I C H. Let x € I. Then
[xe;] = a;(x)e; € I hence a;(x) =0. Since «, ... , ¢, are linearly independent
we deduce that x=0. Hence I = O, a contradiction. ]

Proposition 7.34 H is a Cartan subalgebra of L(A).

Proof. Since H is abelian it is sufficient to show that H = N(H). Let x € N(H).
Then x=n"+3 ,cp A€, for K € H, e, € L,. Then for all he H we have

[hAx]=>_ A a(h)e, € H.

acd

However, we can find 4 € H such that a(h) #0 for all @ € . We deduce that
A,=0 for all « € ®, hence xe H. O

Proposition 7.35 L(A) is a simple Lie algebra with Cartan matrix A.

Proof. LIA)=H®_,cq L(A), is the Cartan decomposition of L(A) with
respect to H. Thus @ is the root system of L(A). The Cartan matrix A’ = (A}))
of L(A) is determined by the condition

S; (ozj)zaj—A/, o

i it
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However, we have
s; (h]) =h;—A;h, by Proposition 7.18.
Using the facts that (s,a;) h, = a; (s;,) and a; (h,) = A,; we deduce that
s; (aj) =q; —Aijai.

Hence A’=A and the Cartan matrix of L(A) is A.
Since the Dynkin diagram of A is assumed connected, L(A) must be a
simple Lie algebra, by Proposition 6.13. |

Thus we have constructed, for each Cartan matrix on the standard list 6.12
a finite dimensional simple Lie algebra L(A) with Cartan matrix A.

Theorem 7.36 The finite dimensional non-trivial simple Lie algebras
over C are

A, I>1
B, [>2
o [>3
D, >4
Eq, E;, Eq

F,

G,

These Lie algebras are pairwise non-isomorphic.

Proof. For each Cartan matrix on the standard list 6.12 there is a corresponding
finite dimensional simple Lie algebra, which by Theorem 7.5 is determined
up to isomorphism. Simple Lie algebras with different Cartan matrices cannot
be isomorphic since, by Proposition 6.4, the Cartan matrix on the standard
list is uniquely determined by the Lie algebra. |

The description in Proposition 7.35 of the simple Lie algebras by generators
and relations enables us to choose the root vectors e, in a way which makes
the structure constants N, g very simple.

Theorem 7.37 It is possible to choose the root vectors e, in the simple Lie
algebra L(A) in such a way that N, g ==+(p+1) where —pa+, ... ,qa+f
are the a-chain of roots through .
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Proof. L(A) is the Lie algebra generated by elements e,...,e¢,,
hy,...,h, fi,...f subject to relations
[h:h;]=0

e; [ei...[eiej]]] =0 if i£j
LlfUal]=0 i)

with 1 —A;; occurrences of ¢, f; respectively.
We now define

[
[
[
[e.f;]=0 ifi#)
[
[

ee=—f, h=—h, fl=—e.

1 1 1

It is straightforward to check that e}, i}, f! satisfy the above relations. Thus

there is a homomorphism w : L(A)— L(A) satisfying w(e;) = —fi,
o (h;)=— h;, w(f;) =—e;. Since ®” =1, w is an automorphism of L(A).
Let a be a positive root of L(A). Then

[hie]=a(h)e,
and so
[—hi, 0 (er)]=a(h;) 0 (e,)
that is
[ 6 ()] =—a (h;) 0 (e,)

whence 6 (e,)eL_,.Let 6 (e,)=Ae_
with u?=—2A"". Then

. Then A #0 and we may choose u € C

3

0 (l‘l’ea) = _/‘L71 €_u
and

. . 2k,
[lu’ea’ /J‘ 670(] - [eaefa] - <h/a7 h/a> .

We now change our choice of the root vectors e, € L. For each positive root
a we take we, as our root vector and for the corresponding negative root

—a we take w~'e_, as the root vector. Changing the notation to call these

a
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new root vectors e,, e_, we retain the multiplication formulae of Section 7.1,
except that the structure constants N, ; may now be altered. We also now
have w (e,) =—e_,. Now

[eaes] = Nugearp

and so

[—e e p]=Nap(—e op)-

This implies N_, _g=—N, 5. By Proposition 7.1 (iii) we have N, gN_, 5=

—(p+1)?, where —pa+g,...,qa+p is the a-chain of roots through .
Hence N; ;= (p+1)> and N, g=+(p+1). O

o

This result has important implications in the theory of Chevalley groups
over arbitrary fields. (See, for example, R. W. Carter, Simple Groups of Lie
Type, Wiley Classics Library, 1989.)

The signs in the formula N, ;==(p+1) can be chosen in various ways.
By Lemma 7.3 and Proposition 7.4 the signs can be chosen arbitrarily for
extraspecial pairs of roots («, 8) and are then determined for all other pairs

(a, B).



8
The simple Lie algebras

Having obtained a classification of the finite dimensional simple Lie algebras
over C we shall in the present chapter investigate them individually in order
to obtain their dimensions and a description of their root systems. In the case
of Lie algebras of type A,, B;, C, or D, we shall also give a description in
terms of Lie algebras of matrices.

The strategy for obtaining this information will be as follows. Given a
Cartan matrix A on the standard list 6.12 we shall describe a symmetric scalar

product {, } on an /-dimensional vector space V over R with basis «;, ... , «,
such that
{ai, ;)
22— —A, i,j=1,...,L
{o, o} Y g

We compare this scalar product with the Killing form <ai, o j) obtained when
oy, ..., are interpreted as a fundamental system of roots in the simple Lie
algebra with Cartan matrix A. We claim there exists a constant k such that

(e aj)=k{a, a;} for all i, j.
In fact we can define k by the equation
(e, ap) =x{a;, o}
Then we have

(e, ;) _ {a )}
2 (a;, a;) =2 {a;, a;}

and since both scalar products are symmetric we deduce that

for all 7, j

(o @) _ {aj. o) .
(a, ) {oy,a;} for all i, j.

121
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Putting j=1 we deduce
(a;, a;) =k {oy, o;} for all i
and it follows that
(ai,aj>=r<{ai,aj} for all i, j.

Thus the symmetric scalar product {, } is the same as the Killing form up
to multiplication by the constant k. In practise it will not be necessary to
determine this constant.

We then consider the fundamental reflections s; : V — V defined by

S; (aj) =aj—Aija,-.

The maps s, ..., s; generate the Weyl group W of transformations of V. The
vectors in V of form w («;) for all we W and all i will then give the full root
system ®. We shall then be able to obtain the dimension of the simple Lie
algebra L by the formula

dimL=1+]d|.

8.1 Lie algebras of type A,

It will be convenient to describe the vector space V as a subspace of a larger
vector space V of dimension [+ 1.

Let V be a vector space over R with basis 8,,..., B, 41 and let the sym-
metric scalar product {, } on V be defined by

{IBI’BJ}ZSU l,]=1,,l+1
We define a4, ..., a; by
a,=B1—Bs =B—PB5 ..., =B—PLu

Let V be the subspace of V spanned by ay,...,a; Then we have dimV =/1.
Our scalar product satisfies

{o,0}=2, {aj, a0, }=-1, {a,a;}=0 if |i—j|>1.
Hence

{a,-,aj}

{a;, o} -

i,j=1,...,1

i

where A = (Al-j) is the Cartan matrix of type A,.
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We now consider the action of the fundamental reflections on V. We define
linear maps s; : V — V by
5;(B;) = Bisi
Si (Bi-H) =B,
s:(B;)=B;  j#ii+].
Then we have
sl-(aj):aj—A,-jai ij=1,...,1

and so s; restricted to V' is the ith fundamental reflection.

We consider the group of transformations of V generated by s,,...,s,.
Since s; acts on V by permuting 3;, B,,, and fixing the remaining 3, the
group generated by the s; is the group of all permutations of B, ..., B,,.

This group leaves the subspace V invariant and induces on V the Weyl group
W. Thus we have a surjective homomorphism

Si—W

whose kernel is trivial. Hence the Weyl group of type A, is isomorphic to the
symmetric group S; ;.

The full root system ® of type A, is the set of vectors of form w («;) for
all we W and all i. This is the set

O={B,—B;:i#j i j=1,....0+1}.

Thus we have |®|=1I(/+1) and dim L =1+ |D|=1(I+2).

We shall now show that s[,, (C) is a simple Lie algebra of type A,.
We discussed this Lie algebra in Section 4.4. In particular we know from
Proposition 4.26 that the subalgebra H of diagonal matrices in L =3[, ,(C)
is a Cartan subalgebra. Moreover by Proposition 4.27

L=H®Y CE,

i#]
is the Cartan decomposition of L with respect to H. By Theorem 4.25 L is a
simple Lie algebra. By Proposition 4.28 the roots of L are the functions
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and a system of fundamental roots is given by

Ay
=A—A-

A
We can now determine the Cartan matrix A= (A,;) of L. We recall from
Proposition 4.22 that the «;-chain of roots through «; when i # j has the form
a;, ai+aj, e, qai+aj

where g=—A,;. Since we know the roots we can determine the numbers g.
Wehave g=1ifi=j—1or j+ 1 and ¢ =0 otherwise. Thus the Cartan matrix
A is the same as the Cartan matrix of type A, in the standard list 6.12. Thus
we have proved:

Theorem 8.1 (i) The simple Lie algebra of type A, has dimension (14 2).
(ii) The Lie algebra 31, (C) of all (I+1)x (I+1) matrices of trace 0 is
simple of type A,.

8.2 Lie algebras of type D,

We recall that the Dynkin diagram of type D, has form

1 2 -2
l
Let V be a real vector space of dimension / and basis 3, ... , 8;. Let the sym-
metric scalar product {, } be defined by {B;, B;} =96,;. We define v, ... , o, by
a,=B—By =B—B ... o =B_—B, o=B_+pB.

Then we have
{a;,;}=2  foralli
{o, i} =—1 for 1<i<l-2
{a,a;} =0 fori,je{l,...,I—1} with [i—j|>1
{a) 5, q}=~1

{a;, a;}=0 for i#l-2,1.
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It follows that

{o, o)}

{a;, o} N

A for all 7, j

1

and hence that the scalar product {, } is a non-zero multiple of the Killing form.
We now consider the fundamental reflections s; on V. For 1 <i<I—1 we
have

5; (B:) =Bt
S; (IBi+|):Bi
si(Bj)zﬁj for j#£i,i+1.

For i =1 we have

51 (Bi)=—B,

51 (B) =B

s, (B;)=B;  for j#I—1,L
Thus the Weyl group W generated by s, ..., s, has form

w (B;) =By weW

for some permutation o of 1, ... , . Let w (B;) = &;8,;- Then an even number
of the signs ¢, are equal to —1. Conversely for any permutation o of 1, ...,/
and any set of signs &; with [[&;=1 there is an element we W acting as
above. It follows that the order of the Weyl group of type D, is given by

|W|=2"11.

We now consider the root system ®. The elements of ® have form w («;) for
all we W and all i. Since w acts on the 8; by a permutation combined with
certain sign changes we obtain

O={+B,+B;;i#jef{l,....1}}.
All combinations of signs are possible. Hence |®|=2/(l—1) and so
dimL=I[+4|®|=1(2]1—1).

We now wish to describe L as a Lie algebra of matrices. We begin with a
lemma which will be useful both for the type being considered and for certain
other types also.
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Lemma 8.2 Let M be an nxn matrix over C. Then the set of all nxn
matrices X over C satisfying
XM+MX=0
forms a Lie algebra under Lie multiplication of matrices.

Proof. The set of such matrices X is clearly closed under addition and scalar
multiplication. Let X,, X, be matrices satisfying the given condition. Thus
we have

X\M=-MX,, X;M=-MX,.
It follows that
X, X,'M = (X, X, — X, X)) M=XX'M - X' XM
=X MX, +X\MX,=MX,X,— MX, X,
=—-M[X,X,].
Thus the set of such matrices X forms a Lie algebra. Ul

We now consider the special case when M is the 2/ x 2/ matrix
0 I
M= ')
<11 0)

X, X
Then a 2/ x 2] matrix X = <X“ X12> satisfies X'M + MX = O if and only
21 422

if X,, =—Xj, and X,,, X,, are skew-symmetric. Let L be the Lie algebra of
all such matrices X and H be the set of diagonal matrices in L. The elements
of H have form

Let us number the rows and columns 1,...,[,—1, ..., —[. Then we have

L=H&) Ce,
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where

Ej—E ;.
. — —E_,_,+E; for 0<i<}j,
=
Ei,fj _Ej,fi
—E i tE

that is for each pair i, j with 0 <i<j we have four vectors e, as above.
Moreover each of the 1-dimensional spaces Ce,, is a H-module, and we have:

We write [he,] = a(h)e, for all such e,.
Now the argument of Proposition 7.34 shows that H is a Cartan subalgebra
of L. The decomposition

L=H®) Ce,

is then the Cartan decomposition of L with respect to H.

We next verify that L is semisimple. Suppose not. Then L has a non-zero
abelian ideal /. Since [HI] C I we may regard I as a H-module and consider
the decomposition of I into weight spaces with respect to H. This gives

I=HN)®) (Ce,NI)

just as in the proof of Proposition 7.33. Suppose if possible that Ce, NI # O
for some @. Then we have ¢, €1. We then define h, by h,=[e,e_,] and
observe that [h,e,]=2¢,. Then e,, h, € I and we have a contradiction to the
fact that / is abelian. Hence Ce, N/ =0 for all @ and so I CH. Let xel.
Then [xe,]=a(x)e, €I so a(x)=0. This holds for all @ and so x=0. Thus
I=0, which gives a contradiction. Hence L is semisimple.
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We now know that the functions « : H — C given above are the roots of L
with respect to H. A system of fundamental roots is given by

a;(h)=A,— A,
ay(h) =2y — A3

a_(h)=A_1 =X
a,(h)=A_;+A

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.
We now determine the Cartan matrix of L. Let the a;-chain of roots through
a; for i j be
aj, ai+aj, ey qai+aj.

Then A;;=—gq by Proposition 4.22. Since we know the roots we can find
the number g and hence A;; for each i j. This gives us the Cartan matrix
A=(A;) of type D, on the standard list 6.12.

Finally we note that since this Cartan matrix is indecomposable the Lie
algebra L must be simple by Corollary 6.15. Thus we have proved the
following result:

Theorem 8.3 (i) The simple Lie algebra of type D, has dimension 1(21—1).
(ii) The Lie algebra of all 21 x 2l matrices X satisfying X'M+MX=0

where
o1
M= !
(1 l 0)

is simple of type D, when | > 4.

8.3 Lie algebras of type B,
We recall that the Dynkin diagram of type B, has form

1 2 -1 )
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Let V be a real vector space of dimension / with basis 3, ... , 8;. Let the scalar
product {, } on V be defined by {B;, B;} =6,;. We define o, ... , o, € V by
o =B—By, a=B—Bs ..., o =B_—B, a=p.

Then we have
{a, ;} =2 for 1<i<l—1
{o), o} =1
{o;, o }=—1 for 1 <i<l-—1
{ai, aj}=0 if |i—j|>1.

It follows that

{ai’aj} A

= for all i, j
{a;, o} .

ij

where A= (A,- J-) is the Cartan matrix of type B, on the standard list 6.12.
Thus the scalar product {, } is a non-zero multiple of the Killing form.

We now consider the fundamental reflections s; on V. We have, for 1<
i<l—1,

5i (B) =By
$i (Bix1) =B
s;(B))=B;  jAii+].
For i=1 we have
s1(B)) = =B
s (B)=B;  i#l

Thus the Weyl group W generated by s,,...,s; consists of elements w of
the form

w(B;) = ﬂ:Ba([)

for some permutation o of 1,..., [ Let w(B;)=¢;8,. Then, given any
permutation o of 1, ...,/ and any set of signs &, € {1, —1} there is an element
we W such that w(B;) =¢,8,;, for all i. Thus the order of the Weyl group
W of type B, is

|W|=2"1.
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We now consider the root system ®. The elements of ® have form w(«;)
for all we W and all i. Since w acts on the 3; by means of a permutation
combined with sign changes we obtain

b= {iBiiBj i#]; iBi} .
All combinations of signs are possible. Thus we have |®|=2/* and so
dimL=1[4|®|=I2l+1).

We shall now describe L as a Lie algebra of matrices. We use Lemma 8.2
and this time we take the (2/4 1) x (21+ 1) matrix M given by

20 ... 0
00 1
M=
0 1 0

Let L be the Lie algebra of all (2/41) x (2/4 1) matrices X satisfying the
condition

X'M+MX=0

We consider X as a block matrix
Xoo Xor Xpo\ 1
XIO XI 1 X12 l
XZO X21 X22 l
1 l [

Then X satisfies X'M +MX = O if and only if X,, =—Xj,, X,, and X,, are
skew-symmetric, X,, = —2X{,, X,,=—2X{, and Xy, =0.
Let H be the set of diagonal matrices in L. The elements of H have form

We number the rows and columns 0, 1,...,[,—1,..., —I. Then we have

L=H&) Ce,
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where
E,—E_; _
—E jt+E;
E, _j—Ej _ forO<i<j
€y= ’ ’
E_, ,+E_;
2E,—E, _; for 0 <i
_2E—i0+E0i

Each of the 1-dimensional spaces C, is an H-module and we have

[hEj—E_; )= (=2) (E;—E_; )

[h.—E_, +EJ’] (L =X) (ZE-;, +Ey)

[n. E; =) (B, -E; )

[ —E j+E ; J=(-A=A) (—E_ ;+E ;)
[h,2E,—E, ,] A (2Ey—E,_;)
[h, —2E_; o+Ey]=—) (—2E_ (+Ey).

We write [he,] = a(h)e, for all such a.

We now show that H is a Cartan subalgebra of L; L=H®)_,Ce, is the
Cartan decomposition of L with respect to H, and L is semisimple. These
facts can be proved in exactly the same way as that used in Section 8.2 for
type D,.

We now know that the functions «: H — C given above are the roots of L
with respect to H. A system of fundamental roots is given by

a;(h)=A,— A,
ay(h) =2, — A

a_(h)=A_1 =X
a,(h) = A,

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.

We can now determine the Cartan integers A;;. Leta;, a; + @, ..., qo; + @
be the a;-chain of roots through «; for i# j. By Proposition 4.22 we have
A;;=—q and so the Cartan matrix A= (Aij) can be determined. This turns
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out to be the Cartan matrix of type B, on the standard list 6.12. Finally we
observe that L must be a simple Lie algebra by Corollary 6.15, since its
Cartan matrix is indecomposable. Thus we have

Theorem 8.4 (i) The simple Lie algebra of type B, has dimension 1(21+1).
(ii) The Lie algebra of all (21+1) x 21+ 1) matrices X satisfying X'M +
MX = O where

20 .- 0
00 I
M=
0 I 0

is simple of type B; when 1 >2.

8.4 Lie algebras of type C,
We recall that the Dynkin diagram of type C, has form

1 2 -1 l

Let V be areal vector space of dimension / with basis B3, ... , 8;. Let the scalar
product {, } on V be defined by {B;, B;} =9,;. We define a;, ..., a; € V by
a,=B—By a=B—Bs ... @ =B —B, «a=28.

Then we have

{a;, a;}=2 for 1<i<l—-1

{, oy} =4
{a;, a0} =—1 for1<i<[-2
la ,a}=-2

{aj,a;} =0 for |i—j|>1.

It follows that

=A; for all i, j

1

where A= (A,-/-) is the Cartan matrix of type C; on the standard list 6.12.
Thus the scalar product {, } is a non-zero multiple of the Killing form.
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The fundamental reflections s,, ..., s; acton 3, ..., B, in exactly the same
manner as in type B;, considered in Section 8.3. Thus we have

|W|=2'1!

as in Section 8.3 and each we W acts on the 3; by means of a permutation
combined with sign changes. Both the permutation and the sign changes can
be chosen arbitrarily. Thus we obtain the root system ® as the set of all
vectors of form w («;) for all we W and all i. Thus

d={+B,+B, i#j;+2B}.
All combinations of signs are possible. Thus we have |®|=2/* and
dimL=1+|®|=1(21+1).

We next describe L as a Lie algebra of matrices. Again we use Lemma 8.2.
This time we take the 2/ x 2/ matrix M given by

(0
=5 o)

Let L be the Lie algebra of all 2/ x 2/ matrices satisfying the condition
X'M+MX=0.
X Xi

Xo1 Xp
are symmetric.

Let X = ( ) Then X lies in L if and only if X,, =—Xj, and X,,, X,,

Let H be the set of diagonal matrices in L. The elements of H have form

We number the rows and columns 1,...,[/, —1,..., —[. Then we have

L=H®) Ce,



134 The simple Lie algebras

where
E,—E_;
—E; ,+E;
- J O<i<j

E, _+E;

e,= ’ ’
Ei jtE
Ei —i .

’ 0<i.

E

Each of the 1-dimensional spaces Ce, is a H-module. We have

[hEy—E_; ]=(\—A) (E;—E_; )
[h.—E_; +E;]=(\—N)(=E_ ;+E;)
[n.E, +E; ]=(\+A) (B, +E; )
[ E j+E ; ]=(-N—A) (B ;+E ;)
[h E, _;]=2NE; _,

[hE_; ;]=—2MNE_; ,

We write [he,] = a(h)e, for all such a.

We observe that H is a Cartan subalgebra of L, that L=H®)_,Ce, is
the Cartan decomposition of L with respect to H, and that the Lie algebra L
is semisimple, using the same arguments as given in Section 8.2 for type D,.

The functions « : H— C given above are the roots of L with respect to
H. A system of fundamental roots is given by

a;(h)=A; =X,
a,(h) =2, — A

a_(h)=A_1—X
a () =24,

since all the other roots are integral combinations of these with coefficients
all non-negative or all non-positive.

We can now determine the Cartan integers A;;. Let o, o, + o, ..., g+«
be the a;-chain of roots through «;, for i# j. Then A;;=—g. The Cartan
matrix A= (A,;) determined in this way turns out to be the Cartan matrix of



8.5 Lie algebras of type G, 135

type C, on the standard list 6.12. Finally L is a simple Lie algebra, since its
Cartan matrix is indecomposable. Thus we have

Theorem 8.5 (i) The simple Lie algebra of type C,; has dimension 1(2141).
(ii) The Lie algebra of all 21 x 21 matrices X satisfying X'M + MX = O where

o I
M= !
(4 0)
is simple of type C, when [>3. |

The Lie algebras of type A,;, B, C, or D, are called the simple Lie alge-
bras of classical type. The remaining simple Lie algebras E,, E;, Eg, Fj,
G, are called the exceptional simple Lie algebras. We now determine the
dimensions and root systems of the exceptional Lie algebras.

8.5 Lie algebras of type G,

The Dynkin diagram of type G, is

[o=="0]
1 2

and the corresponding Cartan matrix is

2 -1
-3 2 )
Let a, @, be the fundamental roots in a root system of type G,. Then we
have
si(a) =—a, 5, (@) =a;+3a,
si()=a,+a, 5 () =—a,

and W = (s, s,). Thus each root in ® is obtained from «, or «, by applying
sy, 8, alternately. Now we have

o=~ —o— —o,—3a,—> —2a, —3a,
K 5 5]
a,—o+3a,—2a,+3a,
S K
a—a + a—>a +2a,
1 2

Wy—> —Qy—> — 0 — Ay—> — O — 20,
52 1 52
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and
8 (—2a, —3a,) =—2a,—-3a,
s, ey +3a,) =20, 4+ 3a,
si (o +2)=a;+2a,
51 (—a; —2ay) =—a, —2a,.

Thus all the vectors in the above sequences are roots, and we do not obtain
new vectors by continuing the sequences further. Hence

b= {a,, @, at+a,, o +2a,, o +3a,, 20 +3a, —a,
—0,, —a; —a,, —a;—20,, —a;—3a,, —2a,—3a,}.
Thus we have |®| =12 and dim L = 14. Hence we have proved

Theorem 8.6 The simple Lie algebra of type G, has dimension 14.

Figures 8.1, 8.2 and 8.3 compare the simple root systems of types A,, B,
and G,.

ap a1+a2

—ay %)

—a1—o) -

Figure 8.1 Simple root system of type A,
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oy ap+a, ap+2a,
3 @
—a 20, - -0y -

Figure 8.2 Simple root system of type B,

201+ 30,

o a+a, o +20, a;+3a,

—Q %]

—a;—30, —a—20, —a—ay —a

2030,

Figure 8.3 Simple root system of type G,
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8.6 Lie algebras of type F,

The Dynkin diagram of type F, is

(e, Q> O O
1 2 3 4

and the corresponding Cartan matrix is

2 -1 0 0
-1 2 -1 0
0o -2 2 -1
0 0 -1 2

Let V be a real vector space with dimV =4 and f3,, 3,, 35, B, be a basis
of V. Let the scalar product {, } on V be defined by {B,, B;} =8,;. We define
a, 0y, 05,0, €V by
a=p,—p, a,=PB,—p; a;=f; a4=%(_Bl_Bz_B3+B4)-
Then we have

{a), a1} ={ay, @y} =2

{as, a3} = {ay, a4} =1

{a, 0} ={ay, a3} =—1

{oz, a4} = _%

{ai,a‘/}:O if |i—j|>1.
It follows that

{ai, o) _
{a;, a;} =4

for all i, j.

ij

Thus the scalar product {, } is a non-zero multiple of the Killing form. We
consider the action of the corresponding fundamental reflections s,, s,, S5, 4.
We have

s1(B)=By, 51 (B)=PBis 51 (B)=P5. 5 (Bs)=PBs
$B)=B1, % B)=PBs B3)=PB $(B)=p,
s5(B)=B1, s5(B)=PBs, s3(B3)=—PBs, s3(Bs)=Ps-

We consider the subgroup (s, s,, s;) of the Weyl group W generated by s,,
$,, 85 Elements in this subgroup all fix 8, but act on 3;, 3,, 3; by means of a
permutation combined with sign changes. Thus w (B;) = &;8,, fori=1,2, 3.
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Moreover each permutation o and each choice of signs g; arise in this way.
Applying the elements of this subgroup of W to ¢, «,, as, o, we see that
the vectors

+B; 1<i<3

BB, i#j  1<ij<3
L (B £ B, £B £ By)

all lie in ®. We next consider the action of s,. We have

54 (By) = % (Bi—B,—B5+B4)
54 (By) = % (=B1+B>—B3+Bs)
54 (B3) = % (=B1—B>+B3+Bs)
54(By) = % (Bi1+By+B5+B.) -
Since 57 =1 we have s, (% (B, +B,+ B +B4)) =pf,. Hence B, € ®. We also

have s, (8,+8,)=—B;+B,. Hence —B;+ B, € ®. Thus, applying further
elements of the subgroup (s, s,, s;) we see that the vectors

+5; 1<i<4
BiEp;,  iF) =i j=4
3 (EB £ By B3 +By)

all lie in @, where the choice of signs is arbitrary.

We show this set of vectors is the whole of ®. To do so it is sufficient to
show that the set is invariant under s,, s,, $3, s4. The set is clearly invariant
under s,, §,, s; because of the simple action of these reflections on B,, B,, B3,
B, described above. Thus it is sufficient to show the set is invariant under s,.
Now the action of s, given above shows that

sq(£B) = % (&1B1 + &8, + &85+ &4B4)

where ¢;€{l,—1} and []g;,=1. Thus s, transforms vectors £f; into the
given set, giving as images vectors %Zs,ﬂi with []e;=1. Since there are
eight such vectors they all appear as vectors s, (£f3;). Since s; =1 we deduce
that all vectors % > &,B; with [ ;=1 are transformed by s, into the given set.
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The formulae for s, (8;) also show that, for all i # j, s, (8, £ 8;) has form
£, £ B, for certain k # [. Thus s, transforms vectors £, + 3, i # j, into the
given set.

It remains to show that s, transforms all vectors %Zs,ﬁi with []eg; =
—1 into the given set. We may clearly assume g, =1. There are four such
vectors. One of them is @, and we have s, (o,) = —«,. The other three are
all orthogonal to a, and so are transformed into themselves by s,.

Thus the given set of vectors is invariant under s, s,, s3, s, S0 is the whole
of ®. Thus we have

D= (£, l1<i<4
B, £B; i#)j 1<ij<4
5 (EB £B£Bs L)}

In particular we have |®| =48, hence dim L =52. Thus we have
Theorem 8.7 The simple Lie algebra of type F, has dimension 52.

We observe that the roots of F, are of two different lengths. There
are 24 short roots and 24 long roots. The short roots are =+f3; and
% (£B, £ B, £ B3+ pB,). The long roots are £, +0;.

8.7 Lie algebras of types E, E,, Eg

We now consider the simple Lie algebra of type Es. Its Dynkin diagram is

1 2 3 4 5 7 8
O O O O I O O
6
Let V be a real vector space with dim V =8 and with basis 8, i=1,...,8.

Let the scalar product {, } on V be defined by {B;, B;} =6,;. We wish to find
a fundamental system of roots of type Eg in V. We note that if the vertex 8 is
removed from the Dynkin diagram we obtain a Dynkin diagram of type D,.
This indicates how the first seven vectors in the fundamental system should
be chosen. The last one is chosen to be linearly independent of the others and
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to satisfy the appropriate conditions relating to the scalar product. Thus we
define «, ..., g€V by:

;=B —Bin l<i<6

a; =B+ B,
8

oy = _%Zﬁr

i=1

Then we have

{a;, a;}= 2 for 1<i<8

{a;, o }=—1 for1<i<5
{as, a;}=—1
{a;, ag}=—1

{a;,a;}= 0 for all other pairs i, j.
It follows that

{a;, o)

{a;, a;} -

ij

where A= (Al-j) is the Cartan matrix of type Eg on the standard list.
In order to obtain the remaining roots we consider the action of the funda-
mental reflections s, ..., s;. We have

5; (B:) =Bin
Si (BiJrl):lBi
s:(B;)=B;  for j#i,i+1
when 1<i<6. Thus the subgroup of the Weyl group W generated by

15 ..., 8¢ Will give all permutations of 3, ..., 3, and will fix B¢. The fun-
damental reflection s, acts by:

57 (Bs) = =B

57 (B7) = —Be

s;(B) =B; i#6,7.
Thus the subgroup of W generated by s,,...,s; will act on 3,,...,[5; by
permutations and sign changes, and will fix 8. Moreover the number of sign
changes will be even, and any permutation of 3, ..., 3, combined with any

even number of sign changes will arise in this way.
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It is then clear that the vectors

B +B; 1<i,j<7 i#j

8
;(Z‘%B:‘) g ==l, 1_[81':1
i=1

are all in the root system . We also have

{as, B;}
{ag, ag}

ss (B)=PB;—2

agzﬁi—i—%ag
for 1 <i<8. Thus

83 (B, +Bs) = % (=B1—=Br—B3—Bs—Bs—PBs+B,+Ps) €.

Since s =1 it follows that B;+ Bs € . We then see that £f3,+ ;€ P for
all i with 1 <i<7. Thus the set of vectors

B, £B; 1<i,j<8 i#j
8

% (Zsiﬁi> 8i::l:1, H8i=1
i=1

lies in ®. We shall show this is the full root system ®. In order to do so we
must verify that this set is invariant under s,, ..., sg. It is clearly invariant
under s, ..., s; since these fix 85 and act by permutations together with an
even number of sign changes on 3, ..., 3;. Thus it is sufficient to verify
that this set is invariant under s;. Now we have

ss(B;—B;)=B:—B;  foralli#].

Thus the set of vectors of form 3, — 3 ol # j, is invariant under sz. Also

sy (Bi+B;)=B:+B;+ag  forallizj.

Thus s transforms vectors of form B;+B;, i # j, into vectors 1 (3" &,8;) with
two ¢; equal to 1 and six equal to —1. Moreover all vectors %(Z £,8;)
with this property arise in this way. Similarly such vectors with six g; equal
to 1 and two equal to —1 have the form s (—/31' -B j). Thus vectors of form
B;+B,; or —B;—B; with i# j are transformed by sq into the given set, and
S0 are vectors %Zsi,&. of type (2, 6) or (6, 2). The vectors of this form of
type (0, 8) or (8, 0) are g and —ay, which are transformed into one another
by sg. It remains to show that sy transforms vectors %Zaiﬁi of type (4, 4)
into the given set. However, since such vectors have four positive signs and
four negative signs they are orthogonal to a, hence s; transforms each such
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vector into itself. Thus the given set of vectors is invariant under s, ... , S
so is the full root system P.

There are 4- <§) =112 vectors of form £3;+B; with i# j and 27=128

vectors of form %Zs,ﬁi with g;==1 and []¢;,=1. Thus the total number
of roots is

|| =112+ 128 =240.

Finally we have dim L =8+ |®| =248. Thus we have proved

Theorem 8.8 The simple Lie algebra of type Eg has dimension 248.

We now turn to the simple Lie algebra of type E,. Its Dynkin diagram is

(e O O i O O

Thus the vectors a,, a3, ay, as, o, 07, g considered above form a funda-
mental root system of type E,. In order to obtain the full root system we

must transform these vectors repeatedly by s,, ..., s; until no new vectors
are obtained. Now the vectors «,, ... , ag are all orthogonal to 3, — 3;. Thus
all their transforms by s,, ..., s; will also be orthogonal to 3, — 3;. These

transforms are contained in the set of roots of E; obtained above.
Now the roots of Eg orthogonal to 3, — 3 are:

:‘:,B;iﬁj, 2<i,j<7, i#j
+ (B +Bs)
%Zsi'gi’ &==l, HS,-:]’ &) =¢&g.

Thus the required root system of E, is contained in this set. We shall show it
is the whole of this set.

We first consider the action of the subgroup of the Weyl group of E,
generated by s,, S5, 84, S5, 54, 57. Elements of this subgroup fix 8, and B4 and
act on f3,, B3, B4, Bs, Be, B; by permutations combined with sign changes
with an even number of negative signs. By applying elements of this subgroup
to a,, ..., ag we see that the vectors

+B,+£B;,  2<i,j<7, i#j
sy eB  e=%l, Jle=1, &=¢
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are all roots of E,. It remains to show that &+ (83, + ) are also roots of E,.
However,

Sg (B1+B8):ﬂl+ﬁ8+a8:%(Bl_ﬂZ_B3_ﬁ4_B5_ﬁ6_B7+ﬁ8)
is a root of E,, thus so is B, + s and —f3, — Bs.
There are 4 (g) =60 roots of form :I:B,.:I:Bj, 2<i,j<7,i#jand 2°=

64 roots of form % > ¢&,B; withe,==%1,]] &;=1 and &, = &;. Thus the number
of roots of E; is given by

|®| =6042+64=126.
Also we have

Thus we have shown:

Theorem 8.9 The simple Lie algebra of type E, has dimension 133.

Finally we consider the simple Lie algebra of type Ej. Its Dynkin diagram is

O

(e, O l O O

Thus the vectors as, ay, as, o, a;, ag considered above form a fundamental
root system of type E;. In order to obtain the full root system of E; we
must transform these vectors successively by the fundamental reflections

S35 845 S5 S5 575 Sg-
Now the vectors a5, ... , ag are all orthogonal to both 3, — 3¢ and 3, — 3.
Thus the full root system of E is orthogonal to 8, — B¢ and 3, — Bs.
Now the roots of E; orthogonal to both 3, — B¢ and 3, — 3; are:

+B:£B; 3<i,j=7, i#]

8
;(Zsiﬁi> 8i::|:1, 1_[81-:1, £, =¢&,=¢&;g.
i=1

Thus the required root system of E4 is contained in this set. We shall show it
is equal to this set of vectors.

Consider the action of the subgroup of the Weyl group of type E; gen-
erated by s, sy, S5, S, 5;. Elements of this subgroup fix B, 8,, Bs and act
on 5, B4, Bs, Be, B; by permutations combined with sign changes with an
even number of negative signs. By applying elements of this subgroup
o a;, ay, as, ag, @7, ag we can obtain all vectors of form +3,+3; with
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Table 8.11 The simple Lie algebras

L dim H | D dimL
A 1>1 ! I(1+1) 1(142)
B I> ! 22 120+1)
C 1>3 I 212 121+1)
D, 1> ! 2(1—1) 121—-1)
Eq 6 72 78
E, 7 126 133
Eg 8 240 248
F, 4 48 52
G, 2 12 14

3<i,j<7, i#J, and (up to sign) all vectors of form %Zsiei with g, ==1,
[1e;=1, e, =&, =g4. Hence the vectors in the above set are all roots of Ej.

5
There are (2

2% =32 vectors of type 1 3" €;¢; with &, ==+1, [Jg;=1 and &, =&, = &5. Thus
the total number of roots is

)-4:40 vectors of type j:Bii,Bj with 3<i,j<7,i#j, and

|P|=40+32=72
and we have
dimL=6+|®|=78.
Thus:

Theorem 8.10 The simple Lie algebra of type E4 has dimension T8.

We have now determined the dimensions of all the simple Lie algebras.
We summarise the information we have obtained in Table 8.11. In this table
L is a simple Lie algebra, H is a Cartan subalgebra and @ the system of roots
of L with respect to H.

8.8 Properties of long and short roots

Proposition 8.12 In the simple Lie algebras of types A;, D,, Eq, E;, Eg all
the roots have the same length. In the Lie algebras of types B, C,, F,, G,
there are two possible lengths of roots. These are called the long roots and
short roots.

Proof. This is clear from the preceding results. |
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Proposition 8.13 (i) Let @ be a root system of type B, with fundamental
system

o 2%} Q_q Q

Then the long roots form a subsystem of type D, with fundamental system

Ay

a oy o a1 +2q

and the short roots form a subsystem of type (Al)/ with fundamental system

(e} (e} ... (e} (e}
Qr+ecsta; o+t o1+ (7

(ii) Let ® be a root system of type C, with fundamental system
@y @ Q- @

Then the long roots form a subsystem of type (Al)] with fundamental
system

(@) (@) L (@) (0]

2000+« 20 oy 200+ o o+ 20g 1+ 200 1+ (7

and the short roots form a subsystem of type D, with fundamental system

Q_q

07 7
! ? -2 1ty

(iii) Let ® be a root system of type F, with fundamental system

oO—Q > 0—-o0

oy %8 05 oy

Then the long roots form a subsystem of type D, with fundamental system
v +205+ 20y

Qy )
o +20
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and the short roots form a subsystem of type D, with fundamental system
(651 + Q) + [0%}

oy o3
0+

(iv) Let ® be a root system of type G, with fundamental system
@ @,

Then the long roots form a subsystem of type A, with fundamental system

o——O
a  oq+3my

and the short roots form a subsystem of type A, with fundamental system

o0—O
ajta,

Proof. (i) We saw in Section 8.3 that the roots of type B, have form
+B;£B;,i#j, and £B;. The former are the long roots and the latter the
short roots. The long roots form a system of type D, with fundamental sys-
tem B, =B, By —Bss .- s Bi_i— B Bi1 + B These are oy, ay, ..., apy,
@, +2a, respectively. The short roots form a system of type (A,)" with
fundamental system 3, ..., 8,. These are a; + -+, 0, +- -+, ..., @
respectively.

(i) We saw in Section 8.4 that the roots of type C, have form 8, £+, i # j,
and £2f;. The former are the short roots and the latter the long roots.
Thus the short roots form a subsystem of type D, and the long roots a
subsystem of type (A,)".

(iii) We saw in Section 8.6 that the roots of type F, have form

LB i#)
+p;
LB £ B £Py).

Roots of the first type are long and those of the second and third types are
short. The long roots form a subsystem of type D, with fundamental sys-
tem B, — By, B1 — Ba, B — B3, B+ B3. These are a, +2a3+ 20y, oy, ay,
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a, +2a; respectively. The short roots also form a subsystem of type D,,
with fundamental system B,, B,, B3, 3 (=B, — B, —B;+B,). These are
o +a,+as, a,+as, o, a, respectively.

(iv) The long and short roots of type G, are evident from Section 8.5. [

Let IT={«;} be a fundamental system of roots in a simple Lie algebra whose
Dynkin diagram has a double or triple edge, and let ® be the root system
with fundamental system II. Consider the simple Lie algebra whose Dynkin
diagram is obtained from that above by reversing the direction of the arrow.
Let ITY = {a} be the corresponding fundamental system, labelled as before,
and ®" be the root system with fundamental system II".

System @V is called the dual root system of ®. The possible types of
®d, dY are as shown.

] [
Bl Cl
G B,
F, F,
G, G,

We note that «; is a short root in IT if and only if «] is a long root in IT".
We suppose as usual that we have symmetric scalar products {, } on RII
and RIIY such that

Joal_, )
{a;, @} ! {af, af}

AV
_Al.j

for all i, j, where A= (A,-j), AV:(AXi) are the Cartan matrices of ®, ®V
respectively.

We consider the free abelian groups ZII, ZII' generated by II, II'. We
define a homomorphism

0: ZI1' — ZI1
by
a; if «; is a short root
oEn=1"" %
o; if o; is a long root

where p is the ratio of the squared lengths of the long and short roots. (Thus
p=2in types B,, C;, F, and p=3in type G,.)
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{6(a), 0(e)} _

Lemma 8.14 2 =
{0(a)), 0(a})}

Aj; for all i, j.
Proof. We write 0 (a)) =§&;a; where &, =p if «; is short and §,=1 if «; is
long. Then

{0).0(a))} |, {ena)}
0@ 0@)) 5 )

However, &7'¢ jA;;=Aj;. This follows from the following observations.
If A;#0 and o, @; have the same length then we have §;=¢; and A;; =

-1
=& A,

AV =—1.

ij

If A;;#0, @; is long, a; is short then §; =1, &, =p, A;;=—1 and A}, =

If A;#0,a; is short, «; is long then & =p, §j=1 A ,Alvj——l.
Thus in all cases we have &' §iA;=AL. |

Lemma 8.15 The diagram

zi 5 zn
si 4 Vs
ZIN — ZII

commutes.
Proof. On the one hand 0s; (a )=6 (a —Aja al)=0 (a;) —A},0(a}). On the
other hand
56 () = 5 ( ja-)= i (a)) =§; (e, — Ayya)
= gjaj / ij (glal) 9 ( ) Aij0 (a:/) .
Thus 60s) =s,0. U

Let W, WY be the Weyl groups of &, ®". There is a natural isomorphism
W = WY under which s; corresponds to s, since the root lengths are irrelevant
as far as the structure of the Weyl group is concerned. We shall use this
isomorphism to identify W" with W. Then Lemma 8.15 shows that w = w6
forall we W.

Proposition 8.16 Given o' € ®' there is a unique o € ® such that

6(a")= pa if a is short

a if a is long.
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Proof. We have o' =w () for some we W, o] € II". Thus

; if @, is short
0(a")=0w(a))=wb (a))= {pw (a;) if «; is shor

w(a;) if «; is long.
Let a =w («;) € ®. Then « is uniquely determined since

w(a)=w (a;) =wlw (o)) = a} =suw'w(a)= a;,=w(a)= w (aj) .

if « is short
ThusG(aV):{pa if a is shor O

o if a is long.

This proposition determines a bijection &' — ® under which o' — a. " is
called the dual root of «. o' is long if and only if « is short.

Proposition 8.17 Let o € ® satisfy a=)_n,«a,. Then a is a long root if and
only if p divides n; for all i for which «; is a short root.

Proof. Suppose « is long. Then 6 (a') =« and so

v __ % -1 v
o'= Y mal+ > nplal.
a; long a; short
Since a¥ € )"; Za] we deduce that p divides n; whenever «; is short.

Now suppose conversely that p divides n; for all i for which «; is short.
Let n; = pm, for such i. Suppose if possible that « is short. Then 6 (a") = pa.
Thus

a'= Y pnal+ Y na)

a; long a; short

ZI’( Do omai+ Y mia;v>~

a; long a; short

This gives o' € ) pZa} which is impossible. Thus « is a long root. Ul

Proposition 8.18 (i) The abelian group generated by the short roots in ® is

Zf.:l Za,.

(ii) The abelian group generated by the long roots in ® is Y
Za,- shore PLx;.

Za,; +

a; long i
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Proof. By considering the fundamental system of the subsystem of short
roots described in Proposition 8.13 it is clear that the abelian group generated
by the short roots contains &, ..., a; sois Y Za;.

The abelian group generated by the long roots lies in ), jo0, Z;+
>« shon PZex; by Proposition 8.17. However, this group contains «; for «;
long and pa; for a; short, again by Proposition 8.17, so mustbe >, 145, Zt; +
Zai short pZai. U
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Some universal constructions

9.1 The universal enveloping algebra

Let L be a Lie algebra over C. We shall show in this section how to construct
an associative algebra 11(L), the universal enveloping algebra of L, such that
the representation theory of 11(L) is the same as the representation theory of
the Lie algebra L. Even if L is finite dimensional its enveloping algebra 11(L)
will be infinite dimensional.

We begin by forming the tensor powers of L. We define T° to be the
1-dimensional vector space C1, T' =L, T? =L® L and, in general,

T"=LQcLQc QL (n factors)

T" is a vector space over C of dimension (dim L)".
We next form the tensor algebra T=T(L) of L. We define T as the direct
sum of vector spaces

T=T'eT'eTra®---.

Thus elements of T are finite sums of elements, each of which lies in some
T". We may define a bilinear map

Tm X Tn—> Tm+n
satisfying
('xl®"'®xm)'(yl ®®yn)='xl®®'xm®yl®®yn

for x;, y; € L and then extend this map by linearity to give a multiplication
map

TxT—T.

In this way T becomes an associative algebra called the tensor algebra of L.
The element 1 € 70 is the identity element of 7T.

152
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Let J be the 2-sided ideal of T generated by all elements of the form
XQYy—y®x—[xy] forx,yelL.

J is in particular a subspace of T. Let l1(L) =T/J. Then 11(L) is an associative
algebra over C called the universal enveloping algebra of L.

Example 9.1 Let L be an n-dimensional abelian Lie algebra over C. Then L
has basis x,, ..., x, and we have [x,-xj] =0 for all i, j. Thus J is the 2-sided
ideal of T generated by all elements of the form x®Qy—y®x for x,ye L.
Thus 1I(L) is a commutative algebra, and is generated as an algebra by the
identity 1 and the elements x,,...,x,. In fact LI(L) is isomorphic to the
polynomial algebra C[x,,...,x,]. Ul

In general we have linear maps
L—>T'—T—U(L)

and we denote by o : L — U(L) the composite linear map. We now show
that 11(L) has a certain universal property which justifies its name.

Proposition 9.2 Let A be any associative algebra with 1 over C and [A]
the corresponding Lie algebra. Then given any Lie algebra homomor-
phism 0 : L — [A] there exists a unique associative algebra homomorphism
¢ : U(L)— A such that oo =0.

Note Associative algebra homomorphisms will be understood to be homo-
morphisms of associative algebras with identity in this chapter. Thus the
homomorphism will map identity to identity.

Proof. We first observe that the linear map 0 : L — A can be extended to an
associative algebra homomorphism from T to A. If x;, i € I, are a basis for L
then the set of all monomials x; ...x; for i,...,i, €/ form a basis for 7.
The case r =0 gives the identity element. The map

X; ...xir—>0(x,-l)...0(x,-r)

1

can then be extended by linearity to give an associative algebra homomor-
phism from 7T to A. Let this map be ' : T — A. Let x, ye L. Then we have

0(xQy—y®x—I[xy])
=0(x)0(y) — 6(y)0(x) — O[xy]
—[6(x), ()]~ Blxy] =0



154 Some universal constructions

since 6 : L — [A] is a Lie algebra homomorphism. Thus all the generators
of the 2-sided ideal J of T lie in the kernel of 0. Since the kernel is a 2-sided
ideal, J lies in the kernel of 6. This shows there is an induced homomorphism

¢ T/ J—A

such that the diagram

commutes. When we restrict the domain to 7' we deduce that ¢»o o = 0. This
proves the existence of a homomorphism ¢ : 11(L) — A of the required type.

We now prove the uniqueness of ¢. Let ¢’ : 1I(L) — A be another such
homomorphism. Now T is generated by T' as an associative algebra with 1.
Thus its factor algebra 11(L) is generated by o(L), which is the image of T!
in 1I(L). Let xe L. Then

¢'(0(x)) =0(x) = p(a(x)).

Thus ¢, ¢’ agree on o(x) for all x € L. Since (L) generates 11(L) it follows
that ¢, ¢’ agree on 1I(L), so ¢'=¢. O

Using this universal property we can relate representations of the Lie
algebra L to representations of the associative algebra 11(L). If V is a vector
space over C the set End V of all linear maps of V into itself forms an
associative algebra with 1, and the corresponding Lie algebra is [End V].
A representation of L is a Lie algebra homomorphism L — [End V] and a
representation of 11(L) is an associative algebra homomorphism 1I(L) —
EndV.

Proposition 9.3 There is a bijective correspondence between representations
0 : L—[EndV] and representations ¢ : U(L)—EndV. Corresponding
representations are related by the condition

d(o(x))=0(x) for allxe L.

Proof. Let 6 : L — [End V] be a representation of L. Then by Proposition 9.2
there exists a unique associative algebra homomorphism ¢ : (L) — End V
such that poo=20.

Conversely, given an associative algebra homomorphism ¢ : U(L) —
EndV we wish to define a corresponding Lie algebra homomorphism
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0 : L— [EndV]. Now we have a linear map o : L— U(L). Since U(L)=
T/J and x®y—yQx—[xy]eJ for all x,ye L we see that

o(x)a(y) —o(y)o(x) —olxy]=0
for x, ye L. This gives

[o(x), o(y)]=0lxy]

andsoo : L— [U(L)]isaLiealgebrahomomorphism. We now define 6 : L —
[End V] by 6 = ¢ o 0. Then 6 is a Lie homomorphism of the required type.

It is clear from the definitions that the maps 6 — ¢ and ¢ — 6 are inverse
to one another. O

We shall find this result very useful in the subsequent development, when
we shall obtain information about representations of finite dimensional Lie
algebras by considering the representation theory of the corresponding uni-
versal enveloping algebra.

9.2 The Poincaré-Birkhoff—-Witt basis theorem

We shall now describe how to obtain a basis for the universal enveloping
algebra U(L).

Theorem 9.4 (Poincaré—Birkhoff-Witt). Let L be a Lie algebra with basis
{x,; i €l}. Let < be a total order on the index set 1. Let o : L— 1I(L)
be the natural linear map from L into its enveloping algebra. Let o (x;) = y;.
Then the elements

1 "n
iy - N,

for all n>0, all r,>0, and all i,...,i,€l with i,<i,<---<i, form a
basis for 1(L).

Proof. (a) We first show that the above elements y;'...y;" span U(L). We
know that the elements of form x; ®...®x, forall k and all j,,..., j €l
span T. By applying the natural homomorphism 7 — 11(L) it follows that the
elementsof formy; ...y; spanI(L).Itis therefore sufficient to show thatevery
producty; ...y; isalinear combination of the given elements of form y;' ... y;".
We shall prove this by induction on k. It is obvious if k = 1. For arbitrary & it is
clear when j, <--- < j,.If this is not so we may use relations of form

n

Yiyi=yyito [xixj] .
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We note that [x,»xj] is a linear combination of elements x, for r €/ and so
o [xixj] is a linear combination of y, for # € I. Thus we may interchange the
order of two consecutive terms y;, y; in a monomial of degree k provided we
introduce a certain linear combination of monomials of degree less than k.
By performing such interchanges a finite number of times we may express
the terms y; in the monomial with the i in the given order < on /. Thus

Yj, +-+¥j, =Vi -..yi"+ a linear combination of monomials of degree
less than k

where r;+---4+r,=k and i, <--- <i,. By induction we may assume that all
monomials of degree less than k are expressible as linear combinations of
monomials with terms in the given order <. The required result then follows.

(b) We now show that the given monomials of form yirl' . y,r are linearly
independent. This is not so easy to see, and we shall prove it by an indirect
argument. We introduce the polynomial ring R=Cz; ; i€ I] and shall make
use of the following lemma.

Lemma 9.5 There exists a linear map 0 : T — R satisfying the conditions

0(x,-1®~~-®x,-”)=z,-l...z,»n ifi,<---<i,

et et

e(xil®...®xik®x, ®...®xin_xi]®...®x, ®xik®...®xi”)

L™ eyl

=9(x,-l®---®[x» x, ]®--.®in,) for alli, ..., i, and all k

with 1 <k <n.

Proof. We define the index of the monomial x; ® ---®x; to be the number of
pairs (r, s) with 1 <r<s <n satisfying i, > i,. Thus the monomials of index 0
are those whose terms appear in their natural order. Let 7™/ be the subspace of
T" spanned by all monomials x; ®---®ux; of index at most j. Thus

TOcT™ Cc...CT.

We define 6 : T°— R by (1) =1. Suppose inductively that § : T°®---@
T"-! — R has already been defined satisfying the required conditions. We
shall show that 6 can be extended to 6 : T°@®---®T"— R. We define
0 :T"°—Rby

G(xl-] ®-~~<§§)xin):zil clZ

n

if the monomial x; ®---®ux; has index 0. We suppose 6 : T" — R has
already been defined, thus giving a linear map from 7°@®-- - ®T" '@ T™ to
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R satisfying the required conditions. We wish to define 6 : 7"*! — R. Thus
suppose the monomial x; ®---®ux; has index i+ 1. Then there exists k& with
I <k<n such that x; ® ---®x;  ®x;, ®x, Qx; Q---®x; has index i.

We then wish to define 6 (x; ®---®x; ) by the formula

6<xil ® - ®x, ®x; ®"’®xin>

Tk+1

ze(x,., ®--Q ®xik®--'®xin)

Tk+1

+9(xil®...®|:xikx_ ]@...@)cin)

Het1

noting that the terms on the right-hand side have already been defined. How-
ever, there may be more than one possible choice of k and we must check
that if we choose a different one the linear map 6 : T™*! — R will still be
the same. So suppose k' also satisfies 1 <k’ <n. We may without loss of
generality assume that k < k'.

We suppose first that k+1<k'. Let x; =a, x
Then the definition using the integer k gives

=b, X, =€ X =d.

ikt iK1

(- ®a®b®---®cRI®---)
—=0(---®bRa®---®cRID---)
+0(---®[ab]®--- ®cR®d®---)
=0(--®b®a® --QdRc® ")
+0(-®@hR®a® - ®cd]®- )
+0(---®ab]®--®d®c®---)
+0(---®[ab]® - R[cd]®---)

using the inductive assumptions.
The second definition using the integer k' gives

(- ®aRb®---®cRI®--)
=0(-®a®b® --®dRc® ")
+0( ®a®bR---®cd]®---)
=0(--®bRa® - -®IRcR )
+0(---®ab]® - ®dRc®---)
+0(--®bR®a®---Qcd]®---)
+0(---®[ab]®---®[cd]®--)
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using the inductive assumptions. These two expressions using integers k, k'
are the same.

! — — — —
Now suppose that k'=k+1. Let x;, =a, x;  =b, x; , =c. We compare

the two ways of calculating 0 (---®a®b®c®---). The first method, using
the integer k, gives

0(--- ®aRbRc®:+)
=0(--®hR®a®c® - )+0(---Qab]|®c®- -
=0(-®b®c®a®:-+)+0(---®b®[ac]®-

+0(-- - ®@c®[ab]®---)+0(---®[[ab]c] ®- -
=0(--®c®bRaR---)+0(-- ®[bc]RaR -
+0( - ®@b®ac]®-)+0(- - ®c®[ab]®: )
+0(---®[[ablc]®- )
=0(-®c®b®a®---)+0( - ®a®[bc]®-+)
+0(---®@b®[ac]®---)+0(---®c®[ab]®:-)
+0(---®[[ablc]®- - ) +6(---®[[bcla] ®- - -)

NN =

using the inductive assumptions. The second method, using the integer k' =
k+1, gives

(- Ra®bRc®:-+)
=0(--®aRcRbR---)+0(---®aR[bc]®---)
=0(---®cQa®b®---)+0(---®lac]®bR--)

+0(--- ®a®[bc]®--)
=0(---®c®bR®a®---)+0(---®c®[ab]®---)

+0(---@b®[ac]®---)+0(---Q[[ac]b]®- )

+0(---®a®[bc]®--)

again using the inductive assumptions. Comparing the two expressions
obtained we see that they are equal since

[[ac]b]=[[ab]c]+[[bc]a].
Thus 6 : 7! — R is now defined and this gives

0:7T°® - T "1 >R,
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Since 7" =T"™" for r sufficiently large we have
0:7T°®---®T"—R.

Since T=T°®T'®T*P--- we have defined 0 : T — R satisfying the
required conditions. |

We now return to part (b) of the proof of Theorem 9.4. We have U (L) =T/J
and the elements

xil®...®xik®x, ®...®xi”__xil®...®x, ®xik®...®xi”

Tet1 Tet1

_xi|®"'®|:x' X :|®"'®xi,,

e eyl

=X Xy, (xik ®xik+1 iy ®x;, — I:xik'xik+] :I) Kipga + o+ X,

all lie in J. In fact the definition of J shows that each element of J is a linear
combination of such elements. Thus the linear map 6 : 7 — R of Lemma 9.5
annihilates all elements of J, and so induces a linear map 6 : T/J — R,
that is 6 : U(L)— R. Now the monomial y;'...y;" € W(L) for i; <--- <,
is mapped by 6 to z;'...z" € R. Since the elements z;'...z;" are linearly
independent in the polynomial ring R it follows that the elements y;' ...y
given in the statement of Theorem 9.4 must be linearly independent in 11(L).
This completes the proof. |

We now deduce some consequences of the Poincaré-Birkhoff-Witt basis
theorem. (We shall subsequently call it the PBW basis theorem.)

Corollary 9.6 The map o : L— U(L) is injective.

Proof. The elements x;, i € I, form a basis for L and o (x;) =y,. By the PBW
basis theorem the elements y;, i € I, are linearly independent. Thus the kernel
of o is zero. U

Corollary 9.7 The subspace o(L) is a Lie subalgebra of [\W(L)] isomorphic
to L. Thus o identifies L with a Lie subalgebra of [U(L)].

Proof. By Corollary 9.6 we know that ¢ : L— o(L) is bijective. The
elements y;, i € I, form a basis of o(L) and we have

Yiy; = Yiyi=0 [xi'xj] .
It follows that [yiyj] €o(L) and so o(L) is a Lie subalgebra of [LI(L)]. O
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It is often convenient to consider L as a subspace of 1I(L) without men-
tioning the map o explicitly.

Corollary 9.8 11(L) has no zero-divisors.

Proof. Let a, bel1(L) have a#0, b#0. Then we have

— n n
a= Z/\il,m,i",rl,m,rﬂ iy -+ Vi,

— n Tn
b= ZM;‘I,“.,i,,,rl,.“,r” Yip oo i+

We write

a=f(y;)+a sum of terms of smaller degree

where f (y,) is the sum of all terms A; . y!'...y" of maximal total
degree r=r;+---+r,. Similarly we have

b=g(y;)+a sum of terms of smaller degree.
Now we have
Y:¥;=Y;y; +a sum of terms of degree 1
and so
F ) g () =(f2) (y;) +a sum of terms of smaller degree.
Hence
ab=(fg) (y;) +a sum of terms of smaller degree.

Now f is not the zero polynomial since a 0 and g is not the zero polynomial
since b#0. Thus fg is not the zero polynomial. The PBW basis theorem then
implies that ab #0. UJ

9.3 Free Lie algebras

It is well known how to define groups by generators and relations. One
first constructs the free group on the given set of generators and then forms
the factor group with respect to the smallest normal subgroup containing
the elements specified by the given relations. We shall show that something
similar can be done in the theory of Lie algebras. We first introduce the idea
of the free Lie algebra FL(X) on a set X.
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Let X ={x;, i €1} be a set of elements parametrised by an index set /. We
first define the free associative algebra F(X) on the set X. F(X) is the set of
all finite sums of the form

Z Z )\il,.“,ikxil-'wik

k=0 iyl
with )‘il seeesi € C, summed over all non-negative integers k and all ordered
k-tuples i, ... , i, from I (repetitions being allowed). When k =0 the product
X; ... X; is the empty product, and is written as 1. The operations of addition,

multiplication and scalar multiplication are defined in an obvious way and
make F(X) into an associative algebra over C with identity 1.

Let [F(X)] be the Lie algebra obtained from the associative algebra F(X)
in the usual manner. X is a subset of [F(X)]. We define FL(X) to be the
intersection of all the Lie subalgebras of [F(X)] containing X, i.e. the Lie
subalgebra of [F(X)] generated by X. FL(X) is called the free Lie algebra
on the set X. It is clear that X is contained in FL(X) so we have an injective
map i : X — FL(X).

In order to justify its name, we show that the free Lie algebra FL(X) has
the following universal property.

Proposition 9.9 Let 0 : X — L be any map from the set X into a Lie
algebra L. Then there is a unique homomorphism ¢ : FL(X)— L such that
doi=20.

X — > FL(X)
|

N
|

L

Proof. Consider the maps X LG U(L). Let 0 : X— U(L) be given by
0'=006. The map 6 from X into 11(L) can be extended uniquely (in an
obvious way) to an associative algebra homomorphism ¢’ : F(X)— U(L).
The same map gives a Lie algebra homomorphism ¢’ : [F(X)]— [U(L)].
Now we have ¢'(X) C (L) and we know from Corollary 9.7 that o(L) is
a Lie subalgebra of [11(L)] isomorphic to L. The set of elements of [F(X)]
mapped by ¢’ into o(L) is therefore a Lie subalgebra of [F(X)] containing
X, and this contains FL(X). Hence we have ¢’ : FL(X)— o(L). We define
¢ : FL(X)— Lby ¢ =0"'0o¢’. We check that ¢poi = 6. For if x € X we have

doi(x)=0"'¢i(x)=0""¢'(x) =070 (x) =0(x).
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Thus we have a homomorphism ¢ of the required type. Finally we show that ¢
is unique. Let ¢ : FL(X) — L be another such homomorphism. Then we have

@i(x) = 0(x) = di(x) for all x € X.

Thus ¢ agrees with ¢ on X. Now the set of elements of FL(X) for which ¢
agrees with ¢ is a Lie subalgebra of FL(X) containing X. Since X generates
FL(X) as a Lie algebra we deduce that ¢ agrees with ¢ on FL(X). O

We next identify the universal enveloping algebra of the free Lie algebra
FL(X). This turns out to be isomorphic to the free associative algebra F(X).

Proposition 9.10 The universal enveloping algebra W(FL(X)) is isomorphic
to F(X).

Proof. We have an inclusion map o : FL(X)— F(X). We shall show that the
universal property of enveloping algebras given in Proposition 9.2 is satisfied
by F(X). Thus we shall show that if A is any associative algebra with 1
over C and if 6 : FL(X)— [A] is any Lie algebra homomorphism then there
exists a unique associative algebra homomorphism ¢ : F(X)— A such that
Ppoo=0.

Now the Lie homomorphism 6 : FL(X)—[A] restricts to a map
0 : X — A. This map can be extended to a unique associative algebra homo-
morphism ¢ : F(X)— A. This same map gives a Lie algebra homomorphism
¢ : [F(X)]— [A]. By restriction we obtain a Lie algebra homomorphism
¢ : FL(X)— [A]. However, ¢ agrees with # on X and X generates FL(X)
as a Lie algebra. Hence ¢ agrees with 6 on FL(X). It follows that poo =0
as required. Thus there exists an algebra homomorphism ¢ of the required
kind. On the other hand ¢ is clearly unique since FL(X) contains X and
therefore generates the associative algebra F(X).

Thus F(X) satisfies the above universal property. Of course U(FL(X))
satisfies it also. This implies that 1I(FL(X)) is isomorphic to F(X). For
suppose we are given a Lie algebra L and two associative algebras 11, 11" with
maps o : L— 1,0’ : L— 1 both satisfying the universal property. Then
we obtain unique algebra homomorphisms ¢ : 1 — U and ¢’ : ' — U such
that o' =¢oo and c=¢'00’.
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It follows that

P po(x)=0(x),  PPo'(x)=0'(x)

for all xe L. Now o(L) generates 11 and o'(L) generates 1l as associative
algebras, by the uniqueness of ¢ and ¢'. It follows that

d’/d’ = Idu > d"l”, = Idu/

and so ¢, ¢’ are inverse isomorphisms between 1l and 1. Ul

9.4 Lie algebras defined by generators and relations

Let X ={x;, i€l} be a given set. A Lie monomial in the elements of X is
a finite product of elements of X bracketed by Lie brackets in any manner.
For example

(IERETEAIENIEAEEAN]

is a Lie monomial on the set X ={x,, x,, x;}. A Lie word in the elements
on X is a finite linear combination of Lie monomials on X with coefficients
in C. For example

3[[oes [y 2o ]T x5 ] [ [y 1T 42 [ [ 65 ] [203%, 1]

is a Lie word on the set X = {x,, x,, x3}.

Let R= {wj, JjeJ } be a set of Lie words in the elements of X. We shall
define a Lie algebra L(X ; R) called the Lie algebra generated by X subject
to relations R.

Now the elements of X all lie in the free Lie algebra FL(X) and all the
Lie words w; also lie in FL(X). Of course different Lie words can give the
same element of FL(X) because of relations such as [x;x;]=0 and the Jacobi
identity. Let (R) be the ideal of FL(X) generated by R. Thus (R) is the
intersection of all ideals of FL(X) containing R. We define L(X ; R) by

L(X; R)=FL(X)/(R).

Lemma 9.11 Ler R, R be sets of Lie words in X such that R’ C R. Then
L(X ; R) is isomorphic to a factor algebra of L (X ; R').

Proof. Since R’ C R we have

(R"Yy C(R) C FL(X).
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It follows that
FL(X) ~ FL(X) (R) L (X;R)

(R)y — (R) "(R) 1
where I =(R)/ (R'). U

L(X;R)=

Example 9.12 Let A be a Cartan matrix on the standard list 6.12. In Sec-
tion 7.4 we defined a Lie algebra L(A) associated with A, and L(A) was
subsequently shown in Proposition 7.35 to be a simple Lie algebra. In fact
all the finite dimensional non-trivial simple Lie algebras over C have form
L(A), as A runs over all Cartan matrices on the standard list. The definition
of L(A) given in Section 7.4 shows that L(A) can conveniently be described
in terms of generators and relations. In fact we have

L(A)=L(X; R)

where X={e,,..., e, hy,..., h, fi,...,f;} and R is the set of Lie words
in X given by

[hiej] —Aje;
[nfi]+ At

leifil —hi

[eif;]  fori#)

[eife: - [ee]T]]  for iz
L[ L] for i#j

where the number of occurrences of e;, f; respectively in the last two words
is 1 —A;.

Example 9.13 Again let A be a Cartan matrix on the standard list 6.12. In
Section 7.4 we also defined a certain Lie algebra L(A) depending on A which
contains L(A) as a factor algebra. The algebra L(A) is infinite dimensional.
It can also conveniently be described by generators and relations. In fact we
have

L(A)=L(X;R)

where X={e,,..., e, hy,... . h, fi,..., f;} and R’ is the set of Lie words
on X given by
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[:h)]
[hiej] —Ae;

J
[hif;]+Aif;
le.fil = h;
[e,-fj] fori#j.
We observe that R’ is a proper subset of the set R of relations in Example 9.12.

This explains why L(A) is isomorphic to a factor algebra of L(A), as in
Lemma 9.11.

9.5 Graph automorphisms of simple Lie algebras

Let A be a Cartan matrix on the standard list 6.12 and o be a per-
mutation of {I,...,l} such that A, =4, for all i,j. Let L(A) be
the simple Lie algebra associated with A. L(A) can be generated by
€€y, .. hy, fi, ..., f. We define a permutation of this generating
set by
€; = €4 Ji=> fow hi = hy)-

Under this permutation of the generators each of the defining relations of
L(A) in Example 9.12 is transformed into a defining relation. Let
FL(X)

(R)
The given permutation of X extends to a Lie algebra homomorphism of

FL(X) into itself, and this homomorphism maps the ideal (R) into itself. It
therefore induces a Lie algebra homomorphism of L(X ; R) into itself. Since

L(A)=L(X ; R)=

the permutation of X is invertible, so is this Lie algebra homomorphism. It
is thus an isomorphism of L(X; R) into itself, that is an automorphism of
L(A). This automorphism is called a graph automorphism of L(A) and will
also be denoted by o. The possible non-trivial graph automorphisms can be
described in terms of the action of ¢ on the Dynkin diagram of L(A). These
possibilities are listed below.

1 2 k
O O O O O
Type Ay
O O O O O
2k 2k—1 k+1

o(i)=2k+1—i
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1 2 k-1
O O O O
Type Ay_y k
O O O O
2k—-1  2k-2 k+1
o(i)=2k—i

=

<

=

o

S

t

o
o

o

o

o
~
Ji

o(i)=i forl1<i<k-1
ok)=k+1
o(k+1)=k

2
Type D, <§ 3
4

a(l)=1 o(2)=3 o(3)=4 o4)=2

(The inverse of ¢ is also a graph automorphism, which can be obtained from
o by renumbering the vertices.)

1 2
Type Es ::>—é
6 5

o(1)=6 a(2)=5 og(3)=3 o(4)=4 a(5)=2 a(6)=1

Our main aim in the present section is to determine the fixed point subalgebra
L(A)’ ={xeL(A); o(x)=x}.

We begin by considering the action of o on V = Hy, given by o (a;) = a,,
and extending by linearity. Let V! ={ve V; a(v) =v}. For each orbit J of
oon {l,...,1} we define a,:ﬁzjejaj. Then a, € V' and the «, form
a basis of V! as J runs over the o-orbits on {I,...,[}. a;, is simply the
projection of a; on to the subspace V! of the Euclidean space V. We see
from the above diagrams that the orbits J have the following possible types.
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(a) |J|=1 and J={j} with o(j)=}.

(b) [J|=2 and J={jj} where o(j)=j,0(j))=j and o, +a;¢P.

(¢) [J|=3 and J:{jﬁ} where o(j)=], o-(}'):}',o-(}'):j and
a;+a;, a+ 05, a5+o5 do not lie in &.

(d) |J|=2 and J={jj} where o(j)=j,0(j))=j and a,+a;cd.
These four will be called orbits of types A;, A, XA, A, xA,; XA, and A,

respectively.
We next consider the possible pairs J, K of distinct orbits.

Lemma 9.14 The vectors «,, ay for distinct o-orbits J, K form a fundamen-
tal system of roots of rank 2. The type of this rank 2 system is as follows.

J K Type of {aj, o}
® o O o0—o0
(ii) —>—0o
(iii) G——>0
(iv) (o, O

(o, O
(v) (o,

I

(e,

(vi) If no node in J is joined to any node in K then

the type of {aj, o} is Aj XA,
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Proof. This is straightforward. Suppose for example we have case (v) with
roots numbered

o _aptay o gyt
oo 2 TR
We have
(ay,a,) = % (ay, a)
(ag, ag) = % (ay, a)
<aj7al<>:_i<al7a]>'

Thus {(a;, a;) =2{ay, ag) and 2{a,, ag) /{a;, ;) =—1.
Hence we have a fundamental system with diagram

[ 7% @m0 Yo
Corollary 9.15 Let IT! be the set of vectors a, for all o-orbits J on {1, ... , 1}.
Then 11! is a fundamental system of roots of the following type:
Type I  Order of ¢ Type IT!

Ay 2 B,
Ay 2 o
Dy, 2 B,
D, 3 G,
Eq 2 F,
Proof. This follows immediately from Lemma 9.14. Ul

The relationship between IT and II' may be illustrated in the following
diagrams.

o—o0—o0—
2% 2k-1 k+1
1 2 k-1 k
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1 2 k-1
H o_()_()- ° ° °
k
o o—0o0— o o e
2k-1 2k-2 k+1
1 2 k-1 k

! o—~O0—O0— o o o —Oc—=—0

- 1 2 k-1 ¢
o—o0—o0—
k+1
1 2 k-1 k
1! o—O0—0— —O0—>—0
2
n 3
n o0
4 1 2
1 2
1 3 4
1 2 3 4
6 5 n o—CCc—=—0—o0

Now let ®' be the root system in V! with fundamental system IT'. Let W!
be the Weyl group of ®'. Then ®'=W" (IT'). Let A' be the Cartan matrix
of ®'.

Proposition 9.16 Let I, J be distinct o-orbits on {1, ... ,1}. Then

. {ZieIAij for any jeJ, if I has type A, A x A, or A| XA, XA,
u=

2> Ay forany jeJ, if I has type A,.
Proof. This follows from Lemma 9.14. |

Proposition 9.17 Let W ={weW ; wo=ow onV}. Then there is an
isomorphism W'— WY under which the fundamental reflection s,€ W'
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corresponding to o, maps to (wy), € W, the element of maximal length in
the Weyl subgroup W, of W generated by the s; for i J.

Proof. We first observe that W acts on V'. For let we W7, ve V'. Then
o(wv) =w(o v)=wv, thuswveV'.
Secondly we note that (w,), € W7 for each o-orbit J. For jeJ we have
TS50 =S40
thus oW,o~! =W,. Since o preserves the sign of each root we have
o (wy), o7 (OF)=D;
and hence

a (wp), o= (wp),

by Proposition 5.17. Thus (w,), € W°.
Thirdly we note that the element (w,), € W°, when restricted to V', coinc-
ides with s;. For

1

(wp); (ary) = (wp), <|J|

1
Zo) =g
since (w,), (PF)=P;.

Also if ve V' satisfies (a,, v) =0 then it satisfies (a;, v)=0 for all jeJ. It
follows that (wy), (v) =v. Thus (wy), coincides with s, on restriction to V'.

We next show that the elements (w,), for all o-orbits J generate W7.
Let we W satisfy w##1. Then there exists a fundamental root «; with
w (a;) € ®~. Let J be the o-orbit containing j. Then

wo (aj) =ow (aj) ed”

since o preserves the sign of each root. Thus w(«;) € ®~ for all i € J. Now
(wy); changes the signs of all roots in @, but of none in ®— &,. Hence

[ (w (wo),) = l(w) =1 ((wy) ;) < I(w).

We assume by induction on /(w) that w (wj), lies in the subgroup generated
by the (wy), for all o-orbits I. It follows that w has the same property. Hence
the (w,), generate W.

We may now define a homomorphism W7 — W!, by restricting the action
of we W7 from V to V'. Since W7 is generated by the elements (w,), and
(wy), restricted to V' is s,, the image of the homomorphism is generated by
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the s, and so is W'. Finally we show our map is injective. Suppose we W7
and w# 1. Then there exists a g-orbit J such that w(a;) € ®~ for all i€ J.
Thus w (@) # @, and so w acts non-trivially on V'. Thus our map W% — W!
is an isomorphism under which (w,), € W7 corresponds to s, € W', O

We next consider the relation between the root systems ® and ®'. For
each @ € ® we denote by a! its projection into V.

Proposition 9.18 (a) For each ac ®, a' is a positive multiple of a root

in ®L.

(b) Let ~ be the equivalence relation on ® given by a~ B if and only if o'
is a positive multiple of B'. Then the equivalence classes are the subsets
of ® of form w(<D}L) where J is a o-orbit in {1,...,1} and we W°.

(c) There is a bijection between equivalence classes on ® and roots in ®'
given by w (®7) <>w' (a,) where w' is the restriction of w to V'.

Proof. We first show that each a € ® lies in w (@) for some o-orbit J and
some w € W. Consider the element w, € W of maximal length. w, transforms
each positive root to a negative root. Since o does not change the sign of any
root we have

cw,o (P)=D".

Since o wyo~! € W it follows that o wyo ™' = w, that is w, € W'. By Propo-
sition 9.17 the elements (wy); for all o-orbits J generate W” and so

Wy = (w())l, xx (wo)J,

for some Ji, ..., J,. Let « € d*. Then wy(a) € ®~. Thus there exists i such
that

(wo),, - (wp), (@) € DT
(wO)ji (wo)Ji+1 ‘e (wo)J, () ed.

Since the only positive roots made negative by (wy) 5, are those in CDZ we
have

(wo)J,+1 e (wo)J, (@) e QJf,

that is e (w), ... (wp),,, (@)) and —ae(w), ... (wy)y,,, (wo),, (@)
Hence each root in @ lies in w (CIJ}) for some o-orbit J and some we W7.
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Now consider the projection a' for « € ®}. If J has type A,, A; x A, or
A xA; x A, then ®} =TI, and so a' =q, for a € ®}. If J has type A,,
however, then II, = {aj, a_;-} and (P}L = {aj, a;, a;+ a_;}. We have

. 7 when a=a; or a;
a =
2a;, when a=a;+a;.
Thus a' is a positive multiple of a;, when a € ®}. Hence for a € w (@) with
w € W7 we see that o' is a positive multiple of w(a,) € ®'.

Now consider the equivalence relation on @ defined in (b). The elements
of each set w (dﬁ) for we W7 lie in an equivalence class. Suppose
w(Cb]*) , W (CD}) lie in the same equivalence class for o-orbits J, K and
w, we W7. Then

w(a)=w (ag)ed'.
Hence w'~'w (a,) = ay.
Consider the root w'~'w (a;) € ® for j € J. This root has the property that
r— 1
(0 (@) =a.

Since K is a o-orbit this implies that w'~'w (aj) is a non-negative combination
of the «, for k € K. Hence

w™'w (I1,) C @
and so w'~'w (®}) C . By symmetry we also have
ww ' (PF) C D]
Hence we have equality, that is
w (®7) = w (7).
Hence the equivalence classes are the subsets of ® of form w (CI>1+)
Now any root in ®! has form w () for some we W! and some o-orbit J.

The set of roots « € ® such that ' is a positive multiple of w (a;) is w (<I)J+)
as shown above. Thus

w ((IDJ*) < w(ay)

is a bijective correspondence between equivalence classes on ® and elements
of ®'. O

Theorem 9.19 Let o be a graph automorphism of the simple Lie algebra
L(A). Then the subalgebra L(A)” is isomorphic to the simple Lie algebra
L(A").
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Proof. For each og-orbit J on {l,...,[} we define elements e, h,, f; of
L(A)” by

eJ:Z"j fJ:ij hFZh,-

jeJ jeJ jeJ

if J has type A, A; XA, or A x A, x A, and

e,:JZZej, f1=V2 f h,=22hj

jeJ jel jeJ
if J has type A,. Then we have
le.fi] =

h
[e,f,]=0  if I#£J.
[hth] =0

1

We consider [£,e,]. If I, J have type A, A; x A; or A; X A; x A, we have
[e,]= [Zhl,26:| Z(ZAije]):A}Jej.
iel jeJ i

We also have [h,e,]= A}, e, if one or both of I, J has type A,. Similarly

(hifi1=—A} 1 for all 1, J.

We also check the relation

le;[e [ [ese,]]11=0 for 1#J

where there are 1 — A}, factors e,. This follows from the following observa-
tions, which can be checked from Lemma 9.14.

If A}, =0 then [e;e;]=0forallicl, jeJ.

If Aj;=—1then [¢;[e;e;]]=0foralli,i'el, jeJ.

If Aj;=—2then [¢;[e; [ene;]]]=0forall i,i,i" €1, jeJ.

If A}, ==3then [¢, [e; [ey [esne;]]]]=0 forall i,i,i",i" €1, jel.

Similarly we obtain the relation

[fl[fl[[flfj]]]]:() for I#J

with 1 — A}, factors f;.
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We now consider the generators and defining relations for the simple Lie
algebra L (A') given in Example 9.12. All these relations are satisfied by the
elements ¢, f,, h, of L(A)“. Thus there is a homomorphism

L(A")— L(A)°

under which the generators of L (A‘) map to the elements e, f,, h; of L(A)”.
Since L (A') is simple this homomorphism is injective. We show it is also
surjective and that the map is therefore an isomorphism. It will be sufficient
to show that

dim L(A)” =dim L (Al) .

We consider the decomposition of @ into equivalence classes given in Propo-
sition 9.18. For each equivalence class S let

Ly=L,.

aes

Then o (Ly)= L, and

L=H®Y L
S

L =H"®Y (Ly)’.
N

Now dim (Lg)” <1 for each equivalence class S. This is clear if S has type
A,A; xA, or A;xA, xA,. Suppose then that S has type A,. Then S=

{a, B, a+B}. We have
o (e,)=Aeg, O'(eB):/\_le

(43

for some A € C. Hence

o [eaep]=[eges] =—[eaey].
Thus (Lg)” consists of all multiples of e, +Aeg and dim (Lg)” = 1. It follows
that

dim L7 < dim H? 4 no. of equivalence classes S
— dimH'+|®'|
=dimL(A").

Hence dim L? <dim L (Al).

This shows that the homomorphism L (Al) — LY is surjective and hence is an
isomorphism. We note in particular that dim (Lg)” =1 for each equivalence
class S. U
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Thus we have shown that L(A)“ is isomorphic to L (A"). To be specific
we have:

L(Ay)" =L(B,)
L(Ay )" =L(C)
L(Dyy1)” =L (By)
L(D,)"=L(G,)
L(Ee)” =L (F,)

where o is a graph automorphism of order 2, 2, 2, 3, 2 respectively.
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Irreducible modules for semisimple
Lie algebras

In the present chapter we shall determine the finite dimensional irreducible
modules for a semisimple Lie algebra over C. We begin by investigating
certain important modules for such algebras known as Verma modules.

10.1 Verma modules

We begin with a lemma on universal enveloping algebras. Let L be a finite
dimensional Lie algebra over C and K a subalgebra of L.

Lemma 10.1 There exists a unique algebra homomorphism 6:11(K) — (L)
such that the diagram

K 5 1K)
i‘l’ ‘1’0
L — (L)

commutes, where i is the embedding of K in L and oy, o, are the embeddings
of K, L in U(K), U(L) respectively.
Also 0 is injective.

Proof. Let x € K. Then we must have

0 (ox (x)) =0, (i(x)).

Thus 0 (0 (x)) is uniquely determined. Since 11(K) is generated by o (K)
as algebra with 1 we see that 6§ is uniquely determined.
We now show that 6 exists. We recall that

WL)=1(L)/JL),  WK)=T(K)/JK)

176
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where J(L) is the 2-sided ideal of T(L) generated by the elements
XQ®y—yQx—[xy] for x,yelL.

Now the map i : K — L induces an algebra homomorphism i : T(K) — T(L)
and we have

i(x®@y—y®x—[xy]) =i(x) ®i(y) —i(y) ®i(x) = [i(x)i(y)]
for all x, y € K. This shows that
i(J(K)) CJ(L).

Thus there is an algebra homomorphism 6 : 1(K)— U(L) such that the
required diagram commutes.

Finally we show that 6 is injective. This follows from the PBW basis

theorem 9.4. Let x,, ..., x, be a basis of K. Suppose if possible there exists
u € U(K) such that u # 0 and 0(«) =0. Then u is a non-zero linear combination
of monomials x'f' ...x¢r. However, since xi, ... , x, can be chosen as part of

a basis of L, the PBW basis theorem for L shows that such a combination of
monomials cannot be zero in L. Hence 6(u)#0, a contradiction. Thus 6 is
injective. Ul

This lemma shows that 11(K) may be regarded in a natural way as a
subalgebra of 1I(L).

We now suppose that L is a finite dimensional semisimple Lie algebra over
C. Let H be a Cartan subalgebra of L and

L=H®) L,

acd

be the Cartan decomposition of L with respect to H. Let @ be the positive
system of roots in ®. Then we have a triangular decomposition

L=N"@®H®N

where N =, 4-Lo» N=D e+ L. We recall that H, N, N~ are all sub-
algebras of L.
Let B=H®N.

Lemma 10.2 (i) B is a subalgebra of L.
(ii) N is an ideal of B.
(iii) B/N is isomorphic to H.
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Proof. (i) We have
[BB]=[H+N,H+N|CH+N=B

since H, N are subalgebras and [HN] C N.

(ii) [NB]=[N,N+H]CN.

(i) B/N=(H+N)/N=H/HNN=H

since HNN =0, using Proposition 1.7. |

Definition 10.3 Let A € H*, i.e. A be a linear map from H to C. We recall
that L has a basis

{e,aed; h,i=1,...,1}.
We define

Ky= X (L, + ) (h-A(h)).

acdt i=

Thus K, is the left ideal of 1(L) generated by the elements e,, a € dt, and
hi—A(h,) fori=1,... 1
(We are as usual here embedding L in 11(L).) We also define

M\ =1(L)/K,.

M(A) is a left 1(L)-module called the Verma module determined by A. It is
our aim in this section to describe some of the properties of M(A).

We note that the elements ¢, « € ®*, and h; — A (h;) fori=1, ..., all lie
in 11(B). We define

1
Ky= 3 W(B)e,+) 11(B) (h;— ()
1

aedt i=

to be the left ideal of 11(B) generated by these elements. Let
D ={B,,.... By}
Then the set
hy,..., h, eg -5 €p,
is a basis of B. It follows from the PBW basis theorem that the elements
hy' ... k) egl...egjV 5;>0 £,>0

form a basis of 11(B).
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Proposition 10.4 (i) dim11(B)/K, =1.
(ii) The elements

(hy=A(R))" .. (B = A () eg ... ep)

with s; >0, t,> 0, excluding the element with s;=t,=0 for all i, form a
basis for K.

Proof. Tt is not difficult to see that the elements

(hy=A ()" (= A () ep ... ep)

with s; >0, ¢, > 0 also form a basis for 11(B). This can be seen, for example,
. . . . . K s, t 13

by deﬁmng a par/tlatl ordefmg on the basis elements h;' ...k 'eg ...e5 . We

say that /' ...h‘;’egl ...e;”jv is lower than h}'...h)' efB'] ...etB’VN if s)<sp,...,

§5;<s;, ty=t,...,ty=ty. Then there are only a finite number of basis

elements lower than a given one, and the element

(hy =X ()" (= A (b)) eg ... ep)

is the sum of /}'...h)'eg ...e5 with a linear combination of strictly lower
basis elements in the partial order. An induction argument on the partial order
will then show that the elements

(hy= A ()" (= A () ey ... ep)

s5;>0, t,>0 span 11(B) and are linearly independent. Now all these elements

clearly lie in K, with the exception of the element with s;=0, ¢, =0 for all i.
This is the unit element 1. However, 1 does not lie in K, as the following
argument shows.

Consider the representation A of H mapping h; to A (h;) for i=1,..., 1
Since B/N is isomorphic to H there is a 1-dimensional representation A of
B with N in the kernel agreeing with the above representation on B/N = H.
This in turn gives a 1-dimensional representation p of 11(B) under which

e, —~>0 aecdt
h; = A(h;) i=1,...,1
1 =1

Now ker p is a 2-sided ideal of 11(B) containing e,, & € ®* and h; — A (h;) so
containing K. Thus we have

K, Ckerp 1 gkerp
hence 1 ¢ K.
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It follows that the elements
(hy=A ()" . (= A (h) e ... e
for 5;>0, t; >0, excluding 1, form a basis of K} and that

dim 1(B)/K, =1.
Proposition 10.5 K,NII(N~)=0.

Proof. We are here regarding 11(N~) as a subalgebra of U(L) as in
Lemma 10.1. Now we have

L=N"&B.
Regarding 11(B) as a subalgebra of 11(L) also we assert that
nW(L)=u(N")U(B),

i.e. each element of 11(L) is a finite sum Y x;y; with x; e 1 (N~), y;, € U(B).
This follows from the PBW basis theorem, choosing bases for N~ and for B
and combining them to give a basis of L. We then have

l

3 W(L)e,+ S (L) (h;— A (hy))

acdt i=1

Ky

S W) U(B)e, + 1 (NI U(B) (5= A (1)

acdt i=
I
=U(N)| D UB)e,+> U(B) (h;—A(h)) | =U(N")K,.
aed+ i=1
It follows that each element of K, is a linear combination of terms of form
f’"l ...f"’; (hy=A(R))" . (b= A (hy))" egl ...egVN

where f,=e_,,ac®", and r,>0,5,>0,1,>0 with (s;,...5,8,...1y) #
(0,...0,0...0). No non-zero element of 11 (N~) can be a linear combination
of such terms by the PBW basis theorem. Hence

K,N1I(N")=0. O

Let m, € M(A) be defined by m,=1+K,. Thus 1 maps to m, under the
natural homomorphism

(L) — 1(L)/K, = M(A).
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Theorem 10.6 (i) Each element of M(A) is uniquely expressible in the form
um, for some uell (N™).
(ii) The elements f' ... fg\m) for all r;>0 form a basis for M(A).

Proof. Each element of 11(L) has form u-1 for some u € 1l1(L). Thus each
element of M(\)=1(L)/K, has form um, for some u e ll(L).

Now fg.... . fg,shis--- s s eg ..., eg, are abasis of L so the ele-
ments

fo SR R R e e
r;>0,s,>0,¢t>0 form a basis of 1I(L) by the PBW basis theorem. Thus u

is a linear combination of such elements, and um, is a linear combination of
elements

Ty rn S 7 tl tN
fg, - Sg, M h e ...eg my.
Now this element is 0 if any ¢, is positive. Suppose then that all 7, =0. Then
hy' .. B my=ym, for some yeC
since h;m, = A (h;) m,. Thus um, is a linear combination of elements of form
for o faym
Bi I By A

Thus elements of this form for r,>0 span M(A). They are also linearly
independent. For if we have

Z grl,...,errll .. f[;xm)\:()

with &, . €C then it follows that

PN
Z grl,...,errll .- f’l;\ll EI</\r11;[ (N_) .
s TN

ry

PBW basis theorem for 11 (N 7).

Thus the elements fﬁ;‘] "'f/;xml for r;,>0,...,ry>0 form a basis for
M(A). Tt follows that each element of M()) is uniquely expressible in the
form um, for ue N (N™). O

We now regard M(A) as an H-module. For each 1-dimensional represen-
tation w of H we define

M(A), ={meM(A) ; xm=p(x)m for all xe€ H}.
M(A),, is a subspace of M(A).
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Theorem 10.7 (i) M(A) =D ,,- M(A),..
(ii) M(A),#0 if and only if A— p is a sum of positive roots.
(iii) dim M(A), =B(A—u), the number of ways of expressing A—u as a
sum of positive roots.
V(A —p) is the number of vectors (ry, ..., ry) with r;€Z, r;>0 such
that

A—p=nrB+--+ryBy-

Proof. We know from Theorem 10.6 that the elements fg' ... fg"m, with
r; >0 form a basis for M(A). We show that

xfg o fgmy=A=r By = —ryBy) () fg ... fgim, for all xeH.

We prove this by induction on r, +- - - 4 ry, the result being clear if all r, =0.
So suppose not all r; are 0 and let i be the least integer with r; > 0. Then we
have

Xy S = S g S ma = B S
It follows that
xf;;l, ...fngmA=(A—ri,Bi_..._rNBN) (x)fglfg}\:’m)L

as required.
This implies that fg! ... f5"m, € M(A), where u=A—r B, —---—ryBy.
Since these elements form a basis of M(A) we see that

M) =3_M(),,.

We now show this sum is direct. To see this we must show that if a finite
sum > v, is O with v, € M(A),,, then each v, is 0.
It is sufficient to show that

M), N(MQA),, +---+M(N),,)=0

where the elements u, u,, ..., u, € H* are all distinct.
Let v lie in this intersection. Then we have

V=0, ey,
where ve M(A),, v, €M(A), . Thus

(x—p(x))v=0

(x= () v, =0
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for all x € H. Hence

(= (0) .. (x = () (v, ++ -+ +v,,) =0,

that is (x—p (x))...(x—p(x))v=0. Since the vector space H over C
cannot be expressed as the union of finitely many proper subspaces we can
find x € H such that

p(x) # i (x),  p)Fp(x), o, () Fp(x).
Thus the polynomials
t=p(x), (1= p(x) (1= py(x) ... (2 — (%))

in C[¢] for this element x are coprime. Thus there exist polynomials
p(1), q(r) € C[#] such that

()t —p(x))+q(1) (1=, (%)) ... (1 =y (x)) = 1.
Thus we have
p()(x = p(x)) +q(x) (x =y () ... (x = (%)) = 1.
It follows that
p()(x = p(x))v+q(x) (x—py (1)) ... (x = e (x)) v="0.

The above conditions show that the left-hand side is zero, hence we have
v=0. Thus

M) =D M),

Let A={ue€H*; A—pis asum of positive roots}. For each A€ A let N,
be the subspace of M(A) spanned by the basis vectors

fa, - faimy

with A—r 8, —---—ryBy=m. Since these vectors for all such p form a
basis of M(A) we have

M) =EDN,.

HEA

On the other hand we know that
N,CM@QA),

and M(\) = EB%H*M(/\)M. It follows that M(A), =N, for all u € A, and that
M(A), =0 for all pe H* with u ¢ A.
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Thus we have dim M(A), =dim N, = the number of vectors (ry,...,7y)
with ;€ Z, r,> 0 such that
A== = 1By =
This gives dim M(A), =% (A — ) as required. U

Definition 10.8 w € H* is called a weight of M(A) if M()),, # O, and M(X),,
is called the weight space of M()\) with weight .

We note that since M(A)=®,M(A), an element m of M(A) satisfying
the condition that, for all x € H, (x —u(x))*m =0 for some k>0 can have
no non-zero component in any M(A), for v# u, and must therefore lie in
M(A),,. Thus we have

M(A),={meM(A) ; for each x € H there exists k such that
(x—u(x))m=0}.

This shows that our definitions of weight and weight space here in the context
of H-modules are compatible with the definitions in Chapter 2 in the context
of representations of nilpotent Lie algebras.

Theorem 10.7 asserts that a Verma module is the direct sum of its weight
spaces. There are infinitely many weights, but each weight space is finite
dimensional.

We now proceed to another very important property of Verma modules.

Theorem 10.9 M(A) has a unique maximal submodule.

Proof. Let V be a 11(L)-submodule of M(A) with V£ M(A). Let ve V. By
Theorem 10.7 we have

v= Z Uy, Uy, €EM(A),,

summed over a finite set of distinct weights u;. We aim to show that each
v, lies in V also. We have

xv,, = pi(X)v, xeH.
Hence

T (e y0) v =TT (= 09) 1, =TT (0~ ,(0) v,

J. J. J.
J#i J#i J#i
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Since H is not the union of finitely many proper subspaces we can find x € H
with w,;(x) # u;(x) for all j#i. For such an x we have
1_[ (Mi(x) _Mj(x)) v, € 14
i
and
[1 (Mi(x) _/J’j(x)) #0.
j;
It follows that v, € V.
We now define V, =V NM(A),. We have shown that V=3, V,. Since
we know that M(A)=Ep . M(2), it follows that the sum in V must be direct,
that is

v=@v,.
N

Thus every submodule V of M(A) is also the direct sum of its weight spaces.
Now V, = O. For if V, # O then V, = M(A), since dim M(A), = 1. This would
imply that m, € V. But then

so V=M(A), a contradiction. Thus V, = O and we have

V=@V, c) MQ),.

AN MFEA

Thus every proper submodule V of M(A) lies in the subspace ‘L M),
o

of codimension 1 in M()). Let J(A) be the sum of all the proper submodules

of M(A). J(A) lies in the above subspace of codimension 1, so is a proper

submodule of M(A). Thus J(A) is the unique maximal submodule of M(A),

since it contains all proper submodules of M(\). |

Definition 10.10 Let A, € H*. In view of Theorem 10.7 it is natural to make
the following definition.

We say that A > w if A — u is a sum of positive roots. This is a partial order
on H*.

Theorem 10.7 shows that the weights of M(A) are precisely the p € H* with
< A. Thus A is the highest weight of M(A) with respect to this partial order.

M()) is called the Verma module with highest weight A.
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We also define L(A)=M(A)/J(A). Since J(A) is a maximal submodule
of M(A), L(A) is an irreducible 11(L)-module. In subsequent sections of this
chapter we shall determine under what circumstances the irreducible module
L(A) is finite dimensional. We note that A is a weight of L(A), since J(A), =
O. Thus dim L(A), =1 and A is the highest weight of L(A).

10.2 Finite dimensional irreducible modules

Now let V be any finite dimensional irreducible L-module where, as usual in
this chapter, L is a finite dimensional semisimple Lie algebra over C. Let H
be a Cartan subalgebra of L and

{ea,ae®+;hi,i=1,... , 1 ;fa,aeCDJr}

be a basis of L adapted to H. We may regard V as an H-module. Now H is
abelian, so in particular nilpotent, thus we may apply the representation theory
of nilpotent Lie algebras developed in Chapter 2. By Theorem 2.9 we have

V=V,
A

where V, ={ve V ; for each x € H there exists k such that (x — A(x))*v=0}.
We also know from Chapter 2 that each non-zero V, contains a non-zero
vector v such that

xv=A(x)v for all x€ H.
We shall show that in our present situation the weight spaces V, can be

defined more simply.

Proposition 10.11 Let W, ={ve V; xv=A(x)vforall x € H}. Then W, =V,.

Proof. 1t is clear that W), C V, and that W) # O whenever V, # 0. Let W =
YA W,. Since V=@p,V, and W, CV, we see that W=D, W,. We shall
show that W is a submodule of V. To see this it is sufficient to show that
hw, e w, fyw lie in W for all we W), all i=1,...,[ and all o € ®*. Now
we have

hw=A(h)weWw
x (e w) = e, (xw) +a(x)e,w
=A(x)e, w4+ a(x)e,w

=A+a)(x)e,w.
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Hence e, we W, , C W. Similarly we have f,we W,_,CW. Thus W is a
1(L)-submodule of V. Since W # O and V is irreducible we have W=V It
follows that W, =V, for each A € H*. U

Thus the irreducible module V is the direct sum of its weight spaces V)
and V, is the set of all ve V such that xv=A(x)v for all xe H.

We now consider the set of all weights A for V, that is the set of all A € H*
for which V, # O. This is a finite set, so will contain at least one weight
maximal in the partial order > defined in Definition 10.10. Let A be such a
weight of V. If w> A and pw# A then w is not a weight of V.

We may choose v, € V, with v, #0.

Proposition 10.12 (i) xv, = A(x)v, for all xe H.
(ii) e,v, =0 for all a € d+.

(iii)) V=U(N")v,

(iv) A is the highest weight of V.

Proof. Condition (i) is clear. We have
x (eqv)) =€, (xv)) +a(x)e,v,

for all xe H. Now if e,v, #0 this implies that A+« is a weight of V. But
A+ a > A so this cannot be the case. Hence e,v, =0 for a € d*.

Now V=1(L)v, since v, #0 and V is an irreducible 11(L)-module. Thus
each element of V is a linear combination of elements of the form

t 1
fo - fay M heg ...eg vy
This element is O unless all #; are 0. In that case it is a scalar multiple of
4 N
T, - fg,Va

Hence V=U(N")v,.

Finally we have
x(fi o Spvn) = Q=B = = 1B (DFf - i)
as in the proof of Theorem 10.7 ; thus all weights of V have form

m=A=r = —ryBy.

Thus A > u for all weights w of V. |
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It follows from Proposition 10.12 that the set of weights of V has a unique
maximal element A with respect to the partial order >.

We now compare the finite dimensional module V with the Verma module
M(N).

Proposition 10.13 There exists a surjective homomorphism 6 : M(A) —V
of W(L)-modules such that 0 (m,) =v,.

Proof. We recall from Theorem 10.6 that each element of M(A) is uniquely
expressible in the form um, with u € Il (N~). We define a linear map
0: MA\)—>V

by 6 (um,)=uv, uell(N~). Then 6 is surjective by Proposi-
tion 10.12 (iii). We must check that 6 is a homomorphism of 11(L)-modules.
Thus we must show

0 (yum,) = yuv, for ally e U(L).

By the PBW basis theorem we know that the element yu of 11(L) can be
written as a finite sum

yu= Z a:bc;
where a; e W (N™), b; e U(H), ¢; € U(N). Thus
yumy =Yy _ab,c;m,.

Now b;c;m), =§m, for some & € C. Hence
yum, = (Z §iai> ny.
Since Y, §;a, € 1 (N™) we have

6 (yum,)=6 <(Z fiai) mA) = <Z gi“i) Uy

On the other hand we have

Yuv) = (Z aibici) U= (Z fz‘%) Ux

since b;c,v,=¢&v,. Hence 0 (yum,)=yuv, for all yel(L). Thus 6 is a
homomorphism of 11(L)-modules. O
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Corollary 10.14 V is isomorphic to L(A).

Proof. Since V is irreducible the kernel of 6 must be a maximal submodule
of M(A). But M(A) has a unique maximal submodule J(A), by Theorem 10.9.
Thus ker § =J(A). Hence V is isomorphic to M(A)/J(A) =L(\). O

Thus we have seen that every finite dimensional irreducible L-module is
isomorphic to one of the irreducible modules L(A) obtained as irreducible
quotients of Verma modules. However, we shall see that by no means all the
L(A) are finite dimensional.

Proposition 10.15 Suppose L(A) is finite dimensional. Then A (h;) is a non-
negative integer for each i=1, ..., 1.

Proof. Let v, be a highest weight vector of L(A), that is v, € L(A), and
v, #0. As in Section 7.1 we shall choose elements e¢;€ L, , f;€L_, such
that [e,f;] = h;. We consider the sequence of elements

2
U, fins fiop

of L(A). We have

X (f,-kvA) =(A—ka;) (x) (fikv)\)
for all x € H. Thus we have

v €L(A),, fiv,€ L(A)/\—ai’ fizv)\ € L()\))\—Za,-

and so on. Now L(A), being finite dimensional, has only finitely many distinct
weights. Thus there exists p € Z, p >0 such that

fl." v, #0 fork<p

frh, =0.
Let M =Cuv, +Cfv, +---+Cf’v,.This sum is direct since v,, fv,, ... , f v,
all lie in different weight spaces. We show that M is a submodule with
respect to the subalgebra (e;, h;, f;) of L. It is clear from the definitions that
h;M CM and f;M C M. We shall show that e;M C M also.

We verify that ¢;f}v, € M by induction on k. If k=0 we have ¢,v, =0. If
k>0 we have

k f—1 f—1
efion=rief; o +hifiT v,
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Now e,f}~'v, €M by induction, hence e¢,;ffv, €M also. Thus M is an
(e;, h;, f;)-submodule. We consider the trace of h; on M. This can be
calculated in two ways. On the one hand we have

trace,, h; =trace,, [¢;f;] =trace,, (e;f; — fi¢;) =0.
On the other hand we have
trace, h; = A(h)+(A—«a;) (b)) +- -+ (A= pa;) (B)

=+ DA () —p(p+1)
since «; (h;) =2. Hence

trace, b, = (p+ DA (h)—p(p+1).
It follows that

(p+1) (A (h)—p)=0,

that is A (h;) = p. Thus A (h;) € Z and A (h;) > 0. ([

The condition A (h;) € Z, A (h;) >0foralli=1, ..., 1is therefore necessary
for L(A) to be finite dimensional. In the next section we shall show that this
condition is also sufficient.

10.3 The finite dimensionality criterion

We consider the set of A € H* such that A (h;) € Z, A (h;)) >0 fori=1,...,1.

Definition 10.16 Let w; € H* be the element satisfying w; (h;) =1, w; (h;) =0

if j#i. The elements w,, ..., w, € H* are called the fundamental weights.
We note that w,, ..., w,; are linearly independent, since this is true of

hy,...,heH. Thus w,,...,w», form a basis of H*. Let X={n 0, +---

+mw, ; ny,...,n€Z}. X is a free abelian subgroup of H* with basis

the set of fundamental weights and is called the lattice of integral
weights or, briefly, the weight lattice. It is clear that an element A € H*
lies in X if and only if A(h)€Z for i=1,...,1. Let X*={n,0,+---
+mw,; n,€Z, ;>0 fori=1,...,1}. Xt is called the set of dominant
integral weights.

An element A € H* lies in X* if and only if A (h;) €Z and A (h;) >0 for
i=1,...,L

We have seen, therefore, that if L(A) is finite dimensional then A is a
dominant integral weight, and wish to prove the converse.
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We shall first explore the connection between the fundamental weights
w,, ..., w; and the fundamental roots o, ..., a;.

Proposition 10.17 «;=3_; A, w;. Thus the matrix expressing the fundamen-
tal roots as linear combinations of the fundamental weights is the transpose
of the Cartan matrix.

Proof. Since wy, ..., w; are a basis for H* there exist ¢;; € C such that

ai=Zcijwj.
J

Then we have

Q; (hj) =Cij-
Hence
. 2, N[ 2\ ()
=a (h)=a | —— | =(H, —=p_ —A..
Cij O(,( j) Q; (h;jsh;j) o (h;j,h;) (h;jsh:,j) ji
Thus we obtain a; =3, A;;. U

In particular we note that all the fundamental roots are integral combinations
of the fundamental weights, so lie in the weight lattice X. However, it is not
true that the fundamental weights are, in general, integral combinations of the
fundamental roots. We have

For example, when L has type A, we have
o, =2w,, W, =50,.
When L has type A, we have
o, =2w,—w,
a,=—w,+2w,

and so

_2 1
w; =30,+5,
_1 2

§a1+§a2.
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We show that in general the coefficients expressing the w; in terms of the
a; are non-negative rational numbers.

Proposition 10.18 (i) (w;, ;) >0 for all i, j.

(ii) w; is a non-negative rational combination of o\, ..., a,.

(iii) The coefficients of the inverse A~' of the Cartan matrix are non-negative
rational numbers.

Proof. We shall show that condition (i) implies the others, and prove (i) in
a subsequent lemma. Since the coefficients of A are integers the coefficients
of A~! are rational numbers. We show they are all non-negative.

We know that w; (;) =8,;. This condition is equivalent to

wi’ = ii
<0‘j’ aj) !

where (, ) is now the Killing form on H* as defined in Section 5.1. Thus we
have

(wh Olj)=8“(af’ a.f>.

1] 2
Now let w;=3; c;;;. Then we have
o,
(“’w‘*’j)=ci/<0‘j’“’j)zci/( 12 j>
Thus
c zz(wi’ wj) ZO,

since (w;, w;)>0 and (o, a;)> 0.

We must now show that (a)i, w j) > (. This will follow from the fact that

2aj
<wi’ >=6U
<0‘j’ aj)

2a; 2a;
<L —f>50 if it

(i, ;)" (e, )

and the fact that

by Proposition 5.4. The following lemma on Euclidean spaces will give us
what we need.
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Lemma 10.19 Let V be an n-dimensional Euclidean space with a basis
Vi, ..., U, satisfying (vl-, vj-) <Oforalli#j. Let w,, ... ,w, be the dual basis
of V uniquely determined by the conditions (vi, w_/-> =30;;. Then <w,-, wj> >0 for
all i, j.

Proof. We use induction on n. If n=1 there is nothing to prove. So
assume n > 1 and let U be the (n — 1)-dimensional subspace of V spanned by

Vi,...,V, ;. Let wi,...,w,_; be the dual basis of v,...,v,_, in U. Thus

—1
we have '
(v, wi)=8,

1

Let Ut={veV ;{v,u)=0 for all ucU}. Then dimU*=1 and U" is
the subspace of V spanned by w,. We see also that w;,—w, €U~ for
i=1,...,n—1. Thus we have

w,=w, +Aw, for some A; € R,
fori=1,...,n—1. Taking the scalar product with v, we have
0= <Un’ w;> +)\l

hence A;=— (v,, w)). We wish to determine the sign of A,. By induction we
know (w;, w;) >0fori, j=1,...,n—1. This implies that w} is a non-negative
combination of v, ..., v,_;. Since

<Un’ U1> 50’ e <Un’ Unfl> SO
we see that (v,, w;) <0 and so A, >0. Hence for i, j=1,... ,n—1
(w;, w;) = (w,+ Aw,, w}—i—)\jwn)
= (w}, w))+ A4, (w,, w,) =0

since (wf w})zO, A, >0, /\jZO, (w,, w,)>0. It remains to show that
(w;, w,)y>0fori=1,...,n—1. We have

<wi’ wn> = <w;’ wn>+/\i <wn’ wn> ZO

since (w, w,)=0,A,>0, (w,, w,) >0. Ul
By applying this lemma in the case where v, = (a%“; T W= 0;, We deduce
that (wi, wj> >0 and so Proposition 10.18 is proved. I}

We now turn to the main theorem of the present section.
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Theorem 10.20 Suppose A€ H* is dominant and integral, that is A€ X™.
Then the irreducible L-module L(A) is finite dimensional.

Proof. We have L(A)=M(A)/J(A). We know from Theorem 10.7 that M(\)
is the direct sum of its weight spaces and from Theorem 10.9 that any
submodule of M(A) is also the direct sum of its weight spaces. This applies
in particular to J(A). It follows that L(A) = M(A)/J(A) is also the direct sum
of its weight spaces. In fact the same proof as given in Theorem 10.9 shows
that any H-submodule of L(A) is the direct sum of its weight spaces.

Let v, be a highest weight vector of L(A). Thus v, € L(A), and v, #0. We
consider the sequence of elements

2
v, fios S

We wish to show that terms in this sequence eventually become zero. In fact
we show

flv,=0  where k,=A(h)+]1.

Let m, be a highest weight vector of the Verma module M(A) such that
m, +J(A)=v,. We consider the submodule 11(L)f/m, of M(A). As usual
we choose elements e; € L, , f; € L_, such that [e;f;] =h;. We have

e.fi=fie,+h,
e.ft =fief;i+hifi=fle+2fih—2f;
=fle;+2f; (h;—1)
and inductively we obtain
efl =fletnfl~ (h—(n—1).
Thus we have
eif my= 1} ey +kifi ' (b= (k= 1) my =0
since e;m, =0 and h;my =A (h;) my = (k;—1) m,. Also if j#i then
e,f'my=f!"e;m, =0.

Thus e;f"m, =0 for all j=1,..., L It follows that e, f'm, =0 for all @€
®*, since e, ... , ¢, generate N, by Proposition 7.7. We also know that

hjfikim)\ =(A—k;a;) (h]) ]Cikim)\

since ﬁk’m ) 1s a weight vector with weight A —k;a;.
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We now consider an arbitrary basis vector of 11(L) applied to fik"m A
r N 1.8 s 4 ty k;
fg, - S i - heg ---eq (f, m/\>
is zero unless all #;, =0, in which case it will be a scalar multiple of
r N ki
T, - Tgufiimy.
This shows that
ki 1 oar—y ki
W(L)fi'my=W(N") f;"m,.

Now U (N7) f[-k" is a proper subspace of 11 (N~) since k;=A(h;)+1>0.
It follows from Theorem 10.6 that 11 (N™) f[-k" m, is a proper subspace of
M()). Hence LI(L)fik"m ) is a proper submodule of M(A). It therefore lies in
the unique maximal submodule J(A) of M(A). Hence f,-k"m L €J(A) and this
implies f,-k"v/\=0.

Now let K be the finite dimensional subspace of L(A) given by

K=Cv,+Cfu,+---+Cf v,

We clearly have HK C K since each f/'v, is a weight vector. We have f,K C K
since f,-k‘ v, =0. We also have ¢,K C K since

e.fi'vy = flle, +”fin_l (h;—(n—1))v,
=n(A(h)—(n=1)) fIv,.

Thus K is a submodule of L(A) for the subalgebra (e;, H, f;) of L of dimension
[+2. We shall consider non-zero finite dimensional {e;, H, f;)-submodules
of L(A). K is such a submodule. If U is any finite dimensional {e;, H, f;)-
submodule of L(A) we claim that LU is also. For LU is finite dimensional
and we have, for ue U, ze€L, ye{e;, H, f;)

y(zu) =z(yu) +[yz]Jue LU

since yu € U and [yz] € L.

Let V be the sum of all finite dimensional (¢;, H, f;)-submodules of L(A).
Then V # O since V contains K. V is an L-submodule of L(A), since if U is
a finite dimensional {e;, H, f;)-submodule of L(A) so is LU. Since L(A) is
an irreducible L-module we see that V = L(A). Thus L(A) is a sum of finite
dimensional (e;, H, f;)-submodules.

Now each such finite dimensional (e;, H, f;)-submodule of L(A) is the
direct sum of its weight spaces, as observed above. Thus we may choose a
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basis for it consisting of weight vectors, that is vectors spanning 1-dimensional
H-modules. Hence we can find a basis of L(A) consisting of weight vectors,
each of which lies in some finite dimensional {e;, H, f;)-submodule of L(A).
This fact will give useful information about the set of weights of L(A).

Let A be the set of all weights of L(A). Thus u € A if and only if L(A),, # O.
Of course all weights of L(A) are weights of M(A) so have form

A=rpy——ryBy

by Theorem 10.7. In particular A C X, since A € X and each 3, € X by Theo-
rem 10.7. Let u be any element of A. Then there is a weight vector v, € L(A)
for w such that v, lies in a finite dimensional (e;, H, f;)-submodule U of
L(A).

We consider the vectors

2 2
o f Vs [iVus Vs €10,,5 €70,

These vectors all lie in U and have weights
=20, u—a;, p, uto;, 20, ...

Since dim U is finite U has only finitely many weights so there exist p, g >0
such that

flv,#0 forO<n<p,  fI*'v,=0

efv, #0 for0<n<gq, e?HvM:O.
Let V=Cf/v,+---4+Cfu,+Cv,+Cev,+---+Celv,. Then V is a
(e;, H, f;)-submodule of L(A). This follows readily from the relations
efi = f"e +”fin_1 (hi—(n—1))
el = e fi—nel ™ (hi+(n—1))

and the fact that f,-pHvM:O, e?HvH:O. We consider the trace of h; on V.
On the one hand we have

traceyh; = (u (h;) — pa; (hy)) +- - +p (h) +- -+ (1 (h) +qa; ()
q9(g+1) _p(p+1)>a_(hA)

2 2
=(p+q+Du(h)+(@—p)(p+q+1)

=(p+q+l)u(hl~)+(
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since «; (h;) =2. On the other hand we have
trace, h; =tracey, [e,f;] =tracey (e,f; — f:e;) =0.

Hence u (h)=p—q.

We may make an important interpretation of this result in terms of the
Weyl group W. We recall from Section 5.2 that W is the group of linear
transformations of Hj; generated by the reflections s, with respect to the roots
ae®. We write 5;=s5, and recall from Theorem 5.13 that W is generated
by s;,....s;. We have

(@, 1)
(a;, a;)

B 21, \ 2e; \ (i m)
/"L(hi)_l‘l’<(h/ h, >)_</J” <ai,ai>>_2<aiaai>.

Choosing u as above, where u (h;) =p — g, we have

si(w)=p—2-——Fa,=p—pn(h)q

since

simw)=p—(p—qa;=p+(g-pa.
Now p+ (g — p)a; is one of the weights in the list

W=Dy oy o=y oy Wt -, ot g

of weights of V. Thus we have shown that if u is any weight of V then s,(u)
is a weight of L(\) also. Since sy, ..., s, generate W it follows that for any
€A and any we W we have w(u) € A also. Thus the set of weights A of
L(uw) is invariant under the Weyl group. We recall also from Proposition 5.8
that W is finite.

We now claim that for each u € A there exists w € W such that w(uw) € X*.
To see this we consider the finite set of weights {w(w) ; we W} and pick
one maximal in the partial order > on H*. Let v be such a weight. Then

s;()y=v—v(h)«q,.

We know that v € X since A C X, hence v (h;,)€Z. If v(h;) <0 we would
have s;(v) > v, a contradiction to the choice of v. Hence v (k;) > 0. This holds
forall i=1,...,[ and so v€ X". Thus each weight in A has a W-transform
which lies in X*.

We shall now concentrate on the set ANX*. For any weight ve ANX*
we have v < A. We express A and v in terms of the fundamental roots «;.
Since A, v€ X' these weights are non-negative integral combinations of the
fundamental weights w,, ..., w,. By Proposition 10.18 they are therefore
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non-negative rational combinations of the fundamental roots «, ... , &;. Thus
we have

I
A=) g q:€Q ¢,>0
-1

1
v=> qa  ¢€Q g¢>0.
i=1

The condition A > v means simply that ¢, — ¢’ is a non-negative integer for
eachi=1,...,l. Now given g; there are only finitely many g; such that g/ >0
and ¢; —g; is a non-negative integer. Thus given A € X* there are only finitely
many v € X" such that ¥ < A. Thus ANX™ is finite. Since every element of
A can be transformed by an element of W into one of ANX* and since W
is finite we see that A is finite. Thus L(A) has only finitely many weights.
However, each weight space L(A), of L(A) is finite dimensional, since

dim L(A), <dim M(}A),,
and dim M(A),, is finite by Theorem 10.7. Thus we have
L) =D LM,
"

with finitely many summands, each finite dimensional. Hence L(A) is finite
dimensional. U

We conclude by summarising the main ideas in this somewhat lengthy
proof. In order to show that L(A) is finite dimensional it is sufficient to
show that L()) has only finitely many weights, since each weight space is
known to be finite dimensional. This can be proved if the set of weights
is known to be invariant under the Weyl group, since each weight will be
W-equivalent to one in X, and there are only finitely many elements of
Xt lower than A in the partial ordering. It is therefore necessary to show
that, for any weight p of L(A), s;(u) is a weight also. This can be shown
provided we know that any weight u comes from a weight vector lying in a
finite dimensional (e;, H, f;)-submodule of L(A). We therefore have to show
that L(A) is the sum of its finite dimensional (e;, H, f;)-submodules. This
comes from the irreducibility of L(A) provided L(A) has a non-zero finite
dimensional (e;, H, f;)-submodule. The existence of such a submodule K is
proved above.

We have now completed the determination of the finite dimensional irre-
ducible L-modules where L is a finite dimensional semisimple Lie algebra
over C.
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Theorem 10.21 Let L be a finite dimensional semisimple Lie algebra over
C. Then the finite dimensional irreducible L-modules are the modules L(A)
for A € X*. These modules are pairwise non-isomorphic.

Proof. The fact that any finite dimensional irreducible L-module is isomor-
phic to L(A) for some A is proved in Corollary 10.14. The fact that A must lie
in X is proved in Proposition 10.15. The fact that L(\) is finite dimensional
when A € X" is proved in Theorem 10.20. The fact that the L(\) are pairwise
non-isomorphic follows from the fact that A is the highest weight of L(A).
Thus if A#u, L(A) and L(n) have different highest weights so cannot be
isomorphic. |

A property of L(A) which will be very useful subsequently is given by the
following proposition.

Proposition 10.22 Let A€ Xt and we W. Then

Proof. Since W is generated by the fundamental reflections s, ..., s, it is
sufficient to show that

dim L(A), =dim L(A)

si(p)

We recall from Section 7.5 that there is an automorphism 6, of L such that
6,(H) = H and 6,(h) =s,(h) for all h € H. We define an L-module L(\) which
is the same space L(A) as before but with a different L-action. For v € L(A)
we have

xv=20,(x)v

where v is the corresponding element of L(A). It is clear that this action
makes L(A) into an L-module.
Now let ve L(A),,. For x€ H we have

xv = 6;(x)v=s;(x)v=p (5;(x)) v
= (s:(w)) (x)v.

Thus f)EZ(/\)Si(“). A similar argument shows that if Dei()\)si(m then ve
L(A),. Hence

dim ZJ()\)AY;(M) - dim L()\)M.
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Now L(A) is an irreducible L-module, since L(A) is irreducible. For if
M were a submodule of L()) the corresponding subspace M would be a
submodule of L(A). Let A be the set of weights of L(A). Then we have
seen that 5;(A) is the set of weights of L(A). But we showed in the proof
of Theorem 10.20 that w(A)= A for all we W. Hence the set of weights of
L(X) is also A. In particular the highest weight of L(A) is A. Thus L(A) is a
finite dimensional irreducible L-module with highest weight A. Hence L(\)
is isomorphic to L(A) by Theorem 10.21. Thus we have

dim L(A),, =dim L(A), ) =dim L(A)

si(p si(u)*

Since each w e W is a product of elements s; we deduce that

dim L(A), =dim L(A)

w(p)

as required. |
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Further properties of the universal
enveloping algebra

11.1 Relations between the enveloping algebra
and the symmetric algebra

Let L be any finite dimensional Lie algebra over C. Let T be the tensor
algebra of L. We recall that the enveloping algebra 11(L) is defined by

wL)y=1/J
where J is the 2-sided ideal of T generated by all elements of the form
x@y—y®x—[xy]
for x, y € L. The symmetric algebra S(L) is defined by
S(L)=T/I
where [ is the 2-sided ideal of T generated by all elements of the form
XQYy—y&®x

for x,yeL.
S(L) is isomorphic, as C-algebra, to the polynomial ring C[z,,...,z,]
where n=dim L. We have

S(L)=Ps(L)
k

where S¥(L)=(T*+1) /1.
Sk(L) is the set of homogeneous elements of S(L) of degree k. In particular
we have an isomorphism

L=T"—-S'(L)

thus L can be regarded as a subspace of S(L).

201
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If x,, ..., x, are a basis of L then the elements

n T,
X)X Fioyeou s 7, >0

form a basis of S(L).

We now explain how S(L) can be regarded as a left L-module. In the first
place L is an L-module under the adjoint action. Then T may be made into
an L-module by means of the action

y(xil ®“'®xik)Z[yx"l]®xiz®”'®xik+“'+xi1®“'®x' ®[yxik]'

Tk—1

The ideal I of T is then a submodule, and so S(L)=T/I can be given the
structure of a left L-module. We have

y(xi] ...xik) =[yx,-l]x,-2 ...xik—i—~-~+xiI Xy [yx,-k]

where y € L and the x; are basis vectors of L. We note that each S¥(L) is an
L-submodule of S(L).

Similarly 11(L) =T/J can be made into a left L-module. For the ideal J of
T is also a submodule since, for a, b€ L, we have

y(@a®b—b®a—[ab]) =[yal®b+a®|[yb] —[yb]®a—b®[ya]—[y[ab]]
=[yal®b—b®|[ya] —[[ya]b]+a®[yb]
—[yb]®a—alyb]
since
[ylab]]=[[yalb]+[alyb]].

We shall find it useful to compare the enveloping algebra 11(L) with the
symmetric algebra S(L). We first compare their C-algebra structures. Of
course they need not be isomorphic as C-algebras since S(L) is commutative
whereas 11(L) is in general non-commutative. However, there is a relation
between these two algebras: it is the relation between a filtered algebra and
the corresponding graded algebra.

A filtered algebra is an associative algebra A with a chain of subspaces

AocAch2c...

such that U;A,=A and A;A; C A, ;.
A graded algebra is an associative algebra A with a decomposition

A=A0A ®A,D---

into a direct sum of subspaces such that A;,A; C A, ; for all i, j.
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Given any filtered algebra we may obtain a corresponding graded algebra
as follows. Let A={J;A; be a filtered algebra. We define vector spaces By,
B,,B,,... by

By=A,, B, =A/A;, B,=4,/A,
and define the vector space B by
B=B,®B,®B,®---.

We define a multiplication on B to make it into a graded algebra. It is
sufficient to define xy when x € B;, y € B; and to extend this multiplication by
linearity. Thus let x€ A;/A,_,y€A;/A;_,. Let x=A,_,+a;,,y=A,_+a;.
Then, for any pair of elements u€ A,_;,ve A;_; we have

(u+a;) (v—i—aj):uv+uaj+aiv+aiajeAi+j,1 +aa;.

Thus the coset in A, ;/A;,; ;| containing the product of any element in x
with any element in y is the same. Thus we may without ambiguity define
xy€ B, ; by

xy=A;;taa;.

It is readily checked that this multiplication when extended by linearity makes
B into a graded algebra. B is called the associated graded algebra of the
filtered algebra A.

We may regard 1I(L) as a filtered algebra as follows. Let 1I,(L) be the
subspace of 1I(L) generated by all products a,a, .. .a; for j <i, where a; € L.
We also define 11,(L) =C1. Then we have

U@ =uw)
and
Uy(L)ycu,(Lycu,(Lyc---.

Moreover 1,(L)1;(L) C U, ;(L). Thus U(L) is a filtered algebra. We con-
sider its associated graded algebra.

Proposition 11.1 The associated graded algebra of the filtered algebra 11(L)
is isomorphic to S(L).
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Proof. Let B=B,®B,®B,®--- be the associated graded algebra of 1I(L).
We first observe that B is a commutative algebra. B is generated as an algebra
by 1 and B,, and B, =11,(L)/U,(L). The natural map

L— 11,(L)/ (L)
is an isomorphism of vector spaces. For elements x, y € L we have
xy—yx=/[xy] in U(L).
Thus
(Uo(L)+x) (U(L) +y) = (Uy(L) +y) (Up(L) +x)  mod 11, (L).

Hence any two elements of B, =1,(L)/11,(L) commute in B, where their

product lies in 11,(L)/11,(L). It follows that B is a commutative algebra.
We now compare B with the symmetric algebra S(L). Let x, ..., x, be a

basis of L. Then it follows from the PBW basis theorem that the elements

T .
XX rn4-+r, <i

n

form a basis of 11;(L). Moreover the elements 1,_ (L) +x'...x" with r, +
-+++r,=i form a basis for I;(L)/1,_, (L) = B;. Now we have

(M (L) +x x) (U (D) + o) =W, (L) +x) )X

This is equal to
Wiy (L) T X

since multiplication in B is commutative. This shows that the linear map
S(L) — B defined by

r 7, n T, — 7
X x> U (L)X > =i

extends to an isomorphism of algebras. Thus the associated graded algebra
of 1I(L) is isomorphic to S(L). O

We now wish to compare the enveloping algebra 11(L) and the symmetric
algebra S(L) as left L-modules. We shall show that they are isomorphic as
L-modules. In order to do so we shall first find a complement to 11,_,(L) in
u,(L).

We have T'=L®---®L (i factors). The symmetric group S; operates
on T’ by

T @ ®Y)=Yy11)® - ®Y,sm1(;)
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and extending by linearity. A tensor in 7" is called symmetric if it is fixed by
all o €S,. The natural map T — 1I(L) induces a map T’ — 11,(L). Let 1I’(L)
be the image under this map of the space of symmetric tensors in 7.

Proposition 11.2 (i) U,(L)=U, (L) ® U (L).
(ii) These spaces are all L-submodules of (L).

Proof. We first show that
W,(L)=U,_,(L)+1'(L).

Let x'...x" be a basis element of W,(L) with r,+---+r,=i. For each
o €S; we define o (x}'...x) to be the element obtained from xi'...x" by
permuting the factors by the permutation o. Since multiplication in the graded
algebra of 11(L) is commutative we have

xp . x :%U%S:va'(x;‘ LX) tu
where u€1l,_,(L). Since the sum lies in 11'(L) we have
u,(L)=1,_,(L)+1'(L).
We next show that 1, ,(L)NU'(L)=0. Any element of 1’(L) has the
form

Yoo A a'(x;‘ LX)
n In

. oges;
riteetr,=i

We express this element as a linear combination of basis elements of 11(L).
We obtain

Z )\rl,...,r,l Z U(x;l x;”):z' Z /\rl,.“,r,,x;l "'x:tn+u
al Tn

. Tges; Fiseeesty
ryteetr,=i it tr, =i

where u€ll,_ (L), since multiplication in the graded algebra of (L) is
commutative. This element can only lie in 1I,_;(L) if each A, ,...,, is 0.
Thus 11, ,(L)N1(L) = O. Hence we have

(L) =1u,_ (L)@ ' (L).

Finally these subspaces are all L-submodules. The subspaces 11,(L) and
U, ,(L) are evidently submodules by the definition of the L-action. 11'(L) is
an L-submodule since the L-action commutes with the S;-action on 7°.  []

Let T/, be the subspace of symmetric tensors in 7".
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Proposition 11.3 There is a commutative diagram of vector space isomor-
phisms

J(L) N
Ysiw) 4

where « is induced by the map T(L) — W(L), B is induced by T(L) — S(L),
v is induced by ;(L) — N,(L)/N,_, (L) and 6 is the map of Proposition 11.1.

Tym(L) W,(L)/1;, (L)

Example

a ¥
XXX N + X0, + XX,

} 2x,%, {' 0, 4+2x,x,

X Q@ Xy +x, ® X

Proof. It is sufficient to show that ya(r) =8B(r) where t=3,c5 y,-11)®
~*®Y,-1(; and y, € L. We have

a(t) = Zy(r’l(l) .. ‘y(r’](i)
ya(t) = Hifl(L)—FZer’](l) < Yool
B = Yo101)-+-Yor0i

8B(1) =1 (L) 4+ Vo1V 1)
since the difference between y,-i()...y,-1; and the corresponding element
in canonical form lies in 1,_,(L). Hence ya(r) =08(t). Ul

We now define 0 : S'(L) — 1'(L) by =y~'8, and extend this map by lin-
earity to give 6 : S(L) — U(L). 0 is called the operation of symmetrisation.
We have

1
0y, 'yi):ﬁ Z Yo-1(1) + -+ Yo-1(i)-

* o€S;

Proposition 11.4 0 : S(L)— U(L) is an isomorphism of L-modules.

Proof. We know that 6 is an isomorphism of vector spaces and so must show
that

x-0(P)=0(x-P) forall xe L, P S(L).
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A derivation of an associative algebra A is a linear map D : A— A such
that

D(ab) = D(a)b+ aD(b)
for all a, be A. It follows from the definition of the L-action that the maps
S(L)— S(L) (L) —nu(L)
P—x-P Uu—>x-u

for x € L are derivations. Now L may be identified with a subspace of S(L)
and the map P— x-P when restricted to L is adx. Similarly L may be
identified with a subspace of 11(L) and the map u— x-u when restricted
to L is again adx. Now S(L) is generated as an algebra by L and 1. We
have D(1) =0 for any derivation of S(L). Thus there is a unique derivation
of S(L) extending ad x on L. Similarly u — x-u is the unique derivation of
U(L) extending ad x on L.

Let D : U(L)— U(L) be this derivation. D transforms 1I’(L) into 1I(L)
for each i. Using the isomorphism 7y of Proposition 11.3, D determines a map

(L) (L)
i 0~ %n .0

i i

which is still a derivation. Using the isomorphism 6 of Proposition 11.3 we
obtain a map S(L) — S(L) that is still a derivation and which acts as ad x on L.
Thus it is the map P— x- P. Hence for P € S(L) we have

6" (x-6(P))=x-P.
Thus x-0(P)=6(x- P) as required. |
Note The L-action on 11(L) considered here may be described simply by
X-U=XU—Uux xeL,uell(L)

For this is a derivation of 11(L) which extends adx : L — L. Ul

11.2 Invariant polynomial functions

Let G=Inn L be the group of inner automorphisms of the Lie algebra L. We
recall from Section 3.2 that G is generated by automorphisms of the form
exp adx for elements x € L such that ad x is nilpotent. We define an action
of G on L* by

(gf)x=f(¢'x) g€G, felL*, xeL.
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The tensor algebra

T(L)=PL'Q---®L")

k>0 k factors

may then be made into a G-module satisfying

g(fi® - ®fi)=g/i®  -®gf;

for ge G, f; € L*. Let I be the 2-sided ideal of T (L*) generated by all elements
of form

f®g—s®f
for f, g€ L*. Then [ is a G-submodule of T (L*). Let
S(L)=T (L") /L

Then S (L*) may also be made into a G-module. S(L*) is the symmet-
ric algebra on L*. The algebra S(L*) may be identified with the algebra
of polynomial functions on L. The element I+ f, ®---® f, of S(L*) gives
rise to the polynomial function f,f,...f, on L. We define P(L)=S (L")
and P"(L)=S"(L*). This is the image of 7" (L*) under the natural homo-
morphism T (L*) — S (L*). P*(L) is the space of homogeneous polynomial
functions of degree k on L. In particular P'(L) may be identified with L*.
Each subspace P*(L) is clearly a G-submodule of P(L).

We now prove some lemmas which will help in understanding the action
of G on P(L).

Lemma 11.5 The linear map « : T™ (L*) — (T™ (L))" uniquely determined
by
(@(fi® - ®f,) (x| ® - ®x,)=1f (x)) [, (x3)... [ (x,)

is an isomorphism of G-modules. Here x|, ... ,x,, lie in L and f, ..., f,

in L*.

Proof. The linear map « is clearly injective. Since 7 (L*) and (7"(L))"
have the same dimension, & must also be surjective. Thus « is an isomorphism
of vector spaces. We must also show that

a(y-/i®-®f)=y((f/i®-®f,))

for all y € G. Now we have

Yfi® - ®f)=V/1® - ®YVfp-
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Thus

a(y'fl - ®fm) (.X] - ®xm) = (’Yfl) (xl) o (’Yfm) (xm)
= fl (ﬂyilxl) . fm (’yil'xm) .

On the other hand

Y(@(fi® ®f,) (@ ®x,)=a(fi®®f) (¥ x® ®Y x,)

= fl (y_lxl) . 'fm (‘y_lxm) .

This gives the required equality. O
Lemma 11.6 Consider the maps

and let 6 : (T™ (L))" —> S™ (L*) be given by 0= Ba~'. Thus 6 is a homo-

morphism of G-modules. Then we have (0f)x= f(x®- - -®x) with m factors,
for xe L.

Proof. 1t is sufficient to prove this when f has the form
S ®--@x,)=rf(x)...f,(x,)
that is when @~ f = f, ®---® f,,. In this case we have
0)x=f1(0)f,(x) ... [,() =f(x®- - ®x). O
An element f € (T™(L))" is called symmetric if

f(xl ®-- ®xm):f(x0'(l)® '®x0(m))

for all x,,...,x,€L and all o€S,,. The set of symmetric elements of
(T (L))" will be denoted by (7" (L))g,-

An element of 7™ (L*) is called symmetric if it is invariant under the linear
maps which transform f, ® - ® f,, t0 [,y ® - ® fy,, forall c€S,,.
The set of symmetric elements of 7" (L*) will be denoted by T™ (L*)

sym*

Lemma 11.7 The subspaces T™(L)* and T™ (L*)., . are G-submodules.

sym sym
Moreover the maps o™, B give isomorphisms

T"(L),ym—>T" (L)

sym sym
ym -1 Yy

— 8" (L").
5 (1)
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Proof. The subspaces are G-submodules since the G-action commutes with
the S,,-action on 7" (L)* and T™ (L*). The map « transforms 7™ (L*)__ into

sym

T™ (L)% and, since « is an isomorphism and these two spaces have the same

dimension, we have
a(Tm (L*) =Tm(L)*

sym) sym*

Again the spaces 7" (L*)
the map

om and S™(L*) have the same dimension and

B T" (L) ym—> S" (L)

is surjective, since it transforms

1
% Z fa’(l)®”'®fu’(m)

©oeS,

into f,f5...f,. Thus this map is also an isomorphism. Ul

The G-module isomorphism

P"(L)—T" (L),
pla

is useful in determining the G-action on P™(L), since it is often easier to

calculate the action on the linear functions in 7" (L), than on the polynomial

functions in P™(L).

We shall now assume that the Lie algebra L is semisimple. The group G of
inner automorphisms is called the adjoint group of L. A polynomial function
PeP(L) is called invariant if y(P)=P for all ye G. The set of invariant
polynomial functions on L is denoted by P(L)°. This is clearly a subalgebra
of P(L). We shall investigate the algebra of invariant polynomial functions on
L by relating it to the algebra of polynomial functions on a Cartan subalgebra
of L invariant under the Weyl group.

Let H be a Cartan subalgebra of L and P(H)=S (H*) be the algebra of
polynomial functions on H. Let W be the Weyl group of L. Then we know
that both H and H* are W-modules. (We recall from Section 5.2 that an
action of W was defined on the real subspace Hj of H*, and this gives
rise to a W-action on H* by linearity.) The W-actions on H and H* are
related by

(wf)h:f(w_lh) weW, feH*, heH.
There is then a W-action on T (H*) satisfying

w(i®-®f,)=wfi® - Quf,.
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This in turn induces a W-action on S(H*)=T (H*)/I since I is a
W-submodule of T (H*). Thus P(H)=S(H*) may be regarded as a
W-module.

A polynomial function P € P(H) is called W-invariant if w(P)= P for all
w € W. The set of W-invariant polynomial functions on H will be denoted by
P(H)Y. This is a subalgebra of P(H).

Now we have an algebra homomorphism

¥ : P(L)— P(H)

given by restriction from L to H. We consider the image of P(L)° under this
restriction map. We show first that this image lies in the subalgebra P(H)".

Proposition 11.8  (P(L)°) C P(H)".

Proof. We use the element 6, € G given by
0,=exp ade;-exp ad (—f;)-exp ad e;.

We recall from Proposition 7.18 that §,(H) = H and that 6;(h) =s,(h) for all
he H, where s;€ W is a fundamental reflection. Thus 6, acts on H in the
same way as s;. It follows that 6, and s; also act in the same way on H*, and
on S(H*)=P(H).

Let Pe P(L)°. Then 0,(P)=P. We have (P) € P(H) and so s,(i)(P)) =
Y(P). However, the Weyl group W is generated by its fundamental reflections
Sy, ..., by Theorem 5.13. Thus we have

w(P(P)) =y(P) forallwe W
and so y(P)e P(H)Y. O

Proposition 11.9 The map  : P(L)° — P(H)Y is injective.

Proof. Let R be the set of regular elements of L. We recall from the proof of
Proposition 3.12 that there is a polynomial function F € P(L) such that x € R
if and only if F(x)#0. We also recall from Theorem 3.2 that every regular
element lies in some Cartan subalgebra and from Theorem 3.13 that any two
Cartan subalgebras are conjugate. Thus given any regular element x € R there
exists vy € G such that y(x) € H.

Now suppose P € P(L)C satisfies y(P) = O. Let x be a regular element and
let v € G be such that y(x) € H. Then

P(P)(y(x)) =0,
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that is P(y(x)) =0. Hence (y~'P) (x) =0. Since P € P(L)® we have y'P=P
and we may deduce that

P(x)=0.

Thus P annihilates all regular elements of L. Hence P(x)=0 whenever
F(x) #0. By the principle of irrelevance of algebraic inequalities we have

P(x)=0 forallxelL,
that is P= 0. U

Finally we show that the map i is also surjective.

Theorem 11.10 4 : P(L)° — P(H)V is surjective, and is therefore an iso-
morphism of algebras.

Proof. We make use of ideas from the representation theory of L. Let A € H*
be a dominant integral weight and L(A) be the finite dimensional irreducible
L-module with highest weight A. We can choose a basis of L(A) with respect
to which L(A) decomposes into a direct sum of 1-dimensional H-modules.
Let p be the representation of L afforded by this basis. Consider the function
P : L— C given by

P(x)=tr ((p(x))")  xeL.

We claim that P € P™(L). For let by, ..., b, be a basis of L and let
x=&b+---+&,b, ¢ eC.

Then we have

p(x)= Z &ip (b))

1

(p(x)" = | Z & ... & p (b,»l) P (bi,,,)

trace (p(x))" = | Y tw(p(b)...p(b))é - & -

I yeesiy

This is evidently a polynomial function on L which is homogeneous of
degree m. Thus P € P"(L).

We wish to show that P is an invariant polynomial function, that is
Pe(P"(L))°. We shall make use of the isomorphism

P"(L)— T"(L):

sym
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obtained in Lemma 11.7. The element feT7™(L);,, corresponding to
P e P"(L) is given by

1
f(x1®"'®xm)=% > (o () - P (Kom)) -

‘T oesS,

For f certainly lies in 7" (L)*

fx®--®@x)=tr (p(x)").

Lemma 11.6 now shows that f corresponds to P.
We recall that 7" (L) may be regarded as an L-module under the action

X (6@ @x%,) =) 1 ® - ®[xx]® - ®x,.

Its dual space 7" (L)* then becomes an L-module under the action
) ®--@x,)=—f(x(x 8 -8x,))

for xe L, feT™(L)*.
We now consider xf where f€T"(L)],, is the function defined above.
We have

(xf)(x1®...®xm)=—Zf(xl(g)...@[xxi]@...@xm)

Z > 1 (p () o ([x20)]) - (X))

U'ES i

- _$ Z Z tr (p (x(,(l)) .p(x)p (xa'(i)) P (xrr(m)))

foes, i

+% > u(p (X(,(l)).. p(x U()) (%) - P (Xom))) -

foeS, i

All the terms in these expressions cancel except those for which p(x) occurs

at the beginning or the end of the product. Thus we have
1
N @@ -®x,) = — 3 (tr(p(xm) P (Xoum) ()

|
m: ges,

m

=t (p(0)p (X)) - P (¥om)))
= 0 since tr(AB)=tr(BA).

Thus xf =0 for all xe L.
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We now compare the L-action on 7" (L), with the G-action.

Let x be an element of L such that adx is nilpotent. Then exp ad x € G and
G is generated by all such elements. Let

T(x) : T"(L): _—T"(L)

sym sym

be the linear map given by

T(x)f =xf".
Then we have

) (@ ®x,) =3 f(x @ ®ad(=x) ;@ ®x,).

Thus

() meom= v r(“ P ne s M),

| !
k! ey b

i+ +l =k

Since adx is nilpotent the right-hand side is O for k sufficiently large.
Hence
(ad —x)" (ad x)in
07N n-om) = T 7 (im0t
SN

i! i,

flexpad —x-x,®---®exp ad —x-x,,)
— (expad —x-/) (1,8 ®x,).

Thus we see that

expad —x-f=exp7(x)-f.

Now we have shown that xf =0, hence 7(x)f =0. Thus exp7(x)-f=f. It
follows that

expad —x-f=f.
Since this holds for all x € L with ad x nilpotent we deduce that
Fe(T"(L)ym)’

By Lemma 11.7 it follows that P € P"(L)°.
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The restriction (P) therefore lies in P"(H)". Let Ay, A,, ..., A, be the
weights of L(A) with A; =A. Then we have

M) O
p(x) = b xeH
o A(x)
A ()" 0
p(x)" = |
o A ()"

trp(x)" =AY (%) +- -+ A ().

Hence §/(P)=A7"+ --- + A}

We shall show that polynomial functions of this kind span P"(H)". In the
first place we know that H* is spanned by the lattice X of integral weights.
It follows that P™(H) is spanned by the set of monomials of degree m in the
integral weights. However, it is well known that the process of polarisation
can be used to express such a monomial as a linear combination of mth
powers. (For example the formula

AML=5 N +1) =30 - 50

expresses the monomial A;A, as a linear combination of squares.) Thus the
elements A" for A € X span P"(H). It follows that every W-invariant element
of P"(H) is a linear combination of elements of form

> wd)" AeX.

weW
Since each W-orbit of integral weights contains a dominant integral weight
we see that elements of form

Y w)"  Aext

weW
span P"(H).
Now we have §(P) =A}'+- - -+ A} where A; = A. A appears with multiplic-
ity 1 in the set {A,, ..., A,} and each w(A) also appears in this set. Moreover

this set is W-invariant, so is a union of W-orbits.
It follows from these facts that /(P) =",y w(A)™ + a linear combination
of terms Y, . w(w)™ for we X+ with w < A. There are only finitely many
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weights w € X with u < A. Therefore we may invert these equations and
express »_,.w W(A)™ as a linear combination of functions of the form (P)
coming from representations with highest weight u <A. Thus P"(H)Y is
spanned by functions of the form (P). Hence P"(H)" lies in the image
of . Since this is true for all m the image of ¢ must be the whole of P(H)".
Thus # is surjective.

We therefore have an isomorphism of algebras

W @ P(L)° — P(H)". O

11.3 The structure of the ring of polynomial invariants

In this section we shall prove a theorem of Chevalley which shows that the
ring P(H)" of W-invariant polynomials on H is isomorphic to a polynomial
ring in / variables over C.

We write I = P(H)" and define 6 : P(H)— P(H) to be the operation of
averaging over W. Thus

o(P) = |—;/| S w(P).

It is clear that O(P(H)) =1, that 6 acts as the identity on I, and that 6> =,
i.e. 0 is idempotent.

Let P(H)" be the set of polynomial functions with constant term 0, and
let IT=INP(H)*. Let P(H)I"™ be the ideal of P(H) generated by I*. The
elements of P(H)I' have form

PJ,+---+PJ,
with P,e P(H), J,eI*.
Lemma 11.11 Suppose J,, ..., J, are elements of 1 such that J, does not

lie in the ideal of I generated by J,,...,J,. Let P\, P,,...,P,€P(H) be
homogeneous polynomials such that

PJ,+Py,+ - +PJ,=0.
Then P, € P(H)I".

Proof. We shall show that J; does not lie in the ideal of P(H) generated by
Jy, ..., J;. Suppose this were false. Then we have

1, =0,0,+-+Q,J,  with Q,€P(H).
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Applying w e W we obtain
Ji=w(Qy) S+ +w(Q) Jy

and therefore

Ji=0(0,) L+ +0(Q) Iy

However, 6 (Q;) €1 and so J; lies in the ideal of I generated by J,, ..., J,.
This gives the required contradiction.

We now show that P, € P(H)I" by induction on the degree of the homo-
geneous polynomial P,.

If deg P, =0 then P, is constant. Since P,J,+---+ P,J, = O and J, is not
in the ideal of P(H) generated by J,, ..., J, this implies that P, = O. Thus
P, e P(H)I'" in this case.

Now suppose deg P, > 0. We recall that W is generated by its fundamental
reflections s, ..., s. In the W-action on H each 5 has a fixed point set
which is a hyperplane in H given by an equation H;= O where H; € P(H) is
a homogeneous polynomial of degree 1. We have

(s (P)) x=P; (s;(x)) = P,(x)

where H;(x) =0. Thus the polynomial s; (P;) — P; vanishes at all xe H for
which H; vanishes. It follows that

sj(Pi)_PiszPi

for some P, € P(H).

Since P; is homogeneous, s; (P;) is also homogeneous of the same degree,
hence s; (P;) — P, is homogeneous. Thus P; is also homogeneous with deg P; <
deg P,.

Now the relation

PJ+---+PJ =0
implies
Sj(Pl)jl+"'+sj(Pk)‘lk:0
and so
H;(PJ,+--+PJ)=0.
Since H; is not the zero polynomial this implies that

PJ,+---+PJ,=0.
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Since deg P, <deg P, we may deduce by induction that P, € P(H)I*. Hence
s; (P))—P, € P(H)I" also.

Now P(H)I* is a W-submodule of P(H), thus P(H)/P(H)I' is also a
W-module. We have

s;(P))=P, mod P(H)I*
and since W is generated by s, ..., s; it follows that

w(P,)=P, mod P(H)I"
for all we W. Hence

6(P,))=P, mod P(H)I".

Now P, is a homogeneous polynomial of positive degree, therefore 0 (P,) €
I'". In particular 0 (P,) € P(H)I* and so P, € P(H)I" as required. O

Now the ideal P(H)It of P(H) is generated by the homogeneous elements
of I of positive degree. By Hilbert’s basis theorem there is a finite subset
of this generating set which generates P(H)I*. Let I,,...,I, be a set of
homogeneous polynomials in [ such that [, ..., I, generates P(H)I" but no
proper subset generates P(H)I™.

Proposition 11.12 The polynomials I,, ... , I, are algebraically independent.

Proof. Suppose the result is false. Then there is a non-zero polynomial P in
n variables such that

P(,,....I1)=0.

We may assume, by comparing terms of a given degree, that all monomials
in 1,,...,I, which occur in P have the same degree d in x,,...,x; Let
P,=0P/dl;. Then

P (I,...,1,) i=1,...,n

> n

are elements of / and not all the P, are zero.

Let J be the ideal of I generated by P,, P,, ..., P,. We may choose the
notation so that P, ..., P, but no proper subset generate J as an ideal in /.
Thus there exist polynomials Q, ; € [ such that

Pl:ZQ”]P] l:m+1,,n
j=1
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Now each P; is homogeneous in x,...,x; of degree d —degl;. Thus, by
comparing terms of the same degree in x,, ..., x; on both sides, we may
assume that each Q, ; is homogeneous of degree deg P, —degP;.
Now P (I, ..., n) O thus dP/dx, =0 for k=1, ..., 1. Hence
" oP dl;
— dl, dx,
that is

3" Pal,/dx, =O0.

i=1

It follows that

ZPaI/axk+ Z ZQ” P;al,/9x, =0

i=m+1 j=1
that is
Y P\ L o+ Y Q;.01/dx, | =0
i=1 j=m+1
We now apply Lemma 11.11. P,, ..., P, are in [ and P, is not in the ideal

of I generated by P,, ..., P,,. Each of the polynomials

o fox,+ Y. Q.00/dx,  i=1,...,m

Jj=m+1

is homogeneous in x,, ..., x; of degree deg/, — 1. For
degQ;,=deg P;—deg P,=degl;,—deg1;.

It follows from Lemma 11.11 that

ol /ox,+ Y. Q;,01,/0x, € P(H)I*.

Jj=m+1
We now multiply this polynomial by x, and sum over k=1,...,/[. For a
homogeneous polynomial /; in xy, ..., x; we have, by Euler’s formula,

Z xk =degl;-I;.
Thus we have

degl,-I,+ > degl;-Q;,1;=) LR,

Jj=m+1 i=1
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where each R; € P(H)*. We note that all the terms on the left-hand side are
homogeneous polynomials of degree deg/,. Comparing terms of this degree
on the two sides we obtain

degl,-I,+ Y degl;-Q;\I;=) IR,
j=m+1 i

where the sum on the right extends over a subset of 1, ..., n not including
i=1, since I, R, has degree greater than deg /,. It follows that I, is in the ideal
of P(H) generated by I,, ..., I,. However, this contradicts the definition of

I, ..., I,. Thus the proposition is proved. |

Proposition 11.13 Every element of I is a polynomial in I, ... , 1

ne

Proof. 1t is sufficient to prove this for homogeneous polynomials in /. Let
J €I be homogeneous. We use induction on degJ, the result being clear if
degJ =0. Suppose degJ> 0. Then J € I'* and in particular J € P(H)I*. Thus
we have

J=PI,+--+P,1I,

for certain polynomials Py, ..., P,€ P(H). Since J, I, ..., I, are all homo-
geneous we may clearly assume that each P; is homogeneous also, with

deg P,=degJ —degI,.
Then we have

JZG(P1)11++6(PH)I)1

0(P)),...,0(P,) are homogeneous polynomials in / of degree less than
degJ. Thus they are polynomials in 7, ... , I, by induction, and so J is also.

O
Corollary 11.14 The algebra P(H)W =C|[I,, ..., 1,] is isomorphic to the

polynomial ring in n generators over C.

Proof. This follows from Propositions 11.12 and 11.13. Ul

The set 1,, ..., I, is called a set of basic polynomial invariants of W. We
now determine the number of invariants in a basic set.

Proposition 11.15 The number n of invariants in a basic set is equal to the
dimension | of H.
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Proof. Let K=C(x,,...,x,) be the field of rational functions in x,, ..., x,
over C. Also let k=C(I,...,I,) be the field of rational functions in
I, ..., 1, over C. Then we have inclusions

CckcCK.

Since x,;,...,x; are algebraically independent over C the transcendence
degree of K over C is given by

trdeg K/C=1.

Since 1,, ..., I, are algebraically independent over C, by Proposition 11.12,
the transcendence degree of k over C is given by

trdegk/C=n.
Since we have
trdeg K/C=trdegk/C+trdegK/k

we shall consider trdegK/k. Now K is generated over k by x,,...,x;.
However, each x; is an algebraic element over k. For the polynomial

[T (—w(x)

has x; as a root, and its coefficients are the elementary symmetric functions in
the w (x;) as w runs over W. These coefficients are W-invariants and therefore
lie in /. In particular this polynomial lies in k[f] and so x; is algebraic over k.
Thus K is generated by a finite number of algebraic elements over k and so

trdegK/k=0.
It follows that
trdeg K/C=trdegk/C,
that is n=1. U

Now the set [, ... , I, of basic polynomial invariants of W is not uniquely
determined. We show, however, that the degrees of these polynomials are
uniquely determined.

Proposition 11.16 Let I,,... .1, and I}, ..., 1] be two sets of basic poly-
nomial invariants of W in P(H). Then we may arrange the numbering so
that

degl,=degl! fori=1,... L
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Proof. Each of I{,...,1] is expressible as a polynomial in /j,..., I, and
conversely. Consider the matrices

(ar,/017)  (o1/31;).

These are inverse matrices, thus the determinant

det (01,/9I})
is non-zero. It follows that for some permutation o of 1,...,1
li[ ol 40
i=1 aIZT(i)
By renumbering /], ... , I; if necessary we may assume o is the identity. Thus
1
a1,
— #£0
e
and so d1;/d1! #0 for each i. This means that /;, as a polynomial in I}, ... , I},
involves I and so
degl;> degl..

This implies that

1 1
> degl, =Y degl].

i=1 i=1

By symmetry we must have equality. This implies
degl,=degl; for each i. O

We summarise the results of this section in the following theorem, due to C.
Chevalley.

Theorem 11.17 (a) The algebra P(H)" of W-invariant polynomials on H is

isomorphic to a polynomial ring in | variables over C.

(b) P(H)Y may be generated as a polynomial ring by | homogeneous invari-
ant polynomials 1, ... , I,

(c) The degrees d,,...,d, of I,...,1, are independent of the system of
generators chosen.

11.4 The Killing isomorphisms

In the preceding sections we have investigated the algebras P(L)¢ and P(H)"
of invariant polynomial functions on L and H respectively. Assuming again
that the Lie algebra L is semisimple we show now how to relate these algebras
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to algebras S(L)¢ and S(H)Y of invariants on the symmetric algebras of L
and H.
The action of G on the Lie algebra L may be extended to a G-action on
T(L) satisfying
Y ® - ®x,)=vx,Q® - Qyx, veG.

We then obtain an induced action on S(L) =T(L)/I since I is a G-submodule.
S(L)¢ is the subalgebra of all G-invariant elements of S(L). We shall relate
this to P(L)° by means of the Killing form.

We recall from Theorem 4.10 that the Killing form on the semisimple Lie
algebra L is non-degenerate. This implies that the linear map L — L* given
by x — x* where x*(y) = (x, y) is bijective. We wish to show that this is an
isomorphism of G-modules.

Proposition 11.18 Let ye€ G and x,y€ L. Then {7yx, yy) ={x, y). Thus the
adjoint group preserves the Killing form.

Proof. Since G is generated by elements exp ad z where z € L is such that
ad z is nilpotent, it is sufficient to show that

(expadz-x,expadz-y)={(x,y).
We recall from Proposition 4.5 that
([xzl, y) = (x, [2y])-
Thus (adz-x, y) =(x, ad—z-y). Iterating we obtain
((adz2)'x, y)=(x, (ad —2)"y).

Now we have

_ (adz)® (ad 2)*
exp adz_1+adz+T+ R T
for some k, since ad z is nilpotent. Hence
(expadz-x, y)={(x, expad—z-y)

and so

(exp adz-x, exp adz-y) =(x, y). O

Corollary 11.19 The Killing map L — L* is an isomorphism of G-modules.
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Proof. We must show that (yx)* =yx* for all ye G, x€ L. We have

(y0)*(y) = (yx, yy=(x, vy 'y)=x" (v 'y) = (yx*) (7).

Thus (yx)* =yx* as required. |

The Killing map L — L* induces an isomorphism T(L) — T (L*) and then
an isomorphism S(L) — S (L*) in an obvious way. This is again an isomor-
phism of G-modules. There is therefore an isomorphism between S(L)° and
S(L*)°. We recall that S (L*) = P(L) and so obtain a Killing isomorphism of
algebras S(L) — P(L) which induces a Killing isomorphism S(L)¢ — P(L)°
between the subalgebras of invariants.

We now consider the action of the Weyl group W on the Cartan subalgebra
H of L. We recall from Proposition 4.14 that the Killing form of L remains
non-degenerate on restriction to H. Thus the map H — H* given by x — x*
where x*(y) = (x, y) for all y € H is bijective.

Proposition 11.20 The Killing map H— H* is an isomorphism of
W-modules.

Proof. We have

(wh)*x={(wh, x)=(h,w'x) =h* (w™'x) = (wh*) x for all x € H.
Hence (wh)* =wh* as required. O

The Killing isomorphism H — H* induces an isomorphism T(H) — T (H*)
and then an isomorphism S(H) — S(H*). This is again an isomorphism of W-
modules. Since S (H*)= P(H) we obtain a Killing isomorphism of algebras
S(H) — P(H) which induces an isomorphism S(H)" — P(H)" between the
subalgebras of invariants.

We now consider the relation between S(L) and S(H). We recall that
L may be identified with a subspace of S(L) and that L has a triangular
decomposition

L=N"@®H®N.

Let K be the ideal of S(L) generated by N and N~. Then we have S(L)/K
isomorphic to S(H). Let 1 : S(L) — S(H) be the natural homomorphism given
in this way.
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Proposition 11.21 We have a commutative diagram of algebra homomor-
phisms

S(L) > P(L)
n v ¥ v
S(H) — P(H)

where «, 3 are the Killing isomorphisms, s is restriction from P(L) to P(H),
and m is projection from S(L) to S(H).

Proof. We must show a(Q)=Ln(Q) for all Qe S(L). It is sufficient to
prove this when

T, T § st 13
Q=f5 ... fo b . hlef .. .ep

where ®t={B,,..., By}

If r,=0 and #,=0 for each i then n(Q)= Q. Moreover B(Q)=a(Q).
Thus the diagram commutes.

If not all the r; and 7, are O then n(Q) = O. Thus Bn(Q)= 0. We have

a(Q)=«a (fﬁl)rl . (fBN)rN ah)...a(h)"a (eﬁl)t' - (eBN)tN.

Therefore, for x € H we have

(aQ)x:(fB1 , x)r‘ ) "(fBN’ x)rN (hy, x)™ .. .(hll , x)sl (eﬁl , x)tl .. .(eBN, x)tN )

This is 0 since (N~, H)=0 and (N, H)=0, and some r; or ¢, is non-zero.
Thus the diagram commutes in this case also. |

Corollary 11.22 We have a commutative diagram of algebra isomorphisms

S(L)¢ -5 P(L)©
i i ¢ v
S(H)" Y P(H)"

Proof. We have seen that the Killing isomorphisms «, 8 map S(L)° to P(L)°
and S(H)" to P(H)Y, respectively. We also know from Theorem 11.10 that
i : P(L)° — P(H)" is an isomorphism of algebras. Thus 7 acts on S(L)€ in
the same way as B~ 'ya. Hence m : S(L)° — S(H)" is an algebra isomor-
phism.

We note by Theorem 11.17 that the four algebras S(L)¢, P(L)°, S(H)Y,
P(H)Y are all isomorphic to the polynomial algebra C[z,, ..., z].
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11.5 The centre of the enveloping algebra
The centre Z(L) of 1I(L) is defined by
Z(L)={zel(L) ; zu=uz forall uell(L)}.

Proposition 11.23 The centre Z(L) acts on each Verma module M(A) by
scalar multiplications.

Proof. Let m, be the highest weight vector of M()). Let z€ Z(L) and he H.
Then

h(zmy) =z (hmy)=A(h)zm,.

Thus zm, € M(A),. Now the A-weight space of M(A) is 1-dimensional — in
fact M(1), =Cm,. Hence

zmy=¢&m, for some £ €C.
Now let u € 11(L). Then we have
z(umy) =u(zmy) =&Eum,.

Since M(A)=1U(L)m, we see that z acts on M(A) as scalar multiplication
by &. O

We write x,(z) =§. Thus x, : Z(L) — C is a 1-dimensional representation
of Z(L). x, is called the central character of M(\A). We shall show how to
determine this central character.

We consider 1I(L) as an L-module, as described in Section 11.1. The
L-action on 11(L) is given by

X-U=Xu—ux xeL,uell(L).
(L) has basis
fo o fa . h eg]...e,'B”N
where @ ={B,, ..., By}. If x€ H we have
x-fg o fg Ry .hyeg ...ep =(—rBi—--—ryBy
F0B A B (G fe Ry LB ey el

Thus fg ...fg" W' ...h egl...egv is a weight vector with weight
(ty=r) By 4+ (ty —ry) By
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We consider the zero weight space 11(L),. This has basis f ... fs"
Bk ey ..e;NN where (1, —r,) B, +---+(ty —ry) By =0. We have

W(L)y={uel(L) ; xu—ux=0  for all x<€ H}

thus (L), is a subalgebra of 11(L). It is clear that Z(L) C U(L),.

Proposition 11.24 (i) (L) NNW(L),=N"U(L)NU(L),=K.
(i1) The subspace K of (i) is a 2-sided ideal of 1(L),.
(iii) N(L)o=K S U(H).

Proof. (i) W(L)N is spanned by the basis vectors of 11(L) with some

t;>0. N"U(L) is spanned by the basis vectors with some r;>0.

U(L)NNU(L), is spanned by the basis vectors of (L) with Y} #,8,=

> rB; and some t;>0. N-U(L)NU(L), is spanned by the basis vec-

tors of U(L) with Y #,8,=> r,3; and some r,>0. These are clearly

equal.

(ii) W(L)NNU(L), is clearly a left ideal of 11(L), and N~U(L)NU(L), is
a right ideal of 11(L),. Thus K is a 2-sided ideal of 11(L),.

(iii) U(H) is spanned by the basis vectors with all ;=0 and all 7, =0. This
shows that 11(L), is the direct sum of its subspaces K and 11(H). O

Let ¢ : 1(L),— U(H) be the projection map obtained from the decom-
position

W(L)y=K ®1(H).

Since K is a 2-sided ideal of 1I(L),, ¢ is a homomorphism of algebras. ¢ is
called the Harish-Chandra homomorphism.

We can now determine the central character y,. The weight A € H* deter-
mines a 1-dimensional representation of 11(H), also denoted by A.

Theorem 11.25 The central character x, : Z(L)— C is given by x,(z) =
AMd(z)) where ¢ is the Harish-Chandra homomorphism.

Proof. We have
U(L),=W(L)NNI(L),) ®U(H)
and Z(L) cU(L),. Let z€ Z(L). Then we can write

z=un +- -+ un +¢(z)
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where u; € (L) and n; € N. Thus
zmy = (un, +- - +un+ ¢ (z)) my
= M(2))m,
since Nm, = O and ¢(z)m, =A(¢(z))m,. Thus x,(z) = A(¢(2)). O

We have seen that the Harish-Chandra homomorphism maps Z(L) into
U(H). Since the Lie algebra H is abelian we have (H)=S(H). We shall
show that by combining the Harish-Chandra homomorphism with a ‘twist-
ing homomorphism’ we get a homomorphism from Z(L) into S(H) with
very favourable properties. The twisting homomorphism 7 : S(H) — S(H) is
defined as follows. We recall that S(H) is a polynomial algebra over C with
generators h, ..., h;. Thus there is a unique algebra homomorphism

T: S(H)— S(H)

such that 7 (h;) =h; — 1. 7 is in fact an automorphism of algebras. Its inverse
is given by 771 (b)) =h; + 1.
Let p € X be the element of the weight lattice given by

p=w+ - to.

Thus p is the sum of the fundamental weights. We recall from Section 10.3
that

w,;(h)=1 w; (h;)=0 if j#i.

Thus p (h;)=1 foreach i=1,..., [
Now any element A € H* extends to a 1-dimensional representation of S(H).
A—p is also a 1-dimensional representation of S(H). We have

AT (hi)=A(h;—1)=(A—p)h;.

Since AT and A—p are 1-dimensional representations of S(H) and the #,
generate S(H) we have

AT(Q)=(A—p)(Q) for all Q € S(H).
The homomorphism
Tp : Z(L)— S(H)

is called the twisted Harish-Chandra homomorphism. We wish to show
that the image of Z(L) under the twisted Harish-Chandra homomorphism lies
in S(H)". To do so we first need a result on Verma modules.



11.5 The centre of the enveloping algebra 229

Proposition 11.26 Let A € H* and M(A) be the corresponding Verma module
with highest weight vector m,. Suppose (A+p) (h;) € Z and (A+p) (h;) >0
for some i. Let

.,
Then the submodule of M(A) generated by v is isomorphic to M(w) where
p+p=s(A+p).

Proof. We recall from Theorem 10.6 that there is an isomorphism of
U (N~)-modules between 11 (N~) and M(A) given by u— um,. Since
FAHPU) 20 in 1W(N-) we see that vs£0 in M()). Since m, € M(A), we
have ve M(A), where

p=A=(\+p)(h)a.
Thus we have

p+p=A+p)—(A+p)(h)a;=s;(A+p).

We shall show that Nv= O. It is sufficient to show that ev= Oforj=1,...,L
If j#i we have

eu= e, [Py = fOH0D gy g
If j=i we have
e = e, Oy
= £ e 4 (A p) () £ (hy = (X4 p) () = 1))m,
= (A+p) () fP7N A () = A (hy) = 1+ 1) my =0.

Thus Nv=0.
Let V be the submodule of M(A) generated by v. Since Nv= 0 and h;v=
p(h)vfori=1,..., [ thereis a surjective homomorphism of 11(L)- modules

from M(w) into V given by
um, — uv uell(N7).

(See Proposition 10.13.) We consider the kernel of this homomorphism. Let
u €l (N7) be such that uv=0. Then

ufi(AJrP)(h[)m)‘ —=0.

Since uf ") € 11 (N-) this implies that uf* """ =0. Since f**”") =0
and 1(L) has no zero-divisors we have u=0. Thus our homomorphism is an
isomorphism and so V is isomorphic to M(u) O
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Proposition 11.27 The twisted Harish-Chandra homomorphism t¢ maps
Z(L) into S(H)Y.

Proof. We must show that 7¢(z) € S(H)" for all z€ Z(L). Since W is
generated by s,, ..., s; it will be sufficient to show that

5:(1(2)) =7¢(2).

Since S(H)=P (H*) it will be sufficient to show these elements take the
same value for all A € H*, i.e. that

A(s;(td(2))) = A7d(2)) for all A€ H*.

In fact it will be sufficient to prove this for elements of H* of the form A+ p

where A € X* is dominant and integral. For such weights form a dense subset

of H* in the Zariski topology, for which the closed sets are the algebraic sets.
Thus suppose A € X*. Then we have

(A+p)(7(4(2))) =A(¢(2)) = xa(2)

using Theorem 11.25 and the definition of 7. Similarly we have

(A+p) (5:(1(¢(2))) = (u+ ) (7($(2))) = (9 (2)) = X, (2)

where s;(A+p)=pn+p.

We now apply Proposition 11.26. Since A€ X+ we have A(h;) >0, so
(A+p) (h;) > 0. Thus the Verma module M(A) contains a submodule isomor-
phic to M(u). Now ze€ Z(L) acts on M(A) as scalar multiplication by y,(z)
and on M(u) as scalar multiplication by x,(z). Since M(u) is isomorphic to
a submodule of M(A) we must have

X\ (2) = x,,(2)-

Thus
(A+p)(7(d(2))) = (A+p) (si(7(¢(2))))
and hence
7($(2)) = s5:(7(¢(2))).
Thus 7¢(z) € S(H)" as required. O

In fact we shall show that the twisted Harish-Chandra map
¢ : Z(L)— S(H)"

is an isomorphism of algebras.
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To see this we first recall the operation 6 : S(L) — 11(L) of symmetrisation
which was shown in Proposition 11.4 to be an isomorphism of L-modules.
Now the adjoint group G acts on both S(L) and 11(L). For the G-action on
L can be extended to a G-action on T(L) as described in Section 11.4 and
these induce G-actions on the quotients S(L) and 1I(L). Suppose x €L is
such that ad x is nilpotent. Then exp ad x € G. Let x induce the linear maps
a(x) on S(L) and B(x) on (L). The definition of the G-actions then shows
that exp ad x acts as exp a(x) on S(L) and as exp B(x) on 1I(L). Since 0 is
an isomorphism of L-modules we have

Oa(x) =B(x)6.

It follows that

for all i,

RGN
i! i!
and therefore that

Oexp a(x) =exp B(x)6.

(Note that both a(x) and B(x) are nilpotent.) Since G is generated by such
elements exp ad x it follows that 6 is an isomorphism of G-modules. We
deduce that 6 restricts to an isomorphism between S(L)° and 11(L)°.

Proposition 11.28 11(L)° =Z(L).

Proof. We first note that Z(L) C 1(L)®. Let z € Z(L). Let x € L be such that

ad x is nilpotent. Thus exp ad x € G. Since z € Z(L) we have
x-z=xz—2zx=0.

Hence B(x)z=0. Thus

expadx~z=expB(x)-z=<1+B( )+'8( »)° ~>z=z.

Thus z is invariant under exp ad x. Since such elements generate G we have
zel(L)C.

Conversely we show that 11(L)° C Z(L). Let u e 1(L)°. Thenexpad x-u =
u for all x € L with ad x nilpotent. Suppose (ad x)’ #0 but (ad x)"*! =0. We
choose elements ¢, ... , &, € C which are all distinct. Then ad (¢;x) is also
nilpotent and

expad (¢§x)=14ad(éx)+---+ % (ad (¢,x))'

t
=1+&(adx)+-- -+t—;'(adx)’.
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Now the determinant

i i
1 ¢ TR
3 5
1 & 5 1
- :2!3!...I!E(€i_§j)
1 &, §'2+1 @
2! 1!
is non-zero. Thus the vector (0, 1, 0,...,0) is a linear combination of the
rows of the determinant. Thus there exist 1, ..., n,, € C such that

adx=myexp ad (£.)+- -+ 1, exp ad (£,4,%).

So adx-u=(m+---+m,,,)u. Since ad x acts nilpotently on u it follows
that 9, +---+m,,, =0 and that ad x - u=0. This means that xu — ux =0. This
holds for all xe L with ad x nilpotent, in particular for x=¢; and x=f,.
However, e,, ..., ¢, fi, ..., f; generate 11(L), together with 1. It follows that
xu—ux=0 for all xell(L), thatis ue€ Z(L). ([

Thus the operation 6 of symmetrisation gives an isomorphism of vector
spaces

6 : S(L)°— Z(L).
Now we also have an isomorphism of algebras
n: S(L)’— SH)"

given in Corollary 11.22. Combining these maps we obtain an isomorphism
of vector spaces

n0~"' . Z(L)— S(H)".

Thus we have two maps n0~! and 7¢ from Z(L) into S(H)"Y. The first is an
isomorphism of vector spaces and the second a homomorphism of algebras.
We shall compare these maps, using the structure of Z(L) and S(H) as filtered
algebras.

We recall from Section 11.1 that 11(L) may be regarded as a filtered algebra
with filtration

Ug(L)ycu,(L)ycU,(L)yc---.
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We define Z,(L)=Z(L)N1,;(L). This makes Z(L) into a filtered algebra.
S(H) also has a natural structure as a filtered algebra, where S;(H) is the
subspace of S(H) generated by all products a,a,...a;, j <i, where a, € H.
We also define

(S(H)™),=S(H)" NS,(H).

This makes S(H)" into a filtered algebra.
We shall make use of the following lemma on filtered and graded algebras.

Lemma 11.29 Let A=J.y A; and B=\J;5( B; be filtered algebras with

AyCA CA,C---

and
ByCB,CB,C---.
Let
GTA=ABA /A DA/A D
and

grB=B,®B,/By®B,/B &

be the corresponding graded algebras. Let a : A— B be a linear map such

that a (A;) C B, for each i. Then:

(a) Thereis alinear map gr a: gr A — gr B satisfying gra (A,_,+a;) =B,_, +
a(a;) for a; € A,

(b) If a (A;) =B, for each i and «a is bijective then gr a is bijective.

(c) If gra is bijective then a is bijective.

Proof. (a) We must show that gra:A;/A,_, — B;/B,_, is well defined.
Suppose A;_+a;,=A;_+a, where a;,a,€A, Then a;,—a,cA,_;, so
a(a;—a;)eB;_,. Thus B, +a(a;))=B;_,+a(a)) and so gra is well
defined.

(b) Suppose now that «(A;)=B,; for each i and that « is bijective. Then
the induced map groa : A;/A,_, — B;/B,_, is bijective. It follows that
gra : grA— gr B is bijective.

(c) Suppose conversely that gra : gr A— gr B is bijective. This implies that

gra @ Ai/A,,— Bi/B;_,

is bijective for each i. We show first that « is surjective. B, lies in the
image of o since o : Ay, — B, agrees with gra : Ay, — B,. Assume by



234 Further properties of the universal enveloping algebra

induction that B,_; lies in the image of a. Let b; € B;. Then there exists
a; € A; such that

B +a(a;)=B;,_+b;.

Thus b, — a(a;) € B;_,. Hence b, —a (a;) lies in the image of «, thus b,
does also. Thus « is surjective.

Now let ae ker a. If ae A, then a=0 since o agrees with gra on
A,. Otherwise there exists i >0 such that a€ A; but aA;_,. But then
A,_;+a#0whereas gra (A;_, +a) =0, a contradiction. Hence ker a = O
and so « is bijective. |

Theorem 11.30 The twisted Harish-Chandra map T¢ gives an isomorphism
of algebras Z(L) — S(H)".

Proof. We have maps 7¢ : Z(L)— S(H)Y and n6~': Z(L)— S(H)".
Those induce maps

gr(r¢) : grZ(L) — gr S(H)"

gr(nd™') : grz(L)— grS(H)".

We shall show that gr(r¢)) =gr (n6~"). Let z€ Z(L). Then there exists d
such that ze Z,(L) but z¢Z,_,(L). Then z has the form

‘ o ;
7= > E@, 8, 0f - Sl hi' .. hileg ...ef
Yritlsitrn=d

where ®t={B,,..., By} and &(r,s,t) € C. Then

d(2)= > &(0.s,0)h) ... k)

Ysi=d

o)=Y £(0.5,0) (h—1)"...(h=1)"

Yosi<d
07 ()= &t s, Off ... fiihy ... heg ...eq  mod S, (L)
n0~'(z)=3_&(0.s,0)h' ... h}' mod S,_,(H).
Now it is apparent that
T$(z)=¢(z) mod S, ,(H)

hence

T$(z)=n0""(z) mod S, ,(H).
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Since 7¢(z) and 6! (z) both lie in S(H)Y they satisfy 7¢(z)=n0""'(z)
mod (S(H)"), . Thus gr(r¢)=gr (n6~").
Now the maps 0! : Z(L)— S(L)° and 0 : S(L)° — S(H)" satisfy

0~ (Z,(L)) = (S(L)°),
n(S(L)°), = (™), -
Thus we have
n0~' (Z,(L)) = (S(H)"),.
We may now apply Lemma 11.29. The map
n0~" . Z(L)— S(H)"
is bijective and satisfies
n0~' (Z,(L)) = (S(H)"),
for each d. Hence
ar (nH’l) : grZ(L)— gr S(H)Y
is bijective. This is turn implies that
¢ : Z(L) — S(H)"

is bijective. Since 7¢ is known to be a homomorphism of algebras, it must
therefore be an algebra isomorphism. |

We can deduce from this theorem a necessary and sufficient condition for
two central characters y,, x,, to be equal.

Theorem 11.31 Let A, u € H*. Then x, = x,, if and only if u+p=w(A+p)
for some weW.

Proof. Suppose first that w+ p=w(A+ p). Then, for z€ Z(L), we have
Xu(2) = w(@(2)) = (w(A+p) —p)(¢(2))
= w(A+p)(7((2))) = (A+p) (W' 7($(2))) -
Now 7¢(z) € S(H)" and so is fixed by w~!. Hence
Xu(2) = (A+p)(1($(2))) =A($(2)) = xa (2).
by Theorem 11.25. Hence x,, = X;-
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Suppose conversely that .+ p # w(A + p) for all w € W. Then the finite sets
W(A+p) and W(u+ p) do not intersect. Therefore there exists a polynomial
function Q € P (H*) such that Q takes values 1 on W(A+ p) and values 0 on
W(+p). We have

QeS(H)=P(H).

1
By replacing Q by W 3 ew w(Q) we may assume Q lies in S(H)Y.

We now make use of the isomorphism 7¢p : Z(L) — S(H)". There exists
z€ Z(L) such that 7¢(z) = Q. Thus we have

X2 (2) = AM(@(2) = (A+p)(79(2)) =(A+p)0=1
X (2) = u(d(2)) = (1 +p)(7d(2)) = (u+p) 2 =0.

Hence x, # x,,- |

A second deduction from Theorem 11.30 is the following important
result.

Theorem 11.32 The centre Z(L) of U(L) is isomorphic to the polynomial
ring over C in | variables, where L is semisimple and | =rank L.

Proof. This follows from Theorem 11.30, Corollary 11.22 and Theorem 11.17.
U

As an example we consider the Lie algebra L of type A,. The algebra L
has a basis f, h, e with

[he]=2e, [hfl==2f. [efl=h.
The algebras
S(H)", P(H)Y, S(L)?, P(L)?, Z(L)

are all isomorphic to the polynomial ring over C in one variable. We find a
generator of each of these algebras.

We have W = (s) where s(h) = —h. Thus S(H)" is the polynomial algebra
generated by 4.

We now consider the isomorphism S(L)® — S(H)" given by projection.
The element of S(L)¢ mapping to 42 is homogeneous of degree 2 in e, ki, f
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and has weight 0. It must therefore have form h? 4 &fe for some £ e C. We
determine the constant £. We have

ade-h=—2e, ade-f=h, ade-e=0.
Thus
(expade)h=h—2e
(expade)f=f+h—e
(expade)e=e
(expade) (B> +&fe) = (h—2e)* +&(f +h—e)e
=W+ &fe+(E—Ahe+(4—§)e’.

Thus expad e fixes h* + £fe if and only if £ =4. Hence S(L)¢ is the polyno-
mial ring generated by h?+4fe.

Next we consider the Killing isomorphism L — L*. L* has basis f*, h*, e
dual to f, h, e, thatis y*(x) =1 if y=x and y*(x) =0 if y # x. Now the Killing
form satisfies

(h,hy=8, (f.e)=4, (h,f)=0,(h,e)=0, (e,e)=0, (f,f)=0.

Thus under the Killing isomorphism L — L* we have e— 4f*, h— 8h*,
f — 4e*. This induces a map S(L)— P(L) under which h?+4fe maps to
64 (h**+ f*e*). Thus P(L) is the polynomial ring generated by h*>+ f*e*.

We also have a map S(L)¢ — Z(G) given by symmetrisation. Under this
map h?+4fe is transformed into

*

h*+2fe+2ef =h>+2h+4fe.

Thus Z(L) is the polynomial ring generated by h*+2h+4fe. We also note
that the element of Z(L) mapping to h* € S(H)" under the twisted Harish-
Chandra homomorphism is > +2h+ 144 fe.

Thus we have:

S(H)" =C[r’]

P(H)" =C[h*]

S(L)? =C[h*+4fe]
P(L)’ =C[h*+f*e"]
Z(L)=C[h*+2h+4fe]
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11.6 The Casimir element

We now introduce an element of the centre Z(L) of 1I(L) which has useful

properties. Let x,,...,x, be a basis of L. Since the Killing form of L is
non-degenerate by Theorem 4.10 there is a unique dual basis y,,...,y, of L
satisfying

(x,-, yj)=5,-j-

Let c € I(L) be defined by
c=)_xy;.
i=1

Proposition 11.33 The element c is independent of the choice of basis
Xiy...,X, of L.

Proof. Suppose x|, ..., x, are a second basis of L and yj,...,y, are the
dual basis. Let

! /
=) 03X yi=>, TijYj-
J J
Then we have

<x;, J’;> = <Z O Xg» Z le)’l> = Z O Tjr (X 1) = Z O Tjg-
k I k.1 k

Hence if 0= (0;;), 7=(7;;) we have o7'=1. We then have

ZXEYQ = Z (Z Ui_/xj) (; Tikyk> = Z <Z U'ij"'ik) XV

i ik \ i
Now o'r=1s0 3, 0,7, =8 . Hence 3, xjy; =3, x;y;. O
Definition c is called the Casimir element of 1(L).
Proposition 11.34 c lies in the centre Z(L) of U(L).
Proof. 1t is sufficient to show that cx = xc for all x € L. We have

X = inyix = Z x; (xy; + [yix])

= Z (Cex; + [x;x]) yi 4+ x; [vix])

= xc+Z ([x;x] i+ x; [yix]) -
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Let [xx]=3; a;;x; and [y,x]=3;B;;y;. Since ([x;x], y;) = (x;, [x)’j]> we

have a;;=—@,. It follows that
Z ([x:x]y; +x; [yix]) = Z Z ;X y;+ Z ZBijxiyj
i i J i
= (a;+Bj;) x;y,=0.
ij

Thus cx=xc and so c€ Z(L). UJ

We now recall from Proposition 4.18 that for each e, € L, we can find
fo€L_, such that [e,f,]="h,, and that we then have (e,, f,)=1. Since
the Killing form of L remains non-degenerate on H we may choose a basis
Ky, ..., h, of H and there will be a dual basis ], ..., h] satisfying

(H, W) =8,,.

i J

Then iy, ..., h}, e, (e ®"), f, (e € D) are a basis of L and its dual basis
is

S U (ae¢)+), e, (aeqﬁ).
Using this pair of dual bases we have

c=hh) 4+ Hh+ Y e fot D falo

aedt aedt

Thus we obtain:

Proposition 11.35 The Casimir element of Z(L) is given by

1
c=) hihl+ 3 Hy+2 ) fae,
i=1

acdt acdt

where h, ..., hj; hi, ..., h] are any pair of dual bases of H. O

The properties of the Casimir element will be useful as we explore further
the representation theory of L.

Proposition 11.36 Let c € Z(L) be the Casimir element. Then

X\ (©)=(A+p, A+p)—{p, p).

Thus ¢ acts on the Verma module M(A) as scalar multiplication by
(A+p, A+p)—(p, p)-
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Proof. We consider the action of ¢ on the highest weight vector m, of M()).
By Proposition 11.35 we have

I
cm, = <Zh;h;/+ SR 42 Y faea> m,
i1

aedt acdt

1
= <ZA(h;)A(h;’)+ > A(h;)) my

acdt

Now > e A (Hy) =aear (A @) = (A, X2 Qpeq) =2(A, p).
Let i, € H be the element corresponding to A € H* under the isomorphism
defined by the Killing form. Thus

A (hy) = (), hy)
() = (), BY).
We express /), in terms of the dual bases i}, ..., hjand h{,..., h] of H. Let

hy=ahi+---+ah
hy =bh}+---+bh].
Since (h;, h) =4,; we have
(W\, h)y =a,b;+---+ab,
(W), k) =b, (W, hl)y=a,.
It follows that

1 1
2 AR A(R]) =3 (), h) (ki BTy = (R, By ) = (A Q).

i=1 i=1

Hence
emy = (LX) +2(A, p))m,
= ((A+p, A+p)—(p, p))m,.
Thus the value of the central character y, at c is given by

X\ (©)=(A+p, A+p)—{p,p). 0
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Character and dimension formulae

12.1 Characters of L-modules

Let V be an L-module where L is semisimple. We say that V admits a
character if V is the direct sum of its weight spaces and each weight space
of V is finite dimensional. Thus we have

V=&V, dimV, finite
AeH*

where V, ={veV ; hv=A(h)v for all he€ H}. The character of V is then
the function ch V: H* — Z given by

(chV)(A)=dim V,.

We see that if V admits a character then the structure of V as an H-module
is determined by ch V.

In this chapter we shall obtain formulae for the characters of the Verma
modules M(A) for A € H* and for the finite dimensional irreducible modules
L(A) for e XT.

We first identify a certain ring of functions H* — Z in which it will be
convenient to work. Given a function f : H* — Z we define Supp f, the
support of f, to be the set of A€ H* for which f(A)7#0. For example the
support of the function ch M(A) is the set of all uw € H* which have form

H=A—na,— - —nuo n, €z, n;>0.

1

This follows from Theorem 10.7. We define

S(A) =Supp(ch M(A)).

241
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Definition 9 denotes the set of all functions f : H*— Z such that there
exists a finite set A, ..., A, € H* with

SuppfCS(A)U---US(A,). O

It is clear that ch M(A) for A€ H* and chL(A) for Ae Xt lie in R. It is
also clear that if f, g€ then f+ g €N, since

Supp(f +g) C Supp fUSuppg.

Thus N is an additive group. We can also define a product on h which makes
it into a ring. Given f, g€ N we define fg : H* — Z by

(W)= > flwe®).

n,veH*
pAv=A

We note that the sum is finite, so that fg is well defined. For we may assume
M€ Supp f and v € Supp g. Suppose

Supp f C S (u)U---US (wy)

SuppgC S(v)U---US(v,).

If weS () and v€S (v;) we have
M=y — ey m €L, m=0
V=V, —nay —— o n,€Z, n;=>0.
Since w+v=A we have
A=(w;+v)—ra,——ra,  r€lrn>0

where r, =m,+n,. However, given i, j and A the non-negative integers
my, n, with m, +n, =r, can be chosen in only finitely many ways, thus our
sum is finite. Also we see that Supp(fg) C U, ;S (u;+v;), hence fge M. It is
also readily checked that (fg)h = f(gh), thus i becomes a ring.

For each A € H* we define ¢, : H*— Z by ¢,(A) =1, ¢,(n) =0 if w#A.
Thus e, is the characteristic function of A. All such characteristic functions
lie in M. In fact if f is any function in N it is convenient to write

f= Z f(N)e,
AeH*

even though the sum may be infinite.
We note that eye, =e,,-
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Lemma 12.1 Suppose that the L-module V admits a character and let U be
a submodule of V. Then both U and V/U admit a character, and

\%
chU+ch—=chV.
+ U

Proof. We have V=P, V,. Also U, =UNV,. Thus the sum )_, U, is direct.
Moreover U=)", U, since if ue U and u=7) u, with u, eV, then u, €U,
as in the proof of Theorem 10.9. Hence we have

U= EBUA
A
with U, CV,, so U admits a character. We also have
V/U:® (V/\/UA)
A

and V, /U, can be identified with the A-weight space (V/U),. Thus V/U
admits a character. Finally we have

(chU)(A)+(ch (V/U))(A) =dim U, +dim (V,/U,)=dim V,.
Thus chU+ch (V/U)=chV. UJ

Lemma 12.2 Suppose V,,V, are L-modules which both admit characters
such that chV, and chV, lie in R. Then V,®V, admits a character and
ch (V,®V,)=chV,chV,.

Proof.  Since V,,V, admit characters we have V,=€p,(V;), and
V,=,(V,),. Hence

Vi®V,= @ ((VI)A ® (Vz)”) .

A

V, ® V, may be made into an L-module by means of the action
x (v, ®vy) =xv, v, +v, R xv,
extended by linearity. In particular, if x € H, v, € (V}), and v, € (V;),, we have
x (v ®vy) = (A(x) + p(x))v; ®,.
Thus (V),® (V2), C(V,®V,),,,,. It follows that

12 ®V2:@(V1 ®V2)V
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where (V,®V,), = au ((V)),®(V,),). Thus V, ® V, admits a character.
Ap=v
Moreover we have

(ch(V;®V,)) (v) =dim (V,®V,), = Z dim (V}), dim (Vz)“

A
Ap=v

= > (chV))(A)(chV;) (1) =(chV,ch V,) (v).
A
Au=v

Thus ch (V, ® V,) =ch V, ch V, as required. O

12.2 Characters of Verma modules

We now consider the character of the Verma module M(A) where A € H*.
We recall from Theorem 10.7 that

(ch M(A)) (u) =B (A—p)

where B(A—pw) is the number of ways of expressing A—u as a sum of
positive roots. Thus we have

chM(A) = Y BA—pe,= Y B(ve,,

neH* veH*
= Z B(v)e,e_, =e, Z V(v)e_,.
veH* veH*

We write ['=3", - B(v)e
have

. We have I"e 9t since Supp I’ C S(0). Then we

-V

chM(\)=e,T.

Lemma 12.3 T has an inverse in the ring N given by

I''=TJ] (1—e_y).
aedt
Proof. Let ®"={B,,..., By} Then R(») #0 if and only if there exist non-
negative integers ry, ..., ry such that v=r 8, +---+ryBy. In fact (v) is
the number of such sets (ry, ..., ry). Thus we have
I'= Z%(V)eﬂ/: Z €\ Bi——ryBy
v Fpyee sy =0

N
= Y eﬁﬁl ...erf’BN =11 <Z er'B[) )
i=1

Ty, ,ry=>0 ;>0
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This factorisation of I' in !N gives us the required result. For the element
l+e g+eg+---  of N

has an inverse 1 — e_g € M. Thus I'" has an inverse

I =[(1—ep)=[1 (1—e_,). O

i=1 aedt

This gives us a useful formula for the character of the Verma module M(A).

Proposition 12.4 ch M(A)=erp where A=e, [ cq+ (1 —e_,).
A

Proof. We have
ee, €.
hM(AN)=e =L ="
chM(A)=e, A A
by Lemma 12.3. Ul

The denominator A is an element of i which can be expressed in a number
of alternative ways.
We recall that p € X was defined by

p=w -+t o,
i.e. p is the sum of the fundamental weights. This element can also be

expressed simply in terms of the roots.

Proposition 12.5 p= % Y acat & Thus p is one half the sum of the positive
roots.

Proof. Let p’'= % > aca+ 0. We can express p’ as a linear combination of the
fundamental weights. Let

I
p'=>cw,  withceQ.
i=1

Now the fundamental reflection s; € W transforms «; to —a; and transforms
every other positive root to a positive root, by Lemma 5.9. Thus we have

s (p)=p —a;.

On the other hand we have
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by Proposition 10.18. This shows that s, (0;) = w;if i# jand s, (0;) =, —a;.
Thus we have
5, (p)=p —ca;.

Comparing this with the above formula for s, (p’) we deduce that ¢;=1.
Hence p’ = p as required. UJ

Corollary 12.6 A=e_,[[,cq+ (¢, — 1)

Proof. We have

A=e, [[ (I-e_)=¢, [] ea(ea—l)zep(l—[ ea) [T (ea—1)

acdt acdt acdt acdt

=e,ey, [ (e,—D=e_, [] (e,—1).

acdt acdt

There is a further useful expression for the denominator A. Before proving
it we shall need some information about the geometry of the action of the
Weyl group W on the Euclidean space V = H}.

12.3 Chambers and roots

We recall that the Weyl group is a finite group of isometries of the Euclidean
space V generated by the reflections s, for & € ®. We have

(@, v)

a veV.
(@, a)

s,(vV)=v—-2
Let
L,={veV; s,(v)=v}
={veV; (a,v)=0}

L, is the reflecting hyperplane orthogonal to the root @. We consider the
complement

V- UL,

acd

of the set of reflecting hyperplanes. This is an open subset of V. The con-
nected components of this set are called the chambers of V. Two points of
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V —UgeaL, lie in the same chamber if and only if they lie on the same side
of each reflecting hyperplane.

Let C be a chamber in V and 6(C) be the boundary of C. Then the
hyperplanes L, such that L,N&(C) is not contained in any proper subspace
of L, are called the bounding hyperplanes, or walls, of C.

Now let [T={«;, ..., «,} be a fundamental system of roots. Then the set

C={veV; {(a,v)>0 fori=1,...,1}

is a chamber of V. For if « is any positive root we have (a, v) >0 forall ve C.
Thus all elements of C lie on the same side of each reflecting hyperplane
L,. Thus C lies in V —J,eqL, and C is connected. Moreover any subset of
V —Ug4eaL, larger than C would contain an element v with («;, v) <0 for
some I, and so would be disconnected. C is called the fundamental chamber
corresponding to the fundamental system II. The bounding hyperplanes of C
are L, , ..., L, For L, N6(C) consists of all ve V such that (@;, v) =0 but
(aj, v)zO for j#i. Since e, ..., @, are linearly independent L, N6(C) is
not contained in any proper subspace of L, . On the other hand let « be a
positive root which is not fundamental. Then o =3",_, n;; with each n; >0
and at least two n; > 0. If ve L,N&(C) then

> ni{a;,v)=0

and so (¢;, v) =0 whenever n; > 0. Thus L,N&(C) lies in a proper subspace
of L,. Hence the bounding hyperplanes of C are L, , ..., L,,. In fact the set
M={a,,..., )} of fundamental roots may be characterised as the roots
orthogonal to the bounding hyperplanes of C which point into C, that is such
that «; lies on the same side of L, as C.

Now the Weyl group acts on V in a way which permutes the roots. It
therefore permutes the reflecting hyperplanes L, and so acts on V —J,coLq-
Since W is a group of isometries of V, W permutes the connected components
of V—geqpLq Thus the Weyl group W acts on the set of chambers of V.

Proposition 12.7 (i) Given any two chambers C,C' of V there is a unique

element we W such that w(C)=C".

(ii) The number of chambers of V is equal to the order of the Weyl group.

(iii) If C is a chamber in 'V its closure C contains just one element from each
W-orbit on V.

Proof. Let I be a fundamental system of roots and C be the chamber defined
by veC if and only if {(a;,v)>0 for i=1,...,[. Let C’ be any chamber
and let ve C’. We recall from Section 5.1 that II is associated with a total
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ordering > on V. We consider the set of transforms w(v) for we W and let
v be the one which is greatest in the above total ordering. Then we have

Hlav)

eIl
Tanay @

1

S0, () =0/ -

and since s, (v) <v' we must have (a;,v') > 0. This holds forall i=1, ..., [,
thus v/ € C. Now let v _w(v) Since ve C" we have v' € w (C’). Thus w(C ) is
a chamber which intersects C. However, the only chamber intersecting C is C.
Thus w (C’) = C. Hence any chamber C’ is in the same W-orbit as C. Thus W
acts transitively on the set of chambers. It follows that any chamber is associated
to some fundamental system of roots in the manner described above.

Now suppose w(C)=C. Then we have w(IT) =11 where II is the funda-
mental system determined by C, i.e. the set of roots orthogonal to the walls
of C and pointing into C. It follows that w (®*)=d*, so w makes every
positive root positive. Hence n(w)=0. It follows from Corollary 5.16 that
I(w)=0, i.e. w=1. Thus W acts simply transitively on the set of chambers.

It is a consequence of this that the number of chambers of V is equal
to |W|.

We now consider the closure C of a chamber C. Since each vector lies
in the closure of some chamber and W acts transitively on the chambers
each orbit of W on V intersects C. We must also show that if v, v, € C and
w (v,) = v, then v, =v,. We prove this by induction on /(w). It is clear when
I(w)=0, i.e. w=1. Thus we assume /(w) > 0. Then n(w) > 0 so there exists
a; €Il with w (a;) <0. Thus

0<(v;, ;) = (v, w(e,)) <0.

Hence (v, a;) =0 and s, (v;) =v,. But now ws, (v;)=v,. The only positive
root made negative by s, is @;. Thus the positive roots made negative by
w and ws,, are the same, apart from «;, which is made negative by w and
positive by ws, . Thus

n(w)=n (wsa,_) +1
and so
l(wsai) =l(w)—1

by Corollary 5.16. We can then deduce that v, = v, by induction, as required.
U

We shall now suppose that II is a fixed fundamental system of roots and
C is the corresponding fundamental chamber.
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Proposition 12.8 (i) ve C if and only ifv:Zﬁ:1 n;w; with n; >0 for all i.
(i) ve C if and only if v= 2521 n;w; with n; >0 for all i.

Proof. Since w, ..., w, are a basis of V we can write v=)_ n,w; for each
veV. Now veC if and only if {(@;,v) >0 for i=1,...,1. We recall from
the definition of the fundamental weights w,, ... , o, that

(0, 0,)=0  ifi#]
(o, w;) =2(e;, ;) .
Thus we have (q¢;, v) =2n;{q;, @;). In particular {«;, v) >0 if and only if

n; > 0. Similarly {«;, v) >0 if and only if n, > 0. The required result follows.
O

We show in Figures 12.1, 12.2 and 12.3 the chambers for the 2-dimensional
root systems A,, B, and G,.

a apt=w;tw,

Figure 12.1 Two-dimensional root system type A,
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Figure 12.2 Two-dimensional root system type B,
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Figure 12.3 Two-dimensional root system type G,
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Proposition 12.9 Suppose ® is the root system of a simple Lie algebra and
let C be the fundamental chamber.

(1) Suppose all roots in ® have the same length. Then there exists a unique
root 0,=Zﬁ:l a,a; in C. This root satisfies the condition that for any
root a:Zf;l k;a; we have k; < a,.

(i) Now suppose there are two root lengths. Then there are just two roots
I I
91=Za,~ai, 95=Zciai
i=1 i=1

in C. 6, is a long root and 0, is a short root. 0, satisfies the condition
that for any root a = Zﬁ:l k;a; we have k; < a;. (In particular c; <a,.)

0, is called the highest root and 0, the highest short root.

Proof. By Proposition 12.7 C contains just one root in each W-orbit on ®.
Now two roots lie in the same W-orbit if and only if they have the same
length. For roots in the same orbit obviously have the same length; but any
root is in the same orbit as a fundamental root, and any two fundamental
roots of the same length can be joined in the Dynkin diagram by a sequence
of fundamental roots all of this length. Two fundamental roots of the same
length joined in the Dynkin diagram obviously lie in the same W-orbit.

Thus in case (i) C contains a unique root 6, and in case (ii) C contains one
long root 6, and one short root 6.

We now introduce a partial order - on the set ®* of positive roots. Given

i i
0‘=Zmiai, B=Zniai
i=1 i=1

in &t we write a3 if m; > n; for each i. We consider maximal elements
of ®F with respect to this partial order. Let @ be maximal. Then {(«, @;) >0
for each i, as otherwise a+ «; would be a root higher than a. We also have
(@, ;) >0 for some i. Let @ =Y"!_, m,a;. We show that each m, > 0. Suppose
this is not so. Then there exist i,7 with m;#0,m, =0 and («;, ;) <O.
But then (o, ;) =Y";_; m;(a;, a;) <0, a contradiction. Hence each m, > 0.

We now show that @ is the unique maximal element of ®* with respect
to . Suppose if possible that 8 is also maximal and 87 «. Then a+ 3 & P.
Also a—B&®d, as a— B &P would imply a>B or B>a. Hence («, B) =0
by Proposition 4.22. But

<a’:8>:zmi (a;, 8)>0

i=1
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since each m; >0, each {(w;, 8) >0, and some {«;, B) >0. Thus we have a
contradiction. Hence « is the unique maximal element of d* with respect to .

Now a e C since (@, a;) >0 for each i. Thus @=6, or 6,. We wish to
show a=#0,. To do so we show that if @ € ®NC then (', &) < (e, ). By
the maximality of o, « — @' is a non-negative combination of «, ..., ; and
so (a—a’,x) >0 for all xeC. In particular we have (a—a', a)>0 and
(a—a',a') > 0. Hence

(@, a)z(a,a) = (. o).

It follows that & =6,. Thus 6, is the unique maximal element of ®* with
respect to > and the result is proved. |

Definition The number h=1+ht0, is called the Coxeter number of L. It
is known to be equal to the order of the element ss,...s;€ W, and also
to |®|/|I1|. (See, for example, Bourbaki, Groupes et algébres de Lie,
Chapters 4, 5, 6.) |

In order to prove Weyl’s denominator formula we shall need some prop-
erties of the transforms w(p).

Proposition 12.10 (i) w(p) =p—>_,cq @ for some subset Q) of ®™.

(ii) Given any subset Q of ®* the vector p—Y_ ,cq & either lies in one of
the reflecting hyperplanes L, or has the form w(p) for some we W.

(iii) If p— Y 4eq @ lies in the fundamental chamber then Q) is empty.

Proof. We know from Proposition 12.5 that p= % Y aca+ . Let we W. Then
w permutes the roots and so

wlp)=5 ). (Fa)=p-) «

acdt acQ)

where () is the set of positive roots made negative by w™!.

Now suppose () is any subset of ®*. Suppose p—Y .o« lies in the
fundamental chamber. We write v=)_,., @. Then (p—v)(h;) >0 for each
i=1,...,1. Moreover (p—v)(h;)eZ and p(h;)=1, since w,;(h;)=1 and
w;(h;)=0 if j#i. It follows that v(h,;) <0, that is that (v, @;) <0 for i=
1,...,l. However, v is a sum of positive roots so has form v:Zle n;a;
where n, >0 for each i. Hence

(v, V)= n; (v, ;) <0.

i=1

It follows that v=0 and so () is empty.
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Finally we must show that p— )" . « either lies in a reflecting hyperplane
or is a W-transform of p. Suppose it does not lie in any reflecting hyperplane.
Then it lies in a chamber. Thus there exists w € W such that

oz

lies in the fundamental chamber. However, p—) ,.qa has the form
1Y wear (£@), s0 w(p—Y ,cqa) also has form 13", 4 (+a) since w
permutes the roots. Hence

w(p—Za):p—Za

ae) ae)

for some subset )’ of ®*. Since this vector lies in the fundamental chamber,

) must be empty. Hence
wlp=>Y al=p
ael)

and so p—)_,.q @ is a W-transform of p |

We can now prove Weyl’s denominator formula.

Theorem 12.11 (Weyl’s denominator formula).

e, [1 (I—e_p)=23" e(we,,

aedt weW

where g(w) = (—1)"™,

Proof. Let Z[H*] be the set of functions f : H*— Z of finite support.
This is the set of finite Z-combinations of the characteristic functions e,.
Weyl’s denominator formula is an identity in Z [H*]. There is a natural action
of W on Z[H*] given by

(w)r=f(w'A).
We define a map 0 : Z[H*]— Z[H*] by

0(f) =3 e(wwf.

weW

It is clear that, for w' € W, Qw' =& (w') 6, hence

0(e(w)w)=6
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and
0*=|W|6.
We now consider the effect of a fundamental reflection s; on
A=e, [] (1-e,).
aedt
We have

S (ep l_[ (1 _e—a)> = esi(p) l_[ (1 - e_si(a)) :

aedt aedt

Now s;(p) = p — «; by the proof of Proposition 12.5. Also s; transforms every
positive root to a positive root, except for «;. Hence we have

aed™
aFa;

5; (ep [T & —e_a)> =e, | [l (1-e_) (1 —eai)

=e,| [[ U—ep)|(e—1)

acdt

aFa;
= —ep l_[ (] —e_a).
aedt
Thus s5;(A) = —A. It follows that w(A) = e(w)A for all we W. Hence 0(A) =
|W|A.
We also have

A=e, [ (1-e_,)

acdt

=¢ Z (_l)mle*Zaena

Qcot
— 19
= Z (_1) €p—Fqena
Qcot

Now p—3" .o« either is of form w(p) for some we W or lies in some
reflecting hyperplane, by Proposition 12.10. If v lies in a reflecting hyperplane
then 6(v) =0 since the terms in #(v) cancel out in pairs. For if ve L, then

& (ww,) ww,v=—¢e(w)wv.
Thus we have

6(A) =0 e(w)e,,

weW
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since if p— " ,co @ =w(p) then || =I(w) by the proof of Proposition 12.10.
Thus
0(A)=0 (0 (ep)) =6 (ep) =|w|é (ep) :
But 6(A) =|W|A as shown above. It follows that
A:O(ep)z > g(w)e,,. O

weW

6A+p
Corollary 12.12 ch M()\) = ﬁ
wew €W ewp

Proof. This follows from Proposition 12.4 and Theorem 12.11. |

12.4 Composition factors of Verma modules

We shall show in this section that each Verma module M(A) has a composition
series of finite length and that all its composition factors are irreducible
modules of the form L(u) where w=w(A+p)—p for some we W. It will
be convenient to define

w-A=w(A+p)—p.

We shall use these results in the following section to prove Weyl’s character
formula for the finite dimensional irreducible modules L(A).

We begin with a lemma on filtered algebras and their corresponding graded
algebras. We recall the definitions as given in Section 11.1.

Lemma 12.13 Let A=\J;A; be a filtered algebra with
AgCA CAC---

and let B=By® B, ®B,®--- be the corresponding graded algebra.

A+ (AN

(i) if I is a left ideal of A then grI=@P, 1
i-1

(i) If I, C1, then gr I, Cgr L.

Gii) If I, C L, and grI, =gr I, then I, = I,.

(iv) If B satisfies the maximal condition on left ideals so does A.

is a left ideal of B.

Proof. We recall that B=¢D,B; where B,=A,/A, ;. If xe A;NI,y€ A; then
we have

(Aj—l +y) (Ai_1+x) :Ai+j71 +yx
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where yxe A, ;NI. Thus A, ; +yxegrl. It follows that gr/ is a left
ideal of B.

It is clear from the definition that if [, C I, then grl, Cgrl,.
We now suppose that I, C I, and gr I, =gr I,. Then

Ay +(Ainll) =A_, +(Alﬂlz)
for each i. Thus we have
AiNL=(AN1)+(A_ND).

We shall show that A;,NI; =A; NI, by induction on i. We know A NI, =
AyN1, since grl, =grl,.
Assume inductively that A,_,NI; =A,_;NI,. Then we have

ANL=(ANL)+(A,_ NI)=A,NI,.

Thus A;,NI,=A;NI, for all i. Since A=U;A,; it follows that I, =1,.
Now suppose that

LcLchLcC---
is a chain of left ideals of A. Then
grl,Cgrl,Cgrl;C---

is a chain of left ideals of B. Assume that B satisfies the maximal condition
on left ideals. Then we have grl;=grl; for all i, j sufficiently large. It
follows that I; = I; for all i, j sufficiently large. Hence A satisfies the maximal
condition on left ideals. 0

Proposition 12.14 11(L) satisfies the maximal condition on left ideals.

Proof. 1(L) is a filtered algebra whose graded algebra is the symmetric alge-
bra S(L). However, S(L) is isomorphic to the polynomial ring C [z, ..., z,]
where n=dim L, so satisfies the maximal condition on (left) ideals, by
Hilbert’s basis theorem. Thus 11(L) satisfies the maximal condition on left
ideals, by Lemma 12.13. J

Corollary 12.15 The Verma module M(A) satisfies the maximal condition
on submodules.
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Proof. The left ideals of 11(L) are the same as the 11(L)-submodules. Thus
U(L) satisfies the maximal condition on submodules. We recall that

M(A)=1(L)/K,

where K, is a submodule of 11(L). It follows that M(A) satisfies the maximal
condition on submodules. 0

Theorem 12.16 The Verma module M()) has a finite composition series
M(A)=N,DN,DN,D---DN,=0

where each N; is a submodule of M(A) and N, is a maximal submodule of
N;. Moreover N;/N,,, is isomorphic to L(w- A) for some we W.

Proof. Since M(A) satisfies the maximal condition on submodules, every sub-
module of M(A) has a maximal submodule. Thus we have a descending
series

of submodules, in which N, is a maximal submodule of N;. We wish to
show that this series reaches O after finitely many steps.

Now M(A) is the direct sum of its weight spaces by Theorem 10.7. Thus
every submodule of M(A) is also the direct sum of its weight spaces, by the
proof of Theorem 10.9. It follows that each quotient N,/N,,, is the direct sum
of its weight spaces. Moreover each weight u of N;/N,,, is a weight of M(A)
so satisfies u < A with respect to the natural partial order on weights. Thus
we can choose a weight w of N;/N,; which is maximal in this partial order
among the set of possible weights. Let v be a non-zero vector in N;/N,,, of
weight u. Then we have e;u=0 and hv=w(h)v for all h € H. Thus we have

W(L)v=U(N")v.

However, N;/N;,, is an irreducible 1I(L)-module, thus U(L)v=N;/N,.
Thus we have a homomorphism M(u)— N;/N;,, given by um, — uv for
all ue 1 (N7) as in Proposition 10.13. This homomorphism is surjective and
its kernel is the unique maximal submodule of M(uw), since N;/N,, is irre-
ducible. It follows that N;/N,,, is isomorphic to L(u), the unique irreducible
quotient of M(u).

We now consider the action of the centre Z(L) of 1I(L). Z(L) acts on
M()) by scalar multiplications. The element z € Z(L) acts on M(A) by scalar
multiplication by x,(z), as in Section 11.5. Hence z acts on each submodule
N; and each quotient N;/N,,, as scalar multiplication by x,(z). However,
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z acts on M(u) as scalar multiplication by x,(z), and so also on its quotient
L(w). Since N;/N,,, is isomorphic to L(p) we deduce that x,(z) = x,,(z)
for all z€ Z(L). Hence x, = x,,. It follows from Theorem 11.31 that u+p=
w(A+p) for some we W. This is equivalent to w=w- A for some we W.

Now W is finite and so there are only finitely many possible composition
factors of M(A), up to isomorphism. Also each weight space of M()) is
finite dimensional. Thus L(u), which contains p as a weight, can appear as
a composition factor with multiplicity at most the dimension of the p weight
space M(A),,. It follows that the series

must reach O after at most }_, ., dim M(A),,, steps. Thus M(A) has a finite
composition series and each composition factor has form L(w-A) for some
weW. U

12.5 Weyl’s character formula

We now find a formula for the characters of the finite dimensional irreducible
modules L(A) where A€ X*.

Theorem 12.17 (Weyl’s character formula). Let A € X*. Then

ew)e
ChL()\): ZweW ( ) w(A+p)

ZweW S(w)ew(p) '

(This is an equality in the ring R of Section 12.1 since the denominator

A=Y e(w)e,,

weW

is an invertible element of R.)

Proof. Since A is a dominant integral weight we have A(h;)>0 for
i=1,...,1. Hence (A+p)(h,)=A(h;)+1>0 for i=1,...,I. Thus A+p
lies in the fundamental chamber C. Hence w(A+p) lies in the chamber
w(C). It follows from Proposition 12.7 that the weights w(A+p) for we W
are all distinct.

Now the highest weight of the Vermamodule M(w- A)isw- A =w(A+p) —p.
Thus the characters ch M(w- A) € 9 are linearly independent as w runs over W.
Similarly the characters ch L(w- A) are linearly independent for w € W.
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Now M(w-A) has a finite composition series with composition factors of
form L(y-A) for ye W, by Theorem 12.16. Moreover, since y- A is a weight
of L(y-A) and w- A is the highest weight of M(w-A) we have y-A<w-A
whenever L(y-A) occurs as a composition factor of M(w-A). Moreover w- A
occurs as a weight of M(w-A) with multiplicity 1, thus L(w-A) appears as a
composition factor of M(w-A) with multiplicity 1. We therefore have

chM(w-A)=)"a,, chL(y-A)

yew

where a,, €%, a,,>0, a,,=1, and a,,#0 only if y-A <w-A. If we write
the elements of W in an order compatible with the partial order y-A <w-A
we see that the integers a,,, form a triangular |W| x |W| matrix with entries
1 on the diagonal. The determinant of this matrix is 1. Thus we may invert

the above equations to obtain

ww wy

chL(w-A)=)"b,, chM(y-X)

yeWw

where b,, €7 and b,,=1. (The b,, will no longer be non-negative.) In
particular we have

chL(\)=) c,chM(y-X)

yew

where ¢, =b,,. By Proposition 12.4 this gives

ZyeW CyCy(A+p)
A

where ¢; =1. We wish to determine the remaining coefficients c,.

chL(A)=

We recall from Proposition 10.22 that
dim L(A), =dim L(A) )
for all we W. Thus we have
w(ch L(A))=chL(A) forall we W.
On the other hand we have
s;(A)=—-A
by Theorem 12.11 and thus

w(A) =e(w)A.
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It follows that
w (Z C_vey(/\+p)> =&(w) (Z c)'ey()\+ﬂ)) ’
yeW yeW
Thus
> CyCuy(atp) = > e(w)e,eyo1p)
yeW yeW
since we, =e,,,. This is equivalent to
2 Curtyeyaen = 2 E(W)E ey
YEW yew

Since the functions e,, ., for y € W are linearly independent we deduce that

cy1y=e(w)c,.

In particular we have ¢, = ¢&(w), thus ¢, =& (w™') = &(w). It follows that

ZweW € (U)) ew()\+p)
A

as required. |

chL(A)=

We note that in the special case A =0 we have ch L(0) =¢, as L(0) is the
trivial 1-dimensional representation of L. Thus we have

Y e(w)e,,, =Agy=A.
weW

This gives an alternative proof of Weyl’s denominator formula, Theo-
rem 12.11.

We also note that while the character ch L(A) is invariant under the Weyl
group both the numerator and the denominator in Weyl’s character formula
are alternating functions under the Weyl group, i.e. satisfy w(a) =¢(w)a.

We may deduce from Weyl’s character formula a formula due to Kostant
for the dimension of the weight space L(A), of L(A).

Theorem 12.18 (Kostant’s multiplicity formula). Let A € X+ and u € X. Then

dimL(A), =} e(w)Bw(r+p)—(n+p))

weW

where 3 is the partition function defined in Theorem 10.7.

Proof. We have chL(A)=3_,dim L(A),e,. Moreover we know that
A'=e T=e Yy Bwe,
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by Lemma 12.3. Thus Weyl’s character formula gives the identity

weW

Z dim L(A)p.e/.l. = (Z S(w)ew(/\+p)> efp Z S’B(V)e—v
= Z Zg(w)s‘s(y)ew()t-%—p)—p—v'

weW v

We compare the coefficients of e, on both sides. This gives

dim L(A), =" e(w)B(w(A+p) — (w+p)). O

weW
We can also derive from Weyl’s character formula a formula for the

dimension of L(A).

Theorem 12.19 (Weyl’s dimension formula). Let A € X*. Then

Haedﬁ <)\ +p’ a>

dm L) == e

Proof. Let N, be the subring of N consisting of all finite sums )
with n, € Z. Then the character formula

AchLA)=) e(w)e,nyy

weW

pex M€y

may be regarded as an identity in 9N,. Let A=R[[7]] be the ring of formal
power series in the variable ¢ with real coefficients. Then for each weight
& € X we have a ring homomorphism

O, :Ry—>A
given by
1
0 (e,) =exp((&, p)) = 1+ (& W) 1+ S (6 )" 4+

Consider 6, (3, £(w)e,, ). We have
0, (Z E(W)Ew,,,) = e(w)exp (& wpyn) =Y e(w)exp ((u, w'€)1)

= > e(w)exp({u, wé) 1) =0, <Z s(w)e,,,§> )

weW weW
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In particular we have

9p (Z 8(w)ew()\+p)) = 6)\+p (Z 8(w)ewp>

weW weW

=0\, <ep [T (e.— D)

aedt

=exp({(A+p, —p)1) [] (exp(A+p, a)r—1)

acdt

=exp((A+p, —p)0) [T ((A+p,a)t+---)

aedt

aedt

=rN(l_[ <A+p,a>+-~> where N =|d7].

By putting A =0 we obtain

0,,(2 s(w)ewp>=tN(H <p,a)+...>.

Thus by applying 6, to Weyl’s character formula we obtain

N ( [T <p. a>+--~)ZdimL()\)Mexp((p,,u)t):tN ( [T (A+p. a>+--~>.

aedt acdt

By cancelling " and then taking the constant term we obtain

(H (p, a>> dimZL(A) = [ (A+p, a). O

acdt acdt

12.6 Complete reducibility

We have now attained a good understanding of the finite dimensional irre-
ducible modules for a semisimple Lie algebra L. We now consider arbitrary
finite dimensional L-modules. Each of these turns out to be a direct sum of
irreducible L-modules.

Theorem 12.20 Let L be a semisimple Lie algebra and V a finite dimensional
L-module. Then V is completely reducible.

Proof. We shall prove this result in a number of steps. If V is itself irreducible
there is nothing to prove. Thus we suppose U is a proper submodule of V. It
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will be sufficient to show that U has a complementary submodule U’ in V,
that is a submodule such that V=U&U’.

(a) Suppose dimV=2,dimU=1. Then U and V/U are 1-dimensional

(b)

L-modules. Since for x,ye L, u € U we have

[eylu = x(yu) — y(xu)

and since the actions of x and y on the 1-dimensional module commute
we have

[xy]u=0.

Thus [LL] acts as 0 on U. Since L is semisimple we have [LL]= L. Thus
U gives the trivial 1-dimensional representation L(0). Similarly V/U is
isomorphic to L(0).

Now let ve V. Then

[xyJv=x(yv) — y(xv).

Since L annihilates V/U we have xve U and yv e U. Since L annihilates
U we have x(yv)=0 and y(xv)=0. Hence [xy]Jv=0. This shows that
[LL] annihilates V, i.e. L annihilates V. But then any complementary
subspace U’ of U is a submodule of V.

Suppose U is irreducible, dim U> 1, and dim(V/U)=1.

Then U is isomorphic to L(A) for some A € X with A #0. We consider
the action of the Casimir element ¢ on V. We recall from Proposition 11.36
that ¢ acts on the irreducible module L(A) as scalar multiplication by
(A+p, A+p) —{p, p). In particular c acts on L(0) as zero, and c acts on
L(A) for Ae X*, A#£0, as multiplication by a positive scalar. For then
(A, A)>0 and (A, p) >0 since A€ X*. Thus ¢ has one eigenvalue 0 on
V and dim V —1 eigenvalues y,(c¢) =(A+p, A+p)—{p, p)>0. Let U’
be the eigenspace of ¢ on V with eigenvalue 0. Then we have

V=UU'.
Moreover U’ is a submodule of V. For let xe L, u’' € U'. Then
c(xu)y=x(cu')=0

since ¢ lies in the centre Z(L) of W(L). Thus xu' € U’ and U’ is the
required submodule of V.
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(c) Suppose dim(V/U)=1 but U is not irreducible. We prove the existence
of the required complementary submodule U’ by induction on dim U. Let
U be a proper submodule of U. Then by induction we have

V/U=U/U®V/U

for some submodule V of V containing U. We have dim(V/U)=1 and
dim U <dim U. Thus we may apply induction again and conclude that
there exists a submodule U’ such that

V=UaU'.
But then we have V=U @ U’ as required Cl
(d) We now consider the general case when U is any proper submodule of V.
We consider the set Hom(V, U) of all linear maps from V to U. We can

make this set into an L-module as follows. If xe L and § e Hom(V, U)
we define xf € Hom(V, U) by

(x0)v=1x(6(v)) — 6(xv) € U.

Then we have

(v(x6))v = y((x0)v) — (x6) (yv)
= y(x(6v)) — y(6(xv)) — x(8(yv)) + O(x(yv)).
Similarly
(x(y0))v=x(y(6v)) — x(6(yv)) — y(8(xv)) + 6 (y(xv)).
Thus
(x(y0) — y(x0))v = x(y(6v)) — y(x(6)) + 6(y(xv)) — O(x(yv))

= [xy](6v) — 6([xy]v)
= ([xy]O)v.

Thus Hom(V, U) is an L-module. Let S be the subspace of Hom(V, U)
of maps 6 such that 6|, is a scalar multiplication. Then S is a submodule
of Hom(V, U). For suppose 0 €S, x € L. Then for u € U we have

(x@)u=x(0u) — 0(xu) =éxu—Exu=0

where 0 acts on U as multiplication by &. Thus S is a submodule of
Hom(V, U). Moreover let T be the subspace of S of maps 6 such that
0|, is zero. Then T is a submodule of S and dim(S/T)=1.

We know then from the earlier parts of the proof that there is a sub-
module 77 of S such that S=T @ 7’. We have dim 7' =1. Suppose 7" is
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spanned by the non-zero element f : V— U. We may choose f so that
f(u)=u for all ue U. We have xf =0 for all x€ L since dim7" =1.
Thus

(xf)v=x(fv) = f(xv) =0
for all ve V, that is
x(fv) = f(xv) forall xeL,veV.

This shows that f : V — U is a homomorphism of L-modules. Let U’ be
the kernel of f. Then U’ is a submodule of V. We have UNU’ = O since
f acts as the identity on U, and

dimV =dim U 4+dim U’
since f is surjective. Hence we have
v=UeU

and U’ is the required complementary submodule. Ul

Note The crucial step in the above proof of complete reducibility is the
fact that the Casimir element ¢ acts on the irreducible module L(A) for
A€ X', A0, as multiplication by a positive scalar.

The theorem of complete reducibility shows that every finite dimensional
L-module is a direct sum of irreducible L-modules each isomorphic to L(A)
for some A€ Xt.

In particular the tensor product L(A) ® L(w) is a direct sum of irreducible
modules L(v) where A, w, ve X ™. It is natural to try to determine the mul-
tiplicity with which L(v) occurs as a direct summand of L(A)® L(w). This
multiplicity is given in a formula of Steinberg.

Theorem 12.21 (Steinberg’s multiplicity formula). Let A, w € X and
LAOBLW = Y ey L ().

veXt

Then

= w)e)P (wA+p)+w'(n+p)—(v+2p)).

w,weW

Proof. We have

chL(A)chL(u)= )" ¢,,,chL(v)

veXt
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by Lemma 12.2. We multiply both sides of this equation by the Weyl denom-
inator A. By Weyl’s character formula, Theorem 12.17, we have

(Z S(w)eer(/\+p)> <Z dlmL(/.L)§€§> = Z C)\;w (Z s(w)eUJ(V+p)> .
weW feX veXt weW

Thus = 3 cw 2sex 8(w) dim L() geyrspyie = vex+ 2owew CapnE(W)e€uip)-
Now ve X*, thus v+ p lies in the fundamental chamber C. Thus w(v+ p)
lies in the chamber w(C). Thus the elements w(v+ p) are all distinct as w, v
vary, and so the elements e, are linearly independent. We may therefore
compare the coefficients of e, on both sides of the above equation. In
fact we compare the coefficients of e, , on both sides. This gives

Cywr = Z Z e(w)dim L(w),

weW éeX
w(A+p)+é=v+p

= Z S(u)) dlm L(lu‘)lh‘—p—w()\-%—p)'
weW

We now use Kostant’s multiplicity formula, Theorem 12.18. This gives

dim L(K) i powirip = 2 €(W)B (W' (m+p) +w(A+p) = (v+2p)).

weWw

Thus we obtain

=2, swe@)P (wA+p)+w'(n+p)—(r+2p).

w,w' eW
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Fundamental modules for simple
Lie algebras

13.1 An alternative form of Weyl’s dimension formula

Let L be a finite dimensional simple Lie algebra. The irreducible L-modules
L (w;) whose highest weights are the fundamental weights w,, ..., ®, are
called the fundamental modules. In this chapter we shall determine the dimen-
sions of the fundamental modules for the various simple Lie algebras. We
shall first derive an alternative form of the Weyl dimension formula which
will be useful in this respect.

Theorem 13.1 Let A= Zle m;w; be a dominant integral weight. Then

dimL(A) = [] d,

aedt

" k., and

=1 "™

where =Y

_ > (mi+ 1) kw,
o ikiw; '

Here the integer w;, called the weight of «,, is defined by

d

<ai? ai> =w; <aio’ aio)

where «; is a short fundamental root. Thus w; € {1,2, 3} for each i.

Proof. We know from Theorem 12.19 that

dimL(A\)= [] d,

aedt

where d_, = M.
(p, @)

o

267
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Since A=) m,w,,p=> w,;,, a=> k,a; we have
_ X (mi+1) o, Y ka;)
o (X w;, Yokey) .
Now we know from the proof of Proposition 10.18 that <wi, aj>=0 if i)
and (w;, ;) =3 (@;, ;). Thus
_ 2 (mi+1)k; % (o, a;)
: Ziki'%<ai’ai>

d

i (m+1) kw;
==—- "1 O
> kiw;
13.2 Fundamental modules for A,
The fundamental weights w, ... , o, for a simple Lie algebra of type A, will

be numbered according to the vertices of the Dynkin diagram as shown.

1 2 -1 !

We shall use Theorem 13.1 to calculate dim L (w;) for je{l,...,l}. We
have dim L (w;) =[],eq+ d, Where
d — > (m+1)k,
D W
(All weights w; are equal to 1.) Now m;=1 and m; =0 if i# j. Thus if a
does not involve the fundamental root a; we have d, =1.
So suppose @ does involve «;. Then a=a;+---+a;+---+a, for some
i with 1 <i<j and some k with j <k </. For such a root & we have

_k—i+2
“ k—i41"
Thus
k—i+2
dimL (w;) = -
( ’) H l:[ k—i+1

I=i<j j<k=l

1 (k+Dk...(k—j+2) k+1
o k(e=1) . (k—j+1) L k—j+1

J<k<l Jj=<k<l

_ (+DG+2)...(+1) I+ (1+1)

12 (I+1—j) _jld+1—j \j
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Thus we have shown

Proposition 13.2 The dimensions of the fundamental modules for the simple
Lie algebra of type A, are

() (%) 0

These fundamental modules may be described in terms of exterior powers
of the natural A;-module of dimension /4 1. We recall from Theorem 8.1 that
A, is isomorphic to the Lie algebra s[,,,(C) of all (I4+1) x (I+1) matrices
of trace 0. The identity map gives an (/4 1)-dimensional representation of A,

called the natural representation. Its weights are the maps w, w,, ..., My
given by
A
Ay
LS
A

Then we have

My — Moy =@y

M= M =
Myt gy, =0.

On the other hand we have @; =3}, A, w; by Proposition 10.17. Hence
o, =20,—w,

oy =—0,+2w, —w;

a =—0_,+20,_—o,

o= —w,_+2w,.
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Eliminating «, ..., ®; we obtain
M=,
My =—w;+w,
M=—w_ T
My =~y

Now the weights of the natural module satisfy >, >--->u;,; since
W; — M, =a;. Thus the highest weight of the natural module is u; =w,. It
follows that L (w,) is one of the irreducible direct summands of the natural
module V. Since

dimV=dimL (w,)=1+1
it follows that V=L (w,). Thus we have shown
Proposition 13.3 The natural A;-module is an irreducible module with high-
est weight w,.

To obtain the remaining fundamental A;-modules we introduce exterior
powers of modules.

13.3 Exterior powers of modules

Let V be a finite dimensional module for a Lie algebra L. Let
TV)=T"(V)eT' (V)ST*(V)D---
be the tensor algebra of V, where
T™"(V)=VR®- --QV (n factors).
T(V) may be made into an associative algebra in which
(® - ®x,)(N® ®y,)=x8"®x,QyQ Qy,
for x, ..., %, ¥1s--- >V, €V.

T(V) may also be given the structure of an L-module satisfying

XN @ ®x,) =) X @ ®X  @XX® Xy @ ®X,

i=1

for all xe L.
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Let J be the 2-sided ideal of T(V') generated by the elements v® vforallve V.

Definition 13.4 A(V)=T(V)/J is called the exterior algebra of V.
Let v, v € V. Then
W+V)QW+v)=vQv+ v RV + vV +v Q.
Hence
VRV +v ®uveld.

Now let v;,...,v, be a basis of V. Then J is the 2-sided ideal of T(V)
generated by all elements of form

v, v, i=1,...,n
V;®V;+v;®v; i<j.
It follows from this that

J=P (T (V)nJ)

k>0
and that 7°(V)NJ =0, T'(V)NJ = 0. Hence
AV)=AVRA'VOAVD---
where A¥V =T*(V)/T*(V)NJ. In particular we have
AV=T(V)=Cl
AVETI(V)=V.

Thus we may identify the subspace A°V @ A'V of A(V) with C1@V.
Let o : T(V) — A(V)=T(V)/J be the natural homomorphism. We define

o(wV)=vA for v,v' e V.
Then every element of A(V) is a linear combination of elements
Uy A A, iy oo sig€fl,..., n}
The relations defining J may be written
v;AY;=0 ie{l,...,n}

v Ay =— (v AV;) i<j.
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By applying these relations we see that each element of A(V) is a linear
combination of elements

v; N--- AV

3 i for i, <---<i,

and that the relations cannot be used further. Thus we have shown:

Proposition 13.5 (i) A(V)=AVOA'VD---® A"V

(i) dim A*V =(})

(iii) dim A(V)=2"

(iv) The elements v; A---Av, for subsets {i\,... i} C{l,...,n} with
i <---<i, form a basis of A(V). Ul

We now show that A(V) has the structure of an L-module. We recall that
T(V) is an L-module and that its ideal J is generated by v®v for all ve V.
For x e L we have

x(VRV) =x VRVt VR xv.

Since the right-hand side lies in J we see that J is a submodule of T(V).
Thus A(V)=T(V)/J can be made into an L-module in the natural way. Each
exterior power AfV is a submodule.

Proposition 13.6 Ler V be a finite dimensional module for the simple Lie
algebra L. Then the weights of AV are all sums of k distinct weights of V.

Proof. Let H be a Cartan subalgebra of L. We consider V as an H-module.
V is a direct sum of 1-dimensional H-submodules. Let v, ..., v, be a basis
of V adapted to this decomposition. Let A, ... , A, € H* be the corresponding
weights. Then

xv; = A (%), for xe H.
Now AV has basis v, A+ A forall iy <--- <i. We have

k
X (U A AY) =D A AR A A,

Lk
r=1

= (A, () + A () v, A A x€eH.

Thus v; A---Av,; is a weight vector with weight A; +---+A; . Thus the
weights of A¥V are sums of k distinct weights of V.
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Theorem 13.7 Let V be the natural module for the simple Lie algebra A,.
Then the fundamental modules for A, are
AV, APV, AV
Proof. We have seen in Proposition 13.3 that A'V =V is the fundamental

module with highest weight w,. The weights of V are the maps w,, ..., .
given by

A
A
M ) — A
Arsi
Since w; — ;. =a; we have w; > u;, ;. Thus the weights are ordered by
Ry RS

Now u; =y, u;—p;y =a; and @; =3 A;@; by Proposition 10.17. Hence

o, =20,—w,

o =—w,_+20;—w,;, for2<i<liI-1
o =—w_,+2v,.
It follows that
My =0y
My =—w; +w,
M3 = —0, + w;
M=—0,_ + o
K=~

By Proposition 13.6 the highest weight of A*V is w,+---+u; =w,, for
1 <k<l Thus A*V contains the irreducible module L (w,) as one of its
irreducible direct summands. However,

I+1
dimL(wk)=dimAkV=<—£ )

by Proposition 13.2. Hence L (w,) = A*V. O
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13.4 Fundamental modules for B, and D,

The fundamental weights w,, ..., o, for a simple Lie algebra of type B, or
D, will be numbered according to the labelling of the Dynkin diagrams:

1 2 3 -1 I
o—O0—0— +++ —OC—> 0O B,

1 2 3 -2 _0I-1
O—O0—0— -+ - D,
I

We again use Theorem 13.1 to calculate dim L (w)).
We suppose first that we have an algebra of type B,. We know from
Section 8.3 that the roots have the following form. Let

Then the fundamental roots are
a;(h) =X — A, for 1<i<i—1
a,(h) =\,
The full set of positive roots is given by
h—))\i—)\j fori<j
h— A +A; fori<j
h— A,

where i, je {1, ..., 1}. These positive roots can be expressed as combinations
of fundamental roots as follows:

a;+-Fa; fori<j
at+-ta; +2a+ -+ 2 fori<j
a;+--t+a.



13.4 Fundamental modules for B, and D, 275

The first two families are long roots and the third family are short roots. Thus
the weights w; are given by

wlz...:wl_lzz wl=1'
According to Theorem 13.1 we have

dimL (w;)= [] d,

acdt

where =) k;a; and

g = Zle kiwi~|—kjwj'
: Zﬁ:l kw;
We have d, =1 if a does not involve «;. We first suppose je{1,...,[—1}.

Then the positive roots involving j are:

at-tapt oy 1<i<j, j<k=i-1
a+-ta;+-ta I1<i<j

at+-ta;t o 20+ + 2 1<i<j, j<k—1<lI
i+ to 20+ 204+ 20 1<i<k, k<j<l-1.

The values of d,, in these four cases are

k—i+2 21-2i4+3 2l-k—i+2 2l-k—i+3
k—i+1" 21-2i+1" 2l—k—i+1" 2l—k—i+1

respectively. The product of all possible d,, in these four cases is

G+D(+2) -1 20+1 Q21— j)2l—j—1)---(I+1)
12 0—j  20=2j+1" (QI=2)@2l=2j—1)---(I+1—))
2021—1)(21=2) - (21+2— )
Q= j)2l—j—1)---(21—2j+3)(21—2j+2)

respectively. Finally the total product [,cq+d, iS (21;'). We now take j=I.
Then the positive roots involving [ are

o+t 1<i<li

o+ Fo 20+ 2 1<i<k<l
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: 2-2i42  2=i—j+2
The values of d, in these cases are 5=5-7, -

uct of all possible d,, in the two cases is

respectively. The prod-

2(20-2)(21—4)---2  (21=1)(21=2)---(I+1)
QI—1)(21=3)---3-1"  (21=2)(2i—4)---2

respectively. Finally the total product [],cq+ d, is 2'.
Thus we have shown:

Proposition 13.8 The dimensions of the fundamental modules for the simple
Lie algebra of type B, are

20 +1 20+1 21 +1
et (1) (23 () 2

o O O o— - - +-—0 >0

The dimensions of the modules L (w;) for 1 <j<I—1 suggest that these
modules are exterior powers of the (2/+ 1)-dimensional natural module. This
is indeed the case.

Theorem 13.9 Let V be the (214 1)-dimensional natural module for the
simple Lie algebra B, (described in Section 8.3). Then the fundamental module
L (w;) is isomorphic to AV for 1<j<I—1.

Proof. Let

Then the weights of V are O, wy, ..., ;s —Mys ..., —p;, Where w,(h) =A,.
Since w; — ;. =«a; for 1 <i<I/—1 and u;=a; we have

o= g == iy > 0.
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Thus the highest weight of A/V for 1 <j<1lis w,+u,+---+u;. Expressing
the ws in terms of the as gives

M=o+t
My=ay+- -+

M= a.
We also have @; =3 A, w;, which in type B, gives

o, =20, —w,

ai:—wi_l—i—Za)i—wH_l 25151_2
al—l :—a)l_2+2wl_1 —2(1)1
;= —wW;_ +2(l)l
It follows that
My =0,
My ==+ Wy

My ==, +w_,

my=—w,_+20,
Hence p)+:+-+p;=w; for 1<j<i—1
=20,

Thus the highest weight of A/V is w; for 1 <j<I—1. Since
; 21+1
dimL(wj)zdimA-fv:< lJ.r ) j<l—1
J

we deduce that L(wj) is isomorphic to A/V. This argument fails when
j=1 since the highest weight of A’V is 2w, rather than w,. We shall see
subsequently how to find the remaining fundamental module L (w,). |
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We now consider the simple Lie algebra of type D,. This algebra was
described in Section 8.2. Its roots have the following form. Let

Then the fundamental roots are

a;(h) =X — Ay, for l<i<I—1
al(h) = )\171 +/\1

The full set of positive roots is given by

h— X —A; i<j
h—>)\i+/\j i<j.

These are expressed as combinations of the fundamental roots by

a+-ta for 1<i<j<l
Qo 20+ 20, ta for 1<i<j<Il—1
a+---+a ,ta for 1<i<l[-2.

We take a fixed j with 1 < j </—2 and consider dim L (a)j). By Theorem 13.1
this is given by

dimL (w;)= [] 4,

acdt
where a =) k;a; and

Y kit

d, ===,
Zi:l ki
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(All weights w; are equal to 1 in type D,.) As usual d,=1 if a does not
involve a;. The positive roots involving «; are

i+ ta;+tay I<i<j, j<k=<I-1

at+-ta;t ot 2o+ 20 e o 1<i<j, j<k<l-2
i+ to 20+ 20+ 20, o 1<i<k<j
a+-ta e ta l<i<j

The values of d,, in these four cases are

k—i+2 2l—i—k 2l—i—k+1 [—i+1
k—i+1" 2l—i—k—1" 2[—i—k—1’ -1

respectively. The product of all possible d, in these four cases is

G+DH(+2)---1 Ql—j—1)QRI—j—=2)---(I+1)
1-2----(I—j) > @I-2j—-1D)Q21-2j-2)---(I+1—}j)’
QI-1D)R21=2)---(2I—j+1) l

QI—j—1)Q2i—j—2)---21—-2j+1) 1—j

respectively. Finally the total product is (2}1)
We next suppose j=1— 1. The positive roots involving «,_, are

o+ o 1<i<lI-—-1
o+ Fo 20420 4o+ I<i<k<Il-1.
The values of d, in these two cases are =5, 2Kt regpectively. The
product of all possible d,, in those two cases is [, 2'~! /I respectively, and so
the total product is 2!
Finally suppose j=/. The positive roots involving ¢, are

a
o+t ,+a 1<i<i-2
o+ to 2,420 4o, + o I<i<k<I-1.

The values of d, in these three cases are 2, %, % respectively.

The product of all possible d, in these three cases is 2, 1/2, 2!~ /I respectively.
Thus the total product is 2!,
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Thus we have shown

Proposition 13.10 The dimensions of the fundamental modules for the simple
Lie algebra of type D, are

> (3) () (%) 05
oo <2H )

Again the dimensions of these modules for 1 <j</—2 suggest that they
are given by exterior powers of the natural module.

Theorem 13.11 Let V be the 2l-dimensional natural module for the simple
Lie algebra D, (described in Section 8.2). Then the fundamental module
L (w;) is isomorphic to AV for 1 <j<I1-2.

Proof. Let
A
A
h= !
-\
-\
Then the weights of V are w,, ..., t;, =y, ..., —i, Where u;(h)=A,. We
have
My — My =0y
M1 — M =0y
M+ =q
and
o =20,—w,
o, =—w,+20, —w,

o 3=—0_4+20 53—,
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A, =—0, 3+20,_,—0_;— o,
a =—w 120,
==, ,+20,

using the Cartan matrix of type D,. It follows that

M=,

My =~ + 0,
Miy=—w 3+ w_,
M=~ ,to_ +w
H=—0_ + 0.

Since w; > gy > -+ > u;_; > M, the highest weight of A/V for 1 <j<1—21is
Myt -+ ;. Also we have g +---+u; =w; for j <I—2. Thus the highest
weight of AJV is w; when j <[—2. Since

dimL(a)j)zdimAjV=<2jl), j<i-2

we deduce that L (w;) is isomorphic to AV for j<I—2. O

13.5 Clifford algebras and spin modules

There remain one fundamental module for B, of dimension 2! and two funda-
mental modules for D, of dimension 2/~! which cannot be obtained as exterior
powers of the natural module. These are called spin modules and give rise
to spin representations of B, and D,. We shall now show how these modules
may be obtained in terms of the Clifford algebra.

Let V be a vector space of dimension n over C and suppose we are given
a symmetric bilinear map V x V — C under which the pair v, v’ maps to
(v, v') € C. Thus we have

W, v)=(v,v).

Let T(V) be the tensor algebra of V and J be the two-sided ideal of T(V)
generated by elements

v@v—(v,v)1 for all ve V.
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Since
(w+)QW+v)—(v+v,v+v)1 = (vRv—(v,v) )+ WV —(V, V) 1)
+ @RV +VRv—-2(v,0V)1)
we see that
vV +V®v—2(v,v)1eJ for all v, v e V.

Let C(V)=T(V)/J. Then C(V) is an associative algebra called the Clif-
ford algebra of V.
Now let v, ..., v, be a basis of V. Then the elements

v ®v;— (v, v) 1
v®U+v;Qv,—2(v,v;) 1 i<

lie in J and it is evident that these elements generate J as a 2-sided ideal. We
observe also that

(Clev)nJ=(T'(V)eT'(V))NJ=0

and so the natural map 7(V) — C(V) is injective when restricted to C1 V.
We shall regard C1@V as a subspace of C(V). Thus C(V) is generated, as
associative algebra with 1, by elements v, ... , v, subject to relations

vv; = (v, v,) 1

VU = =00+ 2 (vi, vj) 1 i<j.

By using these relations any polynomial in v, ... , v, can be written as a poly-
nomial in which each monomial has form v; v, ...v; where i} <i, <--- <,
and 0 <k <n. Moreover an element of C(V) in this standard form cannot be
simplified further by the use of the above relations. Thus we have shown

Proposition 13.12 (i) dim C(V)=2".
(ii) The elements v; v, ...v; for iy <i,<---<i, with 0 <k <n form a basis
for C(V). (The empty product is 1.) O

We note that all generators of J lie in T°V@T?V. We define
T(V)*,T(V)~ by

TV =TV

(V) = @T'V.

i odd
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Then we have
TV)=T(V)"®T(V)~
J=(NT(V)H)e(UNTV)).

This follows from the fact that J is generated by elements of 7(V)". Hence

(v)* v)~

CWM=75 T(V)*  INT(V)~"

We write C(V)* =" and C(V)~=-2Y_ Then

— JNT(VF) — JnT(V)-

C(V)=C(V)* & C(V)~.

In terms of our basis for C(V)), C(V)™ has basis v; v, ...v, fori; <i, <---<
i, with k even and C(V)~ has basis consisting of these elements with k odd.
Thus

dim C(V)* =dim C(V)~ =2""".

Now the associative algebra C(V) can be made into a Lie algebra [C(V)]
in the usual way by defining [xy] =xy — yx. Let L be the subspace of [C(V)]
spanned by the elements [vv'] for all v,v' € V. Then L can be spanned by
elements [v;v;] for i < j, and since

[vl-vj] =2vv; -2 (vl-, vj) 1

these elements are linearly independent. Thus dim L =n(n—1)/2. We shall
show that L is a Lie subalgebra of [C(V)].

Lemma 13.13 (i) Let x, y, z€ V. Then [[xy]z] =4(y, 2)x —4(x, 2)y.
(ii) Let x,y,z,weV. Then

([xy] [zw]]=4(y, 2)[xw] = 4(y, w)[xz] +4(x, w)[yz] —4(x, 2) [yw].
Proof. (1) [[xylz] = (xy—yx)z—z(xy—yx)
= XYZ—YXZ—2ZXy+2Zyx
= —xzy+2(y, 2)x+yzx —2(x, 2)y
+xzy—2(x,2)y—yzx+2(y, 2)x
=4(y, 2)x—4(x, 2)y.
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(i) [[xy], [zw]] = [xylzw = [xy]wz — zw[xy] +wz[xy]

[xylzJw+z[xy]w — [[xy]lw]z — w[xy]z — zw[xy] + wz[xy]
[xylz]w—[[xy]w]z + z[[xy]w] — w[[xy]z]
[[xylz]w] = [[[xy]w]z]

4(y, 2)x —4(x, 2)y, w] = [4(y, w)x —4(x, w)y, 7]

=4(y, 2)[xw] = 4(x, 2)[yw] —4(y, w)[xz] +4(x, w)[yz]. O

[
[
[
[
[

Corollary 13.14 L is a Lie subalgebra of [C(V)]. O

Now C(V) is a [C(V)]-module giving the adjoint representation so is in
particular an L-module. Lemma 13.13 (i) shows that its subspace V is an
L-submodule.

Proposition 13.15 Suppose the symmetrix scalar product on V is non-
degenerate. Then V is a faithful L-module.

Proof. Let x € L and suppose [xv] =0 for all ve V. We must show x=0. Let

x=Y,_;¢;[viv;]. We may define a skew-symmetrix n x n matrix C=/(c;)

by ¢; =0 and c; = —c;; for i < j. We have

> e [[vv;]v]=0.

i<j
By Lemma 13.13 (i) we have

4% cij (v, v) vi = (v, v) v;) =0.

i<j

The coefficient of v; in this expression is

[ S ()~ D 00) | =4 o)

j>l ]<z

It follows that
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for all i and all ve V. Let (v;, v;) =m. Then we have
Y cymy=0  forallik
j=1

that is CM = O where M = (mjk). If the scalar product on V is non-degenerate
then M is a non-singular matrix. Then C =0 and so x=0. |

Lemma 13.16 Let xe L and v,v' €V. Then

([xv], V") + (v, [xV']) =0.

Proof. 1t is sufficient to prove this when x =[yz] for y, z€ V. Now

([[yz]v], v') = 4(z, v) (v, V') = 4(y, v) (z, V)
(v, [z]v']) =4 (z, V) (v, y) =4 (y, V') (v, 2)

by Lemma 13.13 (i). The result follows. O

Thus we have a Lie algebra L of dimension n(n—1)/2, an L-module V of
dimension 7, and a symmetric bilinear scalar product on V invariant under L
in the sense of Lemma 13.16.

We now consider some special cases of the above situation. First let V be a
vector space with dim V =2/41 and let vy, v,, ..., v, v_;, ..., v_, be a basis
of V. Consider the symmetric bilinear scalar product V x V — C determined by

(o, vp) =2
(v, v_)=1 i=1,...,1

and all other scalar products of basis elements 0. The matrix of this scalar

product is
20 ----0
00 I,
01 0

The condition

([xv], v) + (v, [x0]) =0



286 Fundamental modules for simple Lie algebras

of Lemma 13.16 tells us that if the element x € L is represented by the matrix
X on V then

X'M+MX=0.

Now L has dimension [(2/41) and, by Proposition 13.15, acts faithfully
on V. However, the Lie algebra of all (2/41) x (2/4 1) matrices X satis-
fying X'M + MX = O is the simple Lie algebra B, (cf. Section 8.3) and has
dimension /(2/+1). Since L is contained in this set of matrixes we must have
L=B,.

We aim to find the spin module for B, inside the Clifford algebra C(V).
Recall that V has basis

Vgs Uty eee s Uy Uy oee s Uy
We define u;,=vyv; and u_;=vyv_; fori=1, ..., 1. Let U be the subspace of
C(V) spanned by elements

U_jU_j o U Uy Uy . Uy

for all subsets j, < j, <---<j, of {l,...,I} with 0 <r</. Bearing in mind
the natural basis of C(V) we see that these elements are linearly independent.
Thus dim U =2'. We have U C C(V)*.

Lemma 13.17 C(V)"U C U. Thus U is a left ideal of C(V)*.

Proof. We first observe that C(V)* is generated by the elements u; and u_;
fori=1,..., [ This follows from the fact that v, anticommutes with v; and
v_;foralli=1,...,L

We note next that u?=0 and u?;=0 for i=1, ..., 1, that, u,, u; anticom-
mute and u_;, u_; anticommute when i# j and both lie in {1,...,1}, that
u;, u_; anticommute for all i, j € {1,...,1}, and that

wu_;+u_ju;=—4-1.

— — 2 —
For w;u_;+u_;u;=vyv,0yv_; + vyv_;vy0,=—v5 (V,v_; +v_;v;)=—2-2(v;, v_;)1

1=

=—4.1.
It follows from these relations that

_ FHhu_; du gy itie{j,...,Jj}

0 otherwise
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where #_; means the term u_; is omitted.

0 ifie{j,...

—it Uy i T
Fu_jooouu gy ifiE{j,

U U Uy U=

This shows that u;U Cc U and u_,U C U, so C(V)*U C U.

287

. Ji}
AR

O

This lemma shows that we may regard U as a C(V)*-module under left
multiplication. U is therefore a [C(V)*]-module under the same action. Since
L is a Lie subalgebra of [C(V)"] we may regard U as an L-module under

left multiplication.

Warning note Whereas the action of L on U is given by left multiplication
the action of L on C(V) considered earlier in this section was given by Lie

multiplication.

We consider the weights of the L-module U. In order to do this we identify

the diagonal Cartan subalgebra H of L.

Lemma 13.18 Under the above isomorphism L= B, the element [v,v_;]]€ L

corresponds to the diagonal matrix

0

0

Proof. The matrix representation of L comes from the L-module V with basis

Vo> Ugs oo 5 U Uy oo, U_;. NOw
[[viv_;], v]=0
[lvv_il.v]=4 (v v;) v —4 (v, v;) v, =8, v,
[vv_].v_;]=4(v_i,v_;) vi—4 (v v_;) v_; =—8;-4v_,
by Lemma 13.13 (i).
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It follows from this lemma that the element

1
A
h= :
E 4[viv]
is represented by the diagonal matrix
0
A
A
A

We recall from Section 8.3 that such matrices form a Cartan subalgebra
H of L.

We consider the action of /4 on the L-module U. We have

— _1
[viv_;] = viv_; —v_v;= 5 (v;PeVeV_; — V_;VyVY;)
——u,u,l—i—zu,,u,
Thus
_ 1
[viv_ Ju_j coou_juy oy = —suwu_u Uy
FRU_ U U U Uy Uy
_ —2u_; ou_juy. oy itie{j,...,Jj}
2u_j ouj Uy itig{j,....J}
Thus

hu_j ...u_ju, (Zs,)\,) U_j oo Uy U

—1 ifie{j,...,J .
where g; = { Un i . Let u; € H* be given by w,(h) = A;. Then

1 ifig{j,....J}
the weights of L coming from the L-module U are

=

1
Do
i=1
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for all possible choices of the signs &, ==1. In particular the highest weight
is % 25:1 M

We recall from the proof of Theorem 13.9 that w, = % (my+---+up,). Thus
U has highest weight w,. It follows that U contains the spin module L (w,)
as an irreducible direct summand. But

dim U =dim L (w,) =2".
Thus we have proved
Theorem 13.19 Let L be the simple Lie algebra of type B,. Then the L-module

U constructed as above in the Clifford algebra is the spin module L (w,) of
dimension 2'. O

We now consider a second special case. This time let V be a vector space
with dimV =2/ and let v,,... , v, v_;, ..., v_, be a basis of V. Consider the
symmetric bilinear scalar product V x V — C determined by

(v;;v_;)=1 i=1,...,1

and all other scalar products of basis elements are 0. The matrix of this scalar

product is
0 I
M= ).
<1 1 0>

The condition of Lemma 13.16 implies that if x € L is represented by the
matrix X with respect to this basis of V then

X'M+MX=0.

Now L has dimension [(2/—1) and acts faithfully on V. The Lie algebra of
all 2/ x 2] matrices X satisfying X'M + MX = O is the simple Lie algebra D,,
by Section 8.2. Since dim D, =1(2]—1) we have L=D,.

We again aim to find the two spin modules for D, inside the Clifford
algebra C(V). Let U be the subspace of C(V) spanned by all elements of
form

v_:V

Uy e UV Y

for all subsets j, <---<j, of {1,...,1}. These elements are linearly indepen-
dent, so form a basis for U. We have dim U =2".

Lemma 13.20 C(V)U C U. Thus U is a left ideal of C(V).
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Proof. C(V) is generated by elements v;, v_; and we have

V:

1

. ‘U_jl ce 'U_jt

vﬂ»vﬁ-I "'v*jr V...V, = {
J1 —i —Ji

Thus v;U CU and v_,U C U, so C(V)U CU.

Let Ut=UNC(V)* and U"=UNC(V)~. Then we have
cwvytutcuncwv)r=u"
cC(VY*u cunc(v)y =U".

Since L C C(V)* it follows that
LUTCU", LU CU .

Thus U* and U~ are L-modules under left multiplication, with
dimU*=dimU~=2"".

We shall show that these are the two spin modules for L.

20 ;D v Yy ifie{j,...
V. = T
0 ifid{j,...

0 ifie{j,...
Fu_ VUYL ifig{j,...

i
2Ji}

. Ji}
v

We consider the weights of the L-modules U", U~ by identifying the

diagonal Cartan subalgebra H of L.

Lemma 13.21 Under the above isomorphism L= D, the element [v,v_;] € L

corresponds to the diagonal matrix

0
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Proof. The proof is the same as that for Lemma 13.18 with the first row and
column omitted. Ul

Thus the element

!

A

h= !
; 4[vv_]
is represented by the diagonal matrix
A
A
-\

[viv_Ju_j .o ovj vy
= VUV U Uy ) = U0 U Y
Z{—2v_jl...v_j,v1...v, ifie{j,...,J}
P2V R T if i {j,...,J}

since v_;v; +v,v_;=21. Thus

—iYi iY—i

I
_1
hv_ j ...v_ v .. =3 (Zsi)\l) UV Uy
i=1

-1 if ie{j,...,J
where g; = 1 l.e {J.l’ ].t} As before let u; € H* be defined by
1 ifig{j,...,J}
A
A
A =A,.
I"Ll _Al 1
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Then the weights of the L-module U are

1

1

2 ZSiMi
i=1

for all possible choices of the signs &, ==£1.

If [ is even, the basis elements with ¢ even lie in U™ and those with ¢
odd in U~. Thus the weights of U' have an even number of &; negative
and those of U~ have an odd number negative. Since u, >, > ---> u, the
highest weight of U™ is %Zle um; and that of U~ is % (Zﬁ;} M —,u,).

If [ is odd we have the reverse situation in which %Zﬁ;l M; is the highest
weight of U~ and 1 (Y17} p; — ) is the highest weight of U™.

Now by the proof of Theorem 13.11 we have

% (g + oy o) = o
% (M + ey — ) = 0.
Thus we have proved

Theorem 13.22 Let L be the simple Lie algebra of type D,. Then the
L-modules U™, U™ are the spin modules of dimension 2'='. If | is even we
have Ut =L (w,), U” =L (w,_,). If l is odd we have Ut =L (w,_,), U™ =
L(w)).

13.6 Fundamental modules for C,;

The fundamental weights w,, ... , o, for a simple Lie algebra of type C,; will
be numbered according to the labelling of the Dynkin diagram

1 2 3 -1 1

As before we shall use Theorem 13.1 to calculate dim L (w j). We knows from
Section 8.4 that the roots of C, have the following form. Let
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Then the fundamental roots are
a;(h) = A=A, for 1<i<i-—1
a,(h) =24,
The full set of positive roots is given by
h— A —A; fori<j
h— A +A; fori<j
h— 2,

where i, je{l,...,I}. These positive roots can be expressed as combinations
of fundamental roots as follows:

a+-ta; I<i<j<l
a+--to 24+ 20+ I<i<j<l
20,420, +q 1<i<l

The first two families are short roots and the third family are long roots. The
weights w; are given by

U)1="'=w[71=1 w,=2.
According to Theorem 13.1 we have

dimL (w;)= ] d,

aedt

where =) k;a; and

4 - 25:1 kiw,«—l—kjwj.
: Zg:l kjw;
We have d, =1 if a does not involve «;.
We first suppose that je{l,...,/—1}. Then the positive roots involv-

ing j are:
at+eta oy I<i<j<k<l
Qoo H2a 0+ 420+ oy I<i<j<k<l
a+- oy 20+ 420+ 20+, 1<i<k<)
20;+---+2a;+--+20, 4o,  1<i<].
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The values of d,, in these four cases are

k—i+1 2l—i—k+3 2—i—k+4 1—i+2
k—i ~ 2—i—k+2" 2l—i—k+2 I—i+1

respectively. The product of all possible d,, in these four cases is

(G+DG+2)---1 Ql=j+1)Ql=))---(+2)
12 l—j  QI=2j+1)Q2l=2j)---(I—j+2)
QI+ 1)2121—1)--- (21— j+2) I+1

Ql—j+2)QI—j+1)---(21-2j+3)" 1—j+1
respectively. The total product [],.q+ d,, is

(21)!

This expression may be written in a more suggestive form by using the
identity

21 20\ (D) .
(j)—<j_2>_—(2l_j+2)!ﬂ(2z+1)(21 2j+2).

2 2
Thus dimL(wj):< .l>—<_ ! ) for1<j<Il-1.
J J—2
We now suppose that j=1I. The positive roots involving «; are
20,4 +20,_+ 1<i<l
a+-ta; 24+ 20+ I<i<j<l
The first family are long roots and the second short roots. The values of 1d,

in these two cases are

I—i+2 20—i—j+4
I—i+1" 2l—i—j+2

respectively. The product of all possible d,, in these cases is

QI+1)Q21)---(1+2)
(I+2)(I+1)---3

I+1,

QIR
=+

respectively, and the total product [],cq+ d,, is
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(1)-(2)=Gam

wmser=2)-()

Thus we have shown

By using the identity

we see that

Proposition 13.23 The dimensions of the fundamental modules for the simple
Lie algebra of type C, are

(%) (¥ (2)-(2) @)-(2)

13.7 Contraction maps

We shall now identify the fundamental modules whose dimensions we have
obtained. We begin with L (w,).

Proposition 13.24 The natural 21-dimensional C,-module is isomorplic to
L(w,).

Proof. Let V be the natural C;-module. Let
A

-\
Then the weights of V are w,, ..., u;, —tby, ..., —p, where u;(h) = A,. Since
Mi— M =@ I<i<i-1

2u=a
we have

Py = g = o= iy > 0.
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Thus the highest weight of V is u,. We have

p =+t +5a
Py =+ o +5a
_ 1
My =54
We also have a;=3; A, w; which in type C; gives
o, =20,—w,

oy =—0,+2w, —w;

a =—0,_,+20,_—o,
o, =—2w,_+2w,.

It follows that

My =
My =~ + W)
M=—w_ + o

Thus V is a C;-module with highest weight w,. It therefore contains L (w,)
as an irreducible component. However,

dimV =dim L (w,) =2/
thus V is irreducible and isomorphic to L (w,). U

We now consider the fundamental modules L (wj) for j>2. We have

amz ()= (%)~ (,2,)

This suggests that we should look for L (w j) as a submodule of the exterior
power A/V. The key idea is to find a homomorphism of C;-modules from
AJV into A/2V, called a contraction map.
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Proposition 13.25 Let v, v'— (v, V') be the skew-symmetric bilinear map
V xV — C given by the matrix

o I
M= 1.
<_11 0)

Then there is a unique homomorphism of C;-modules
0: AV — ATV
satisfying the condition

O(uy Ao Au) =D (=1 (s u)ug Ae ANl A A

r
r<s

UgN---Au; forall uy, ..., u;€V. ()

Here as usual the notation u,, ik, means that those terms are omitted.

Proof. Tt is clear that if such a map 6 exists it will be unique. To prove the
existence let vy, ..., v,, be a basis of V. Then there is a unique linear map 6
satisfying

O(viI A---/\v,)):Z(—l)’+H (Vs V)V Ar s AD A A A A

,
r<s

for all iy,...,i;e{l,...,2l} with i, <---<i;. We show this map has the
required properties. Since both sides of equation () are linear in u;, ... , u; it
will be sufficient to prove it when each u, is one of the basis elements of V.
If the same basis element appears twice both sides of (1) are 0. Thus we may
assume the basis elements are all distinct. They may not occur in increasing
order, thus we must show that the above formula defining 6 remains valid if
the factors v, , ... .V, are permuted. In fact it is sufficient to see this if we
transpose two consecutive terms v, , v; . When we carry out such a transpo-
sition the expression v; A+ A v, changes in sign. We show that each term
(D)™ (v, v ) v A AD A AD A AY,

i
changes in sign also. If neither of r, s lie in {k, k+ 1} the term

U A AD A AD; A AD;
’ S :

I

will change in sign when we make the transposition. If just one of r, s lies
in {k, k+1} the term (—1)"**~! will change in sign when the transposition
is made. Finally if r=k, s=k+1 the term (vir, vij) changes in sign, since
the bilinear map is skew-symmetric. This shows that the linear map 6 we
have defined satisfies ().
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It remains to show that 6 is a homomorphism of C;-modules. Let x lie in
the Lie algebra C,. Then

X0 (ug Ao nu) =x D (D)™ (s w)ug A AN ATGA - A
r<s

=33 (=D u)ug A AXUG A AN

r<s k
k#r ks

On the other hand we have
Ox(uyA - Auy)

=0 Y uy A Axup A Ay =x0 (uy A Auy)
k

+ Y3 (DT g, w)ug A A A AN A
kk<sx

+ 33Dy xw ) ug A A A N A A
kr<kr

Renaming the suffixes we see that the last two sums cancel since
(xuy, ug)~+ (uy, xu,)=0.
This condition is equivalent to
X'M+MX=0

where X is the matrix representing x on V, and we recall from Section 8.4
that the simple Lie algebra C, satisfies this condition. It follows that

0x(u1A~~-/\uj)zxﬁ(ul/\u-/\uj)
and so 0 is a homomorphism of C;-modules. U

This homomorphism 6 : A’V — A/=2V will be called a contraction map.
Now the weights of A/V are sums of j distinct weights of V. By the proof
of Proposition 13.24 the weights of V are
W > =W+ Wy > —Wy+ W3 > >—w,_;+w,
=W W0, — Wy > W) — Wy > — .
Thus if j <! the highest weight of A’V is @ ;- Similarly the highest weight of

A7?Vis w; ,. Since w; > w;_, we see that w; is not a weight of A/*V. Since
w; is the highest weight of AV the module L (w j) must be an irreducible
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direct summand of A/V. On the other hand L (w j) cannot be a submodule of
A7V, as w; is not a weight of this module. Thus L (w;) must lie in the
kernel of the contraction map 6.

We shall show subsequently that when j < the contraction map 6 : AV —
A2V is surjective. It will follow that

21 21
dim(ker 6) = ( ) — ( . ) =dim L (wj)
J j=2
and therefore that L (a) j) =ker 0. This will identify the irreducible module
L (w j) as the submodule of A’V which is the kernel of the contraction map 6.

Letv,,...,v;,v_y, ..., v_; be the natural basis of V with respect to which
the skew-symmetric bilinear form is given by

(v, v) =1 I1<i<l

(v v) =—1
and all other scalar products zero. Let W be the subspace of V spanned by
Vy,...,v; and W~ the subspace spanned by v_,,...,v_,. Then W, W~ are

isotropic subspaces of V, i.e. the skew-symmetric form restricted to W and
W~ is identically zero. Also we have V=W @ W~. It follows that

ANV= P (AMWRANW).

a+b=j
The contraction map 6 : AV — A/72V satisfies
O(AWRA'WT)CAT'WRA"' W™

since a basis element in W has a non-zero scalar product only with a basis
element in W~. Thus in order to show that 6 : A’V — A/=2V is surjective for
Jj <l it will be sufficient to show that

0: AWRA'W™ = A" WA 'W-

is surjective whenever a+b <I.
For each subset /C{l,...,/} we define v;=v; A---Av;, where [=
{iy, ... i} with iy <--- <i,. We also define v_;=v_; A---Av_, . Then any

iy i

basis element of A 'W ® A’~!W~ can be written in the form
+ (vy Avp) @ (v_r Av_y)
for some subsets 7, X, Y of {1,..., [} with

TNX=¢, TNY=¢, XNY=6¢, |X|+|T|=a—1, |Y|+|T|=b-1.
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We write |T|=r.Sincea+b <lwehave | X|+|Y|+2r+2 <l thatis [ — | X| —
|Y|>2r+2. Thus it is possible to choose a subset S of {1, ... , [} such that

IS|=2r+1, SNX=¢, SNY=¢, SOT.

We can now describe an element of AW ® A?W~ which maps under 6 to a
non-zero multiple of (vy Avy) ® (v_y Av_y).

Proposition 13.26 Suppose subsets T, X, Y, S of {1,...,1} are chosen as
above, and let 0 : AV — NIV be the contraction map. Then

61> (=D'ilr—0)! > (vxAvy)®(v_y Av_y)
=0 s
|Ul=r+1
[UNT|=i

=+ (vyAv)Q_rAV_y).
Consequently the map
0: AWRA'W > AT WRA"'W
is surjective when a+b <I.

Proof. We note that SO T, |S|=2r+1, |T| =r and that we are summing over
all subsets U of S with |U|=r+1and |[UNT|=i. Since |X|+|T|=a—1 and
|Y|+|T|=b—1 we have |X|+|U|=a and |Y|+ |U|=b. Thus the left-hand
side lies in AW Q@ A’W~.

By definition of 6 we have

0 (vu ® v—u) = (_1)’ Z UR ® v—R
réu
|R|=r
where the right-hand side involves a sum over all r-element subsets R of U.
Thus

0 Z vy ®@u_y | =(=1)" Z Z VR ®U_p

U U R
|UNT|=i |U|=r+1 \ |R|=r
|UNT|=i “RCU

==D"Y 1 Y 1| Qv
u

R
|R|=r RCU
|Ul=r+1
|UnT|=i
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Since |[UNT|=i and R is obtained from U by omitting one element we
have |[RNT|=i or [RNT|=i— 1. We split the sum according to those two
possibilities. Thus

0 Z vy ®@u_y

U
|[UNT|=i

=(=0" X Yo | u®up+t(=1)" X > 1|w®vg
R U

R U
[R|=r RCU [R|=r RCU
|RNT|=i \ |Ul=r+1 |RAT|=i—1 \ [U|=r+1

|UNT|=i |UNT|=i
=(=1" X (+D@vp+(=1)" X (r+1-)®v ¢
R R
|R|=r |R|=r
|ROT|=i |RNT|=i—1

since in the first case the additional element of U can be chosen in i+ 1 ways
and in the second case in r+ 1 —i ways. Thus

r

61> (=D)'ilr=i)! Y vy®vy
=0 N T|=i

:(—1)"Xr:(—1)"i!(r—i)! Y+ D) ®u_y
=0 \R|R=r
|RNT|=i

+(=1)" Xr:(—l)i ir=0! Y (r+1—i)vQv_g.
i=0 R

|R|=r
|RAT|=i—1

We rename the variable i in the second sum to give

(—l)ri(—l)ii!(r—i)! D (i+D)v®u_p
=0 \R\R=r
|RNT|=i

+(=1)" Vi(—l)”l(i—l—l)!(r—i—l)! > (r—ivr®v_pg
==l |Rf=r
|RNT|=i
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) S 4 D= Y (1= 1)og® v s
i=0 R
|R|=r
|ROT|=i

+(r4+1)! D v, ®u_,

R
|R|=r
|RNT|=r

=(r+Dlv,Qu_s.

We now consider

1Y (=D'il(r—i)! > (vxAvy)Q(v_y Av_y)
=0 uls
|U|=r+1
lunT|=i
Since the v; for i€ X and the v_; for i€ Y have scalar product O with all

factors in the above product they are not involved in any contraction. Thus

0 i(—l)ii!(r—i)! > (vyAvy)®(v_y Av_y)

i=0 U
|UNT|=i

=vy AO| D (1) il(r=i)! Y vy®u_y | Avy
=0 U T|=i

=vy A((r+ D Qu_p) Av_y
=(r+D(vyAvy)®(v_r Av_y). O

Corollary 13.27 The contraction map 0 : AV — N2V is surjective when
J=L

The surjectivity of 6 enables us to identify the fundamental modules L (w j).

Theorem 13.28 The fundamental modules L (a) j) for the simple Lie algebra
C, are given as follows.

(a) L (w,) is the natural 2I-dimensional C,-module V.

(b) For2<j<I,L (wj) is‘ the submodule of AV given by the kernel of the
contraction map 0 : ANV — A/=2V.
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Proof. (a) was shown in Proposition 13.24. We also pointed out earlier that
L (w;) is a submodule of A/V contained in the kernel of 6. Since 6 : A/V —
A2V is surjective for j < we have

) 21 21
d1mker0=<,>—(, )
J j—2

and this is equal to dim L (a) j) by Proposition 13.23. It follows that L (w j)
ker 6.

O

13.8 Fundamental modules for exceptional algebras

By applying Theorem 13.1 to the exceptional simple Lie algebras and making
use of the information about their root systems available in Sections 8.5, 8.6
and 8.7 we can show that the dimensions of the fundamental modules for
these algebras are as shown. We omit the details.

14 7

G, G——0

2 (D)2 (D= o

Fy O—O0 —J>y>—0—o0
n G ) )
Eg o O I O ‘o)
78

s6 (-1 (D56 C)-(2) ()19 13
o o o o

E, o l o o

912
6899079264
248 30380 2450240 146325270 6696000 3875
Eg (e, O O O l O O

147250



304 Fundamental modules for simple Lie algebras

We shall show in each case how to obtain the fundamental module of small-
est dimension. We begin by obtaining a 27-dimensional fundamental mod-
ule for Ej.

Proposition 13.29 (a) The number of positive roots of E; not in Eg is 27.
(b) The subspace V of E, spanned by vectors e, for such roots is a 27-
dimensional fundamental Eg-module.

Proof. We recall from Section 8.7 that the fundamental roots of E; are given
by

Br=PBs  B3=Bs Bs=Bs Bs—Bs Betby
C 0O) 0O) 0O) O)

O O O O

Be—07

and that the full set of roots of E; is
+B,£B; i#j i,j€{2,3,4,5,6,7}
+(B1+Bs)
e ge{l,-1}, Jla=1 g =g¢.
The positive roots are
B:—B; i#j i,j€{2,3,4,5,6,7}
B:+B; i#j i,j€{2,3,4,5,6,7}
_BI_BS
%Zgiﬁi ge{l,—1}, J]e=1, &=g=—1.
The positive roots of E, which are not roots of E, are
B, —B; je{3,4,5,6,7}
B, +B; je{3.4,5,6,7}
—B1—Bs
%Zsiﬁi [Tei=1, e=g=—1, &,=1.

The number of such roots is 27.
Now let V be the subspace of E; spanned by the root vectors e, for such
roots a. Then dim V =27.
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Now E; may be regarded as an E,-module giving the adjoint representation.
In particular E; may be regarded as an Eg-module. We observe that V is
an Eg-submodule. To see this it is sufficient to show that [e,eg] €V for all
ac®(Ey),Bed (E,)— D" (E;). We have

| NapCasip if a+Bed(E;)
[eaeﬁ] = .
0 otherwise.

Suppose a+ B € ®(E;). Since B is not a root of Es, 8 will involve the
fundamental root of E; not in E, and since 3 is positive this fundamental root
will have positive coefficient in 8. It will therefore have positive coefficient
in @+ B, and so a+ L€ ®* (E;). We claim that o+ 3¢ P (E;). Suppose to
the contrary that a+ 8 € ® (E). Then —a € ® (E,) and

[ea+,867a] = NCH»B,faeB‘

Since N, 37#0 it follows from Proposition 7.1 that N,,5 _,7#0 and so
Be®(E), a contradiction. Hence a+ L€ ®* (E;) — T (E) and V is an
E,-module.

In order to determine the highest weight of V it is convenient to use the
linear function

8
h:) RB;—R
i=1

determined by the property that 4 («;) =1 for each fundamental root «; of
E;. Thus

h(B;i—Bi)=1 forie{l,...,6}
h(Bs+B7)=1

h(—;ilg):l.

h(B))=6, h(B)=5, h(B;)=4 h(B)=3, h(Bs)=2,
h(Be)=1, h(B;)=0, h(Bs)=-23.

Hence we have

Of our 27 roots the one with the highest A-value is —f, —Bs. This must
therefore be a highest weight of V. Now the fundamental roots of E, are
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e

Bs=Bs  Ba=PBs Bs—Bs Lot -
O O O O

=

Be=1

and —f3, — B is orthogonal to all of them except —% Z§=| B;. Moreover the
scalar product {, } satisfies

Bi} 2% {_;Zﬁi’_éZBi}

i—1

{—BI—BS, i

thus —3, — Bs is the fundamental weight wg. Hence L (wyg) is an irreducible
direct summand of V. Since

dim L (wg) =dim V=27
we deduce that V=L (wy). O

In order to obtain the other 27-dimensional fundamental Eg-module we
introduce the dual module. We recall that, given any L-module V, the dual
space V* of linear maps from V to C may be made into an L-module by the
rule

(xf)v=—f(xv) xelL, feV* wveV.

The weights of V* are the negatives of the weights of V. In the case of the
27-dimensional Eg-module V above, the highest weight of V* is the negative
of the lowest weight of V. The lowest weight of V is the one with the smallest
value of 4, i.e. B, — 5. Thus the highest weight of V* is B;—f3,. This is
orthogonal to all fundamental roots of E except for a; = 3; — 3,. Since

{33 _182, ,33 _34} = % {Ba _34’ B% _ﬁ4}

we deduce that 8; — 8, = w;. Hence V* =L (w;).
Now the weight of V with second highest value of % is % (=B, +B,+ B3+

B4+ Bs+Bs+ B, —Bs) and the third highest is % (=Bi+Br+B3+Bs+Bs
—Bs — B; — Byg). Thus the highest weight of A2V is

(=B1—Bs)+35 (=Bi+Br+Bs+ By +Bs+Bs+ B — Bs)
= % (_331 +.32+B3 +.34+Bs +:86+B7 _3,38)-
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By considering the scalar products {, } of this weight with the fundamental
roots of E¢ we see that this weight is w,. Since

27
dim L (0,) = ( 5 ) =dim A?V

we deduce A2V =L (w,).
Similarly the highest weight of A3V is

(=B —Bs)+3 (=B +Br+ B3+ Bs+Bs+Bs+ B, — Bs)
+3 (=B, 4B+ B3+ Bs+Bs—Bs — B, — Bs)
:_ZB| +Bz +B3 +B4 +Bs _238'

We check by computing scalar products {, } that this is the weight w5 of E,.
Since

27
dimL((uS):<3 > =dim A’V

we deduce A3V =L (w;).
It may be shown similarly that

AV*=L(w,) and AV'=AV=L(ws).

Finally L (wg) is the adjoint module. Thus the fundamental E¢-modules are

v* AVF ABVF=A3Y AV v

O O O O O

~

We now consider the simple Lie algebra E; and obtain a 56-dimensional
fundamental module. The idea is similar to what we have seen for E,.

Proposition 13.30 (a) The number of positive roots of Eg not in E, is 57.

(b) The subspace V of Eg spanned by vectors e, for such roots is a
57-dimensional E,-module. V decomposes as the direct sum of a
56-dimensional fundamental module with a 1-dimensional module L(0).
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Proof. We see from Section 8.7 that the positive roots of Eg not in E; are
Bi—B; j€{2,3,4,5,6,7}
Bi+B; j€{2,3,4,5,6,7}
Bi—Bs i€{2,3,4,5,6,7}
—B;—Bs i€{2,3,4,5,6,7}
Bi—Bs

M=

1
1Y &b [[e=1, &=-1, &=L
i=1

The number of such roots is 57.

Let V be the subspace of E; spanned by the e, for this set of roots. The
argument of Proposition 13.29 shows that V is an E;-module. Now 3, — 3¢
is orthogonal to all fundamental roots of E; and it follows that

[eaeﬂl_ﬁs]zo for all e e ® (E,).

Hence Ceg g is a 1-dimensional E;-submodule of V. Let V' be the subspace
spanned by the remaining e,. The fact that 3, — 35 is orthogonal to all
a € ® (E,) implies that 3, — B¢ cannot be expressed in the form a+ 3 where
ac®(E;),Bed (E;). This shows that V' is an E,-submodule of V. Its
highest weight is obtained by picking the weight with the highest value of #,
and this is 3, — B¢. In fact the first few highest weights are

Bo—Bs, B3s—=Bs: Ba—Bs, Bs—Bs,

By calculating scalar products {, } with the fundamental roots of E, we see
that 8, — B3 = w,. Thus L (w,) is an irreducible direct summand of V'. Since

dim L (w,) =56 =dim V'
we have V' =L (w,). Thus
V=L () ®L(0). O

We can obtain information about some of the other fundamental E;-modules
by considering exterior powers of V’. The highest weight of A2V’ is

(Bz _B8)+(B3 _Bs) zﬁz‘i‘ﬁs _ZBS'

A calculation of scalar products {, } shows that

Byt B3 —2Bs = w;.
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Thus A2V’ contains L (w;) as an irreducible direct summand. But we know

that
56
dim L (w;)= < 5 ) —1.

Thus
A*V' =L (w;) ®L(0).
The highest weight of A*V" is
(B, —Bs) + (B3 — Bs) + (Bys— Bg) = By + B3 + By — 3Bs.
We have
B+ B3+ By —3Bs=w,.

Thus L (w,) is an irreducible direct summand of A*V’. We know that

dimL (w,) = (536> —56.

In fact we have
ANV =L(0,)®L(w,).
The highest weight of A*V’ is

(B2 —Bs) + (B3 —Bs) + (Bs— Bs) + (Bs — Bs) =B+ B3 + By + Bs — 4Bs.
We have

By+ B3+ Bs+Bs —4Bs = ws.

dim L ()= (546) - (526)

AV =L (w5)® L (w3) & L(0).

We know that

In fact it turns out that

Some of the remaining fundamental E,;-modules may be identified by
means of the adjoint module. The highest root of E; is —, — 33 and we have
—B, — Bs = wg. Thus we see that L (wg) is the adjoint E,-module, since

dim L (wg) =133 =dim L.
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The second highest root of E; is 3 (—B, + B, + B3+ By + Bs +Bs + B — Bs)-
Thus the highest weight of A%L is

(—=B1—Bs)+ 5 (—Bi + By +Bs +Ba+Bs+Bs+B7—Bs)
= % (_331 +32+B3 +:34+B5 +B6+B7 _3,33)~
We have

% (=3B + B2+ B3+ By+Bs+Bs+ B —3Bs) = ;.

Thus L (w,) is an irreducible direct summand of A2L. Since

dimL (w;)= <1;3> -1

we have
A’L=L (w;)®L(0).

We next consider the simple Lie algebra Eg. The smallest dimension of a
fundamental module for Ej is

dim L (w,) =248.

The highest root of Eg is B, —Bs, and we have 3, —[B3=w,. Since
dim L =248 we deduce that L (w,) = L. Thus the fundamental module L (w,)
is the adjoint module.

The description of the remaining fundamental modules of Ej is considerably
more complicated than in the other simple Lie algebras. We shall not discuss
the details.

We now turn to the simple Lie algebra F, and show how to obtain the
26-dimensional fundamental module. This will be done by identifying F, with
a subalgebra of E,. We shall retain our previous numbering of the fundamental
roots of E, given by

3 4 5 7 8
O O I O O
6

Let o be the permutation of the vertices given by

=3 8)@ 7)(5)(6).
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Then o gives a symmetry of the Dynkin diagram of E, with 2 =1. We have
AU([)(T(]):AIJ fOI' all i, j.

Thus by Theorem 7.5 there is an automorphism of E,, which we shall also
call o, satisfying

a(e)= €a(i)
o(f)= f(r(i)
o (h;) = hy).

Since e;, f;, h; generate the Lie algebra, o is determined by these conditions,
and we have o2 =1.

We may define a linear map on the real vector space spanned by the simple
roots, also denoted by o, to satisfy

o(a;)= Ay
Then we have o(®) = ®. All the o-orbits on ® have size 1 or 2. Examination

of the root system of E, shows there are 24 orbits of size 1 and 24 of size 2.

Proposition 13.31 Let L be the simple Lie algebra Eg and o : L — L be the
automorphism of order 2 given above. Then the subalgebra L’ of o-stable
elements of L is isomorphic to F,. The elements

Ei=e¢e E,=e; E;=e,+e; E,=e;+e¢g
Fi=fs E=f F=fi+f F=i+f
Hy=h, Hy—=hy Hy=h,+h, H,=h;+hg

are standard generators of F,.

Proof. Let (Ai j) be the Cartan matrix of F, given by

2 -1 0 O
-1 2 -1 0
A= 0 -2 2 -1
0 0 -1 2

It is straightforward to check that the elements E;, F;, H; satisfy the relations
[HH;]=0
[HE;]=A,E,
[H.F|=—A,F;

it
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[EiFi]:Hi
[EF|=0 ifisj
[Ei, [EIE].]]=0 if i

where the last two relations have 1 — A;; factors E;, F; respectively. By Propo-
sition 7.35 there is a homomorphism

0:F,—~L

whose image is the subalgebra generated by the elements E;, F;, H,. Since
0+#0 and F, is simple the image of 6 is isomorphic to F.

We shall also show that im § = L. Since each E,, F;, H; lies in L’ we have
im @ C L?. On the other hand consider the decomposition

L=H® ) Ce,® Y (Ce,+Cepyy)-
aed acd
o(a)=a o(a)#a

Each direct summand is o-stable, thus L7 is the direct sum of the o-stable
subspaces of the components. We have

dimH” =4

dim (Ce,)” <1 if o(a)=«a

dim (Ce,+Ce,py)” <1 if o) #a.
Thus dim L” <4424 424 =52. But dim(im 0) =52, thus im § =L“. Hence
L is isomorphic to F,. U

Now let V be the 27-dimensional fundamental module L (wg) for E, con-
structed in Proposition 13.29. Then V may be regarded as an F,-module using
our embedding of F, in E,. We label the fundamental roots of F, by the
diagram

1 2 3 4

o a—>o o

Proposition 13.32 The F,-module V decomposes as
V=L (w,)®L(0)

where L (w,) is the 26-dimensional fundamental module.
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Proof. We determine the weights of the F,-module V. We recall that the
weights of V have form

Now the fundamental roots of Eg are

ai:ﬁi—BH_l l=1,,6
a; = Bs+ B,

8
Qg = _% Z:Bz
i=1

Also a;(h;)=A; i,jefl,...,8} where (A;) is the Cartan matrix of Ej.
It follows that the numbers B; (h;) i, je{l,...,8} are given by
B.(h)=1 i=1,...,7
Bipi (h)=—1 i=1,...,6
B, (hg)=—1 i=1,...,8
B;(hj)=0  otherwise.
Let H,,H,, H;,H, be the fundamental coroots of F, defined above

and w,, w,, w;, w, the corresponding fundamental weights of F,. Then
w; (H;)=8§,;. By calculating the values B; (H;) we deduce

Blzﬁzzﬁsz_%‘%

Bs =%a)4

B =w3—%w4

Bs =w2—w3—%w4

Bs =w1—w2+w3—%w4

_ 1
B, =0T 03— 30,
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when the f3; are regarded as weights for F,. Hence the 27 weights of the
F,-module V are

o, 0, —0;, 0, —0,, 0, — 03, 03— 04, 03 —20,, ©,—0,+0;, V, — O,
Fw,, 0 — 03+ 0, 0, — 03— @y, W, —20;+ 04, 0, — W)+ ©; — Wy}
u{0, 0, 0}.

The only dominant weight among these, excluding 0, is w,. Thus V has
highest weight w, and so L (w,) is an irreducible direct summand of V. Since

dimV =27, dimL(w,)=26
we have
V=L (w,)®L(0). U
Using the relation a; =3 ; A;w; in F, we see that
wys=0a;+2a,+3a;+2a,.

This is the highest short root of F,. All short roots of F, are transforms of this
one under elements of the Weyl group W. Thus all 24 short roots of F, are
weights of L (w,). So the weights of L (w,) are the 24 short roots together
with 0 with multiplicity 2.

We now discuss the other fundamental modules for F,. We first consider
L(w;). The relations a; =}, A ;; for F, show that

o, =2a,+3a,+4a;+2a,.
We recall from Section 8.6 that
a=B,—B, a,=B,—B; a;=B; a= % (=B =B, —B3+B,)
and so
0, =20, +3a,+40;+ 20, =6, +B,.

The long roots of F, have form 8, £ 8; and, since B, > B, > 8, > B3, B, + B,
is the highest root. Thus w, is the highest root of F, and L (w,) is therefore
the adjoint F,-module.

The remaining fundamental modules L (w,) , L (w;) for F, satisfy

dim L (w,) = (522> —52

dim L (w;) = (226> —52.
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It can be shown that L (w,) , L (w;) appear as irreducible direct summands of
AL (w,), A*L (w,) tespectively, and that

AL (w) =L(0,)®L(w,)
NL(0,)=L(0)®L(w3).

Finally we consider the simple Lie algebra G, and show how to obtain
the 7-dimensional fundamental module. We do this by identifying G, with a
subalgebra of D,. The fundamental roots of D, will be numbered as in the

diagram
1 2 j 3
4

Let o be the permutation of the vertices given by
o=(1 3 4)(2).
o gives a symmetry of the Dynkin diagram with o> =1. Since

A(T(i)(]’(j) ZAU fOI all i,j

there exists by Theorem 7.5 an automorphism o of D, satisfying
o(e)= Co(i)
a(f) =T (i)
o (h;) = h,-
We may also define a linear map o on the vector space spanned by the simple

roots, satisfying o (a;) = ;). We have o(®)=®. These are 6 o-orbits of
size 1 on ® and 6 orbits of size 3.

Proposition 13.33 Let L be the simple Lie algebra D, and o : L — L be the
automorphism of order 3 given above. Then the subalgebra L° of o-stable
elements of L is isomorphic to G,.

The elements

E, =e, E,=e +e;+e,
F1:f2 F2:f1+f3+f4
H =h, H,=h +hy+h,

are standard generators of G,.
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Proof. The idea is the same as that for F, in E;. The Cartan matrix of G, is

Am (_23 ‘21) .

It is again straightforward to check that the elements E,, E,, F\, F,, H,, H,
satisfy the defining relations

where the last two relations have 1— A;; factors E;, F; respectively.

Thus by Proposition 7.35 there is a homomorphism 6 : G, — L. The image
im 6 is isomorphic to G,. We show im6= L. Since E,, F;, H; lie in L’ we
have im 6 C L?. Now consider the decomposition

L:H@ Z (CeaGB Z (Cea+ce(r(a)+ce”2(a)).

acd aed
o(a)=a o(a)#a

Each direct summand is o-stable, thus L7 is the direct sum of the o-stable
subspaces of the components. We have

dimH? =2

dim (Ce,)’ <1 if o(a)=«a

dim ((Cea +Cepe+ (Ce(,z(a))u <1 if o(a)#a.
Thus dim L7 <2+ 6+ 6= 14. But dim(im 6) = 14, thus im 8= L. Hence L’
is isomorphic to G,. UJ
Proposition 13.34 Let V be the 8-dimensional natural D,-module. Regard
V as a G,-module using the above embedding of G, in D,. Then

V=L (w,)®L(0)

where L (w,) is the 7-dimensional fundamental G,-module.
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Proof. We recall from Section 8.2 that in this 8-dimensional representation
we have
ege=E,—E, . e=Ej3—E;, e=E,—-FE,; e=E ,—E ;
h=—E ,+E),, fi=—E, 3+Ey, fi=—E; +E;,
Jo=—E_3,+E_4;.

Hence
hy=E,—Ep—E  +E, ,
hy=Ey—Ey;—E 5 ,+E 53
hy=FEy3—Eyy—E 5 3+E 44
hy=FE;;—FE_, ,—E 5 5+E4,
and so

H =Ey—Ez—E , ,+E 5 ;
Hy=E—E)+2E—E | | +E, ,—2E 5 ;.

Let vy, v,, v3, vy, V_, V_,, U_5, U_, be the natural basis of V. Let w,, w, be
the fundamental weights for G,. Since w; (H j) =§,; these basis vectors span
weight spaces with weights

w,, W —w,, —0+2w, 0, -, —-w+w0, 0 —-2v, 0

respectively. The highest weight is w,, thus L (w,) is an irreducible direct
summand of V. We have

dimV=8, dimL(w,)=7
and so
V=L (w,)®L(0).

We note that w, =« +2a, is the highest short root of G,. All short roots
are transforms of this root by elements of the Weyl group, thus all six short
roots are weights of L (w,). Thus the weights of L (w,) are the short roots
together with 0.

Now we have

E\=Ey—E 3, E=E,+E,+E ,—E, —E,;—E, ;
Fi=—E, 3+Ey, FB=—E  ,—E; 4—E 3y +E)+Es+E 4.
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It may be checked that the vector v, —v_, is annihilated by E|, E,, F}, F, and
so spans the 1-dimensional submodule L(0). U

Finally we consider the other fundamental G,-module L (®,). The relations
;=) ;A;w; show that

0, =2a,+3a,.

This is the highest root of G,. Therefore the fundamental module L (w,) is
the 14-dimensional adjoint module.
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Generalised Cartan matrices
and Kac—Moody algebras

In 1967 V.G. Kac and R.V. Moody independently initiated the study of
certain Lie algebras L(A) associated with a generalised Cartan matrix A. An
nxn matrix A=(A;;) is called a generalised Cartan matrix if it satisfies

the conditions

A;=2 fori=1,...,n

A ;€Z and A;<0 if i#j

Al-j:O implies Aj,-:0.
The Cartan matrix of any finite dimensional simple Lie algebra is a generalised
Cartan matrix, as shown in Section 6.4. We shall see that, in the special
case when A is a Cartan matrix, the Lie algebra L(A) constructed by Kac
and Moody coincides with the finite dimensional simple Lie algebra with
Cartan matrix A. However, the Lie algebra L(A) can in general be infinite
dimensional.

The term ‘generalised Cartan matrix’ will be abbreviated to GCM. The
Lie algebra L(A) associated to a GCM A will be called the Kac—Moody
algebra associated to A. We shall explain the definition and some of the basic
properties of L(A) in the present chapter. In fact the introductory ideas do
not use the fact that A is a GCM - we shall assume initially that A is any
n x n matrix over C.

14.1 Realisations of a square matrix

Let A be an n x n matrix over C. A realisation of A is a triple (H,I1, IT")
where:

H is a finite dimensional vector space over C

IT"={h,, ..., h,} is a linearly independent subset of H

319
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M={a,,...,a,} is a linearly independent subset of H*

a;(h)=A,; for all i, j.

Proposition 14.1 If (H,I1,11Y) is a realisation of A then dim H >2n—
rank A.

Proof. Let rank A=1[ and dim H =m. We extend the set I1' to give a basis
hy,...,h, of H and extend II to give a basis «;, ..., , of H*. Consider
the m x m matrix (aj (hl)) This is non-singular so its rows are linearly
independent. Thus the n x m matrix given by the first n rows has rank n.
This matrix therefore has »n linearly independent columns. Now the leading
n X n submatrix is A, so has rank /. Thus the remaining n x (m —n) matrix
has rank at least n —[. It follows that m —n>n—1[, that is m>2n—1. O

Definition A minimal realisation of A is a realisation in which

dim H =2n—rank A.

Proposition 14.2 Any n x n matrix over C has a minimal realisation.

Proof. Since rank A=1, A has a non-singular / x [ submatrix. By reordering
the rows and columns we obtain a matrix

l Ay Ap
n—I\A,, Ay
I n—1

in which A,, is non-singular. Let

A, A 0 )
C=1Ay Ap [ |n-l
o I, O ) n—-I

I n—-1 n-—1L

Since det C =+ det A, #0 we see that C is a non-singular (2n—1) x (2n—1)
matrix. Let H be the vector space of all (2n—I)-tuples over C. Define

oy, ...,a, € H" to be the first n coordinate functions

Ay ooy A ) = A i=1,...,n.
Define h,, ..., h,€ H to be the first n row vectors of C. Then a,...,a,
and Ay, ..., h, are linearly independent and we obtain a realisation of

<All A12>
A21 A22
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with dim H =2n —[. By reordering «,, ..., a, and h,, ..., h, appropriately
we obtain a minimal realisation of A. |

Now let (H,II,ITV) and (H', I, (IT')") be two realisations of A. We say
the realisations are isomorphic if there is an isomorphism of vector spaces

¢ : H—>H'
such that ¢ (h;) =h; and ¢* («}) = o; where
¢* : (H) - H*
is the isomorphism induced by ¢.

Proposition 14.3 Any two minimal realisations of an n x n matrix A over C
are isomorphic.

Proof. Let (H, 1, I1") be the minimal realisation of A constructed in Proposi-
tion 14.2 and (H’, IT’, (IT')") be another minimal realisation. We reorder the
rows and columns of A as before to obtain

<A11 A12>
Ay Ap
where A, is non-singular.

We complete h,...,h), to a basis h},...,h,, , of H'. Then the matrix
(a;(h;)) fori=1,...,2n—1; j=1,...,n has form

Ay A

Ay Ay

B, B,
Since «}, ... , a, are linearly independent this matrix has rank n. Thus it has
n linearly independent rows. Since rows [+ 1, ..., n are linear combinations

of rows 1, ...,/ the matrix
All AIZ l
B, B, ) n—1I
I n-—1I

must have linearly independent rows, so is non-singular.
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We now extend o, ..., a, to o, ..., a,, , so that the 2n—1) x 2n—1)
matrix (a} (h)) is

A, A, 0 l

Ay Ay I, | n-I
B, B, O) n-lI
I n—=l n-1L
This matrix is non-singular, thus o/, ..., &),_, are a basis for (H)".

Since A,, is non-singular, by adding suitable linear combinations of the
first / rows to the last n — I rows we may achieve B, = O. Thus it is possible

to choose h,,, ..., h,,_; so that k', ... h), _, are a basis of H' and
All AIZ o
(a_,,' (h;)) =\ Ay Ay 1,
O B, O

The matrix B, must be non-singular since the whole matrix is non-singular.
We now make a further change to h,,, , ..., k), ; equivalent to left multi-
plying the above matrix by

I, O 0
0 In—l 0
00 (8)"
Then we obtain
Ay A, O
(a;(h;))z Ay Ay 1,
o 1I_, O

This is equal to the matrix C above. Thus the map h; — k! gives an iso-
morphism H — H' which induces the isomorphism (H')" — H* given by
o;— a;. This shows that the realisations (H, I, II") and (H', IT', (I1)") are
isomorphic.

14.2 The Lie algebra L(A) associated with a complex matrix

Let A be an n x n matrix over C with rank /. Let (H, I, I1*) be a minimal
realisation of A. Then we have

dimH=2n—1
m"={hy,...,h,}CcH, N={ay,...,a,}CH*
aj(hi)zAij
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We define a Lie algebra I:(A) by generators and relations.
Let X={e,,....e,. fi,..., f,,xforall xe H} and let R be the following
set of Lie words in X:

X—Ay—puz forall x,y,zeH, A,pueC withx=Ay+puz
xy] forall x,ye H
e.f:]—h; fori=1,...,n
[eifj] for all i #j
[Xe;] —a;(x)e; forallxeH and i=1,...,n
[xfi]+a:(x)f; forall xe H and i=1, ... ,n.
We define L(A)=L(X ; R) to be the Lie algebra generated by the elements

X subject to relations R.

Lemma 14.4 If a different minimal realisation of A is chosen the Lie algebra
L(A) is the same up to isomorphism.

Proof. This follows from Proposition 14.3. |

We note that if A is a Cartan matrix then L(A) is the Lie algebra investigated
earlier in Section 7.4 and Example 9.13. For in this case A is non-singular
and H is the vector space with basis h; =[e,f;].

Proposition 14.5 There is an automorphism & of L(A) uniquely deter-
mined by

w(e)=—f, o(f)=—e, @(x)=-%
forall xe H. Also @*=1.

Proof. There is a map @ : X — FL(X) given by the above formulae. By
Proposition 9.9 there is a unique Lie algebra homomorphism FL(X) — FL(X)
extending this map. We shall denote this map also by @. It satisfies @>=1.
Let {(R) be the ideal of FL(X) generated by the above set R of Lie words.
By applying @ to the elements of R we see that @((R)) C (R). Thus we may
define the induced map

& : FL(X)/(R)— FL(X)/(R).

Since @* =1, @ is an automorphism of L(A). O
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Let H be the subalgebra of Z,(A) generated by the elements X for all xe H.
Let N be the subalgebra generated by e,...,e, and N~ the subalgebra
generated by f;, ..., f,. Then we have

@(H)=H, &WN)=N", o(N)=N.

Now let V be an n-dimensional vector space over C with basis v, ..., v,
and let

(V) =T(V)

s>0

be the tensor algebra of V. Thus 7°(V) has basis

U,*]®"‘®UiS=U,-1~-U,-

forall i|,...,i;€{l,...,n}. For each linear map A € H* we define a map
0, : X—End T(V).

It is sufficient to define the effect of these endomorphisms on the basis
elements of 7(V). T°(V) has basis 1. We define

6,(3)-1=A(x)]1
0,(X)- (v, -..v)=(A—a; ——a;) (D), ...y,

s s

for xe H.
OA(fj)~1=vj
0, (f7) (v, ---v)=v, ...v;.

We define 6, (¢;) by induction on s as follows

0, (ej)~1=0
0y (e;)-vi=0;A(h;) 1
0, (ej) . (v,-] ~~~”i5) =v; (0)\ (ej) (vl-2 ... Ul-s))

+8,-j(/\—al-2—-~~—a,-x)(hj)vl- 2 s> 1.

2 s

Proposition 14.6 The above map 0, : X — End T(V) can be extended to a
Lie algebra homomorphism L(A) — [End T(V)].

Proof. The idea of the proof is essentially the same as in Proposition 7.9.
0, can first be extended to a homomorphism

0, : FL(X)— [End T(V)]
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by Proposition 9.9. We have
L(A)=FL(X)/(R)

and so in order to show that 6, induces a homomorphism L(A) — [End T(V)]
we must verify that 6, () =0 for all r € R.

The elements of R have form

[
[Xf I+q (x)f

The relation 6, (r) =0 may be checked for each such r € R in a straightforward
manner, just as in the proof of Proposition 7.9 |

Corollary 14.7 The map x — % is an isomorphism of vector spaces H — H.

Proof. H is the subalgebra of L(A) generated by % for all x € H. However,
these elements form a Lie algebra since

X X, =x,+x,
AT=Ax
[¥,%,]=0.
Thus H={%; xeH}.
Consider the map H — H given by x — %. This is a homomorphism of Lie
algebras. It is surjective. To show it is an isomorphism we must show it is

also injective. Thus suppose x € H and x=0. Then 6, (x) =0. Thus A(x) =0.
Since this holds for all A € H* we may deduce that x=0. |

We next consider the restriction of §, to N~. It is clear from the definition
that this is independent of A. We call it

6 : N~ — [End T(V)].
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Now 6 (f;) is left multiplication by v;. Thus, for any Lie word w (fi, ..., f,)
infi,..., f,,0(w(fy,....f,)) is left multiplication by w (v, ... ,v,).

Proposition 14.8 f,, ..., f, generate N~ freely, and so N~ is isomorphic to
FL(fys £,).

Proof. Define ¢ : N~ — [T(V)] by ¢(w)=6(w)- 1. Thus

by L)) =wv, .. v,).

Then ¢ is a Lie algebra homomorphism, since

olw(fis .- f)w (i Fl=[w (o v) W' (v, 0,)]
=[¢(W(f1, ’fn))?d)(w,(fl’ 7fn))]

Now T(V)=F (v, ... ,v,), the free associative algebra on v,,...,v,. Thus
the free Lie algebra FL (v,,...,v,) lies in [T(V)] and consists of all Lie
words in v,...,v,. Thus FL(v,,...,v,) is the image of ¢. Hence the
homomorphism

¢ : N"—>FL(v,,...,v,)
is surjective. But there is a Lie algebra homomorphism

¢ : FL(v,...,v)—> N~

with ¢’ (v;)=f;. Moreover we have ¢o¢’'=1 on FL(v,,...,v,) and
¢’ op=1o0n N~. Thus ¢, ¢’ are inverse isomorphisms and N~ is isomorphic
to FL(f,..., f,)- ]
Corollary 14.9 ¢, ..., e, generate N freely.

Proof. Apply the automorphism w of Proposition 14.5. We have w (]V ) =N
and w (f;) = —e;. Thus the result follows from Proposition 14.8. O

Proposition 14.10 L(A)=N-®H® N, a direct sum of subspaces.

Proof The proof is similar to that of Proposition 7.12. We show that
=N~ +H+N is an ideal of L(A). It is sufficient to show that

ade;-I1CI, adf,-ICl, adx-ICI
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Since the defining relations show that
ade;-HCN, ade;NCN
adf,-HCN~, adf,-N~C
adx-H=0, adx-NC

it is sufficient to check that

adf,-NCH+N

ade, N"CH+N".
We have

adfl-~ej:8,-jiziel:l+lv.
Suppose w,, w, € N satisfy

adf,-w,€e H+N, adf,-w,e H+N.
Then
ad f, [w,w, ] =[ad f,-w,, w,] +[w,, ad f;-w,] € H+ N.

Thus ad f,- NC H+N.

The relation ade,- N~ C H+ N~ follows similarly. Thus I is an ideal of
L(A) containing all the generators, and so L(A)=N~+H+N.

In order to show the sum is direct we verify that if w_ € N-,xcH,weN
satisfy

w_+x+w=0

then we have w_=0,Xx=0,w=0. Thus suppose w_+X+w=0. Then
0, (w_+X+w) is the zero endomorphism of T(V). In particular 6, (w_+
X+w)-1=0. Now 6, (w_)-1=¢(w_),0,(¥)-1=A(x)1 and 6,(w)-1=0.
Hence

¢ (w_)+A(x)1=0.

Now ¢ (w_) e@®,.,T*(V) and A(x)1 € T°(V). It follows that ¢ (w_) =0 and
A(x)1 =0, that is 7/\()6):0. Since this holds for all A€ H* we have x=0.
Hence x=0.

Now ¢ : N~ — FL(v,,...,v,) is an isomorphism, and so ¢ (w_)=0
implies w_ =0. Finally w_+ X+ w=0 implies w=0. Thus

L(A)=N"9H®N. O
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Let Q be the subgroup of H* givenby Q={a=k,a, +---+k,a, ; k,...,
k,€Z}. Let Ot ={a#0€Q; k;>0 for all i} and O~ :{a;ﬁOeQ ; k<0
for all i}. For each e € Q let

Zaz{yeZ(A); [Xy]=a(x)y foraller}.

Proposition 14.11 (i) L(A)=&,,L,

(ii) dim L, is finite for all a € Q.

(iii) Ly=H

(iv) If @ #0 then L, =0 unless a € Q* or a € Q.
(v) [iaiﬁ] C Za+ﬁ for all o, Be Q.

Proof. To show L(A)= ZQGQL it is sufficient to show H C Z wNC
> aco L, N-cC > aco L,. It is clear that H C L. To show that N C Zae@ L,
we observe that each Lie monomial w in ey, ..., e, satisfies [fw]=a(x)w

for all x € H and some a € Q*. For
[xei]=a;(x)e;
and if
Fw ]=Bx)w;,  [Xw,]=y(x)w,
we have
[% [wyw,]] = (B+7) (%) [wyw,].

This shows NCZQEQ+L and similarly we have N~ CZaegfL Thus
L(A) ZaEQ

In order to show that the sum is direct we show that
v +---+v,=0

for v, € Lﬁ; with B, ..., B, distinct implies each v, =0. Suppose this is false.
Choose the minimal value of k for which it is false. Suppose v, +---+v, =0
for this value of k but that not each v, =0. Then

[X,v,+---+v,]=0 for all x € H.
Thus
Bi()v; +- -+ Br(x)v, =0.

We also have

Bi(x)v;+- -+ B, (x)v, =0.
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Hence
(B (%) = Be(x)) vy + -+ -+ (By—y (%) = By (%)) v =0.
By the minimality of k we have
(B,(x) = Bu(x))v;=0  fori=1,... k—1.

Since B;#B, there exists xe H with f;(x)# B,(x). Hence v,=0 for

i=1,...,k—1. It follows that v,=0. This contradicts our assumption.
Hence
L(A)=PL,.
aeQ

Since L(A) =N~ @®H @ N by Proposition 14.10 and

NcY L, HcL, Nc) L,
acQ~ acQt

it follows that

=L, N=Y L, N =YL,
acQt acQ~
Also we have L,=0 if a#0,a¢Q", a¢ Q. The Jacobi identity shows
that [iaiﬁ] C ia+3 for all o, Be Q.

Finally we show dim L, is finite. We have dim L,=2n—1. So let a € Q*.
Then L, C N. Now N is spanned by Lie monomials in e, ..., e, and each
Lie monomial lies in some L,. Let a =k a,+---+k,a, with k;eZ and
k;>0. A Lie monomial lies in L, if and only if ¢; appears k; times in it for
each i. But there are only finitely many Lie monomials in which e; appears k;
times for each i. Thus dim L,, is finite. A similar argument proves this when
a € Q~. We note in particular that

dimL, =1, dimL_, =1
dimL,, =0, dimL ,, =0 ifk>1. O

The following lemma will be needed in the proof of the next proposition.

Lemma 14.12 Let H be a finite dimensional abelian Lie algebra and V be
an H-module such that

V= @V/\

AeH*
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where V,={veV ; xv=A(x)v for all xe€ H}. Let U be a submodule of V.
Then

U= (Unv,).
AeH*
Proof. Let ueU. Then u=u,+---+u, where u;€V, and A,... A, are

distinct elements of H*. Let
H;={xeH; N(x)=A;(x)} for i j.

H;; is a subspace of H of codimension 1. Now H #(J,,;H;; since a finite
dimensional vector space over C cannot be the union of finitely many proper
subspaces. So we can find x € H with A, (x), ..., A,,(x) all distinct.

Let 8(x) : V— V be the linear map given by 6(x)v=xv. Then we have

u=u +---+u,
O(X)M = Al('x)ul +oe Am(x)um
0(x) u= A, (x)%u; +- -+ A, (x)°u,,

e(x)m7] u= Al('x)m7I U +e +)\tn('x)’n71u)n'

We have here m equations in u,, ..., u, whose coefficients have non-zero
determinant. Thus u,, ..., u, may be expressed as linear combinations of
u, O(x)u, 0(x)*u, ..., 6(x)" 'u. These vectors all lie in U. Thus u,€ UNV, .
Thus we have shown that U=3",_,. (UNYV,) and the sum is direct because
> rem+ V) is a direct sum. ]

Proposition 14.13 The algebra I:(A) contains a unique ideal I maximal with
respect to INH = O.

Proof. Let J be any ideal of L(A) with JNH = 0. We have

LA=PL,

acH*

by Proposition 14.11, and we consider L(A) as an H-module. By
Lemma 14.12 we have

J=@ (L,nJ).

acH*
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Now each L, with a0 lies in N or in N~. Thus
J=(N"NJ)®NNJ).

In particular J C N~ @ N.

Now consider the ideal I of L(A) generated by all ideals J with J N H = O.
All such ideals J lie in ]V’GB]V, thus I lies in N~ @®N. Hence INH=0.
Thus / is the unique ideal of L(A) maximal with respect to INH=0. [

14.3 The Kac—-Moody algebra L(A)

We now suppose that A is a GCM. Let L(A) be the Lie algebra associated
with A defined in Section 14.2 and I be the unique maximal ideal of L(A)
with INH = 0. Let L(A) be defined by

L(A)=L(A)/I.

The Lie algebra L(A) is called the Kac-Moody algebra with GCM A. We
have a natural homomorphism 6 : L(A) — L(A). We define N =6(N) and
N==6(N").

Proposition 14.14 L(A)=N~®0(H)® N. Moreover the map 6 : H — 6(H)
is an isomorphism.
Proof. We know from the proof of Proposition 14.13 that
I=(N"nI)@(NnI).
Since L(A)=N-@®H@® N it follows that
L(A)=N"®0(H)®N
and that @ : H— 6(H) is an isomorphism. O

We recall from Corollary 14.7 that there is a natural isomorphism H — H.
Combining this with 8 we obtain an isomorphism H — 6(H). We shall subse-
quently use this isomorphism to identify 8(H) with H, and we shall write

L(A)=N"QH®N.
In order to show that a given Lie algebra is isomorphic to L(A) the

following result is often useful.

Proposition 14.15 Suppose we are given an nxn GCM A= (Al-/-). Let L be
a Lie algebra over C and H be a finite dimensional abelian subalgebra of L
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with dim H =2n—rank A. Suppose ll1={e,, ..., a,} is a linearly indepen-
dent subset of H* and 11'={h,, ... ,h,} a lmearly independent subset of H
satisfying a; (h;) = A;;.

Suppose also that e, ... ,e,, fi,..., f, are elements of L satisfying

> n

le.fi] =

[e; ,] 0 ifi#j
[xe,]=a;(x)e;  for xeH
[xfi]=—a;(x)f;  forxeH

Suppose that e,,...,e,, fi,...,f, and H generate L and that L has no
non-zero ideal J with JNH = 0. Then L is isomorphic to the Kac—Moody
algebra L(A).

Proof. Theelements e, ... , e,, fi,..., f, and x € H generate L and satisfy all
the defining relations of L(A) given in Section 14.2. Thus there is a surjective
Lie algebra homomorphism 6 : L(A) — L and L is isomorphic to L(A)/ ker 6.
The restriction map 6 : H— H is an isomorphism by Corollary 14.7,
thus ker N H = O. 1t follows that ker 6 C I, the largest ideal of L(A) with
INH=0. In fact we have ker@=1 since L has no non-zero ideal J with
JNH=0. Hence

L=L(A)/I=L(A).

Corollary 14.16 If A is a Cartan matrix then L(A) is the finite dimensional
semisimple Lie algebra with Cartan matrix A.

Proof. In this case we have rank A =n, so dim H = n. The finite dimensional
semisimple Lie algebra satisfies all the hypotheses of Proposition 14.15, so
is isomorphic to the Kac—-Moody algebra L(A). ([

This result shows that the theory of Kac—-Moody algebras is an extension
of the theory of finite dimensional semisimple Lie algebras, which we have
already described.

We shall now describe some further basic properties of the Kac—Moody
algebra L(A). We shall denote the images of e;, h;, f;€ L(A) under the
natural homomorphism L(A)— L(A) by e,, h,, f,€ L(A). This should not
lead to confusion as we shall subsequently be concentrating on L(A) rather
than L(A).
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Proposition 14.17 There is an automorphism o of L(A) satisfying w* =1
determined by

w(e)=—fi, o(f)=-—¢

w(x)=—x  forall xeH.

Proof. By Proposition 14.5 L(A) has an automorphism & with &> = 1. Thus
(1) is the unique maximal ideal with

a(HNa(H)=0.

But @(H)=H so &(I)=1. Thus & induces an automorphism w of L(A)/I =
L(A) satisfying the stated conditions. U

There is also an analogue of Proposition 14.11. For each a € Q define
L, by

o

L,={yeL(A); [xy]=a(x)y forall xeH}.

a=

Proposition 14.18 (i) L(A) =D, L.

(ii) dim L, is finite for all a € Q.

(iii)) Ly=H

(iv) If «#0 then L,= O unless a € Q" or ¢ € Q™.
v) [LQLB] CLyp forall a,BeQ.

Proof. Let @ : L(A)— L(A)=L(A)/I be the natural homomorphism. We
have

LA =L, by Proposition 14.11.
aeQ

Also
1= (InL,) by Lemma 14.12.

It follows that
L(A)=Po(L,).
aeQ

Now we clearly have 0 (Za) CL,, thus L(A)=3_,c0 L, This sum is direct,
just as in the proof of Proposition 14.11. It follows that L(A) =€P,.,L, and
that L, =6 (Za). Now

L(A)=N"®H®N by Proposition 14.14
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and N"C> o L,, HCLy, NC) ,co+ L, hence we have
N=®L, H=L, N=®L,

a0~ aeQt
dim L, is finite because L,=6(L,) and dim L, is finite. Finally [L,Lz]C
L g follows from the Jacobi identity. U

Definitions H will be called a Cartan subalgebra of L(A). This fits in with
our previous terminology when A was a Cartan matrix. An element o € H* is
called a root of L(A) if «#0 and L, # O. Every root lies in Q or Q™. The
roots in Q" are called positive roots and those in Q™ negative roots. If « is
a root then L, is called the root space of a. The dimension of L, is called
the multiplicity of a. When A is a Cartan matrix we recall that all roots have
multiplicity 1. However, we shall see that this is not always the case when A
is a GCM.

Proposition 14.19 (i) dimL, =1 anddimL_, =1.
(i) If k> 1 then dim L;,, =0, dim L_, =0.

Proof. Since L, =6 (Za‘_) and dim Za[ =1wehavedimL, <1.IfdimL, =0
we would have e; € I =ker 6. This would imply [e; fl-]ziziel , contrary to
INH=0. Thus dim L, =1. A similar argument gives dimL_, =1.

Since Zka, =0 and Z,ka‘_ =0 for k>1 it follows that L,, =0 and
L_;, =0. U

—ka;

o, a,, ..., a, are called the fundamental roots of L(A), again in agree-
ment with the earlier terminology when A is a Cartan matrix.

Remark 14.20 For a general nxn matrix A over C we constructed a
minimal realisation (H,II,I1') where H is a vector space over C of

dimension 2n —rank A, IIY={h,,...,h,} is a linearly independent subset
of H and [I={«,, ..., @,} is a linearly independent subset of H* such that
a; (h)= Aij‘

In the case when A is a GCM the matrix A is real and so we can find
a real vector space Hy, of dimension 2n —rank A over R, contained in H
such that s, ..., h, lie in Hy and are linearly independent and a4, ..., a,,
when restricted to Hj, remain linearly independent. In the construction of
H, described in Proposition 14.2 as the vector space of all (2n—I)-tuples
over C, we define Hy as the subset of all (2n —I)-tuples over R. The triple
(Hg, II, IT¥) with IIY C Hp and IIC Hj, is called a real minimal realisa-
tion of A.
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We denote by L(A) the subalgebra of L(A) generated by e,...,e
fl’ cre fn‘

ne

Proposition 14.21 (i) L, lies in L(A) for each root a of L(A).
(i) L(A)'=(HNL(A)) ® X osoLe-
(iii) L(A)' =[L(A)L(A)].

Proof. We know from Proposition 14.18 that L, # O implies a € Q% or a €
QO . If acQf then L,CN and if «€Q~ then L,CN~. Since N is the
subalgebra generated by e, ..., e, and N~ is the subalgebra generated by
fis---, f, we have L, C L(A) for each a.

Since L(A)=H® > ,4L, and L, C L(A)" we have

L(A)=(HNLA))®)_ L,.
a#0
It follows that L(A)=L(A) 4+ H. We also have [H, L(A)'] C L(A)" and so
L(A) is an ideal of L(A). We have
L(A)/L(A) = H/HNL(AY
and so L(A)/L(A)' is abelian. Hence [L(A)L(A)] C L(A)'. On the other hand

we have [e,f.]=h,, [h;e;]=2e;, [h;f;]]=—2f; and so e;, f;€[L(A)L(A)].
Thus L(A) C[L(A)L(A)] and we have equality.



15

The classification of generalised
Cartan matrices

The structure of the Kac—Moody algebra L(A) depends crucially on the
GCM A. In the present chapter we shall discuss various possible types of
GCM A which can occur.

15.1 A trichotomy for indecomposable GCMs

Two GCMs A, A’ are called equivalent if they have the same degree n and
there is a permutation o of 1, ..., n such that

A/

ij =

Aol for alli, j.

A GCM A is called indecomposable if it is not equivalent to a diagonal sum

A, O
0 A,
of smaller GCMs A, A,. If A is a GCM so is its transpose A'. Moreover A
is indecomposable if and only if A' is indecomposable.
We shall now define three particular types of GCM. Let v=(v,,..., v,

be a vector in R". We write v>0 if v, >0 for each i, and v> 0 if v, >0 for
each i.

Definitions A GCM A has finite type if

(i) det A0
(ii) there exists u>0 with Au>0

(iii) Au>0 implies u>0 or u=0.

336
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The GCM A has affine type if

(1) corank A=1 (i.e.tank A=n—1)
(ii) there exists u >0 such that Au=0
(iii) Au>0 implies Au=0.
The GCM A has indefinite type if

(i) there exists u> 0 such that Au<0

(i) Au>0 and u=>0 imply u=0.

All vectors u in these definitions are assumed to lie in R", and are column
vectors.

We aim to prove the following theorem.

Theorem 15.1 Let A be an indecomposable GCM. Then exactly one of the
following three possibilities holds:

(a) A has finite type

(b) A has affine type

(¢) A has indefinite type.

Moreover the type of A' is the same as the type of A.

This section will be devoted to the proof of Theorem 15.1, which gives a
trichotomy on the set of indecomposable GCMs.
We begin with a lemma on inequalities.

Lemma 152 Let v'=(v;;,...,v;,) €ER" for i=1,...,m. Then there exist
xl,...,xneRwithZ_';:lv,-jxj>0fori:1,...,m if and only if A,v' +-- -+

A" =0, A, >0 implies A,=0 fori=1,... ,m.

Proof. Suppose there exists a column vector x=(x,, ... , x,)" satisfying v'x >
0 for all i. Suppose A,v' +---+ A, v" =0 with all A;>0. Then A;v!x+---+
A, v"x=0. But v'x> 0 and A; >0, thus we have A, =0 for all i.

Conversely suppose A;v'+---+A,v"=0,A;>0 implies A;,=0 for all i.
Let

S={Y A0 A0, Y A=1¢.
i=1 i=1

Define f : S— R by f(y)=|lyll where ||y[=+/yi+---+y2 Then S is a
compact subset of R” and f is a continuous function from S to R. Thus f(S)

is a compact subset of R. Hence there exists x €S with ||x|| <[ x| for all
x'€S. Clearly x#0 since the zero vector does not lie in S. We shall show
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v'x > 0 for all i as required. In fact we shall show that (y, x) >0 for all y€ S,
where (y, x) = y;x;. This implies the required result since each v’ lies in S.

Now § is a convex subset of R”. We assume y=#x, then ty+ (1 —1t)xe S
for all ¢+ with 0 <r < 1. By the choice of x we have

(ty+(1—0)x, ty+(1—1)x)=>(x,x)

that is
ty—x,y—x)+2(y—x,x)>0

for 0 <t <1. This implies (y —x, x) >0, that is (y, x) > (x, x) > 0. O

We make use of this lemma in the following proposition.

Proposition 15.3 Let M be an m x n matrix over R. Suppose
u>0and M'u>0 implyu=0.
Then there exists v> 0 with Mv <O.

Proof. Let M = (m,-j) and consider the following system of inequalities:
n
—Zmijxj>0 i=1,...,m
j=1
J

We shall use Lemma 15.2 to show that these inequalities have a solution.
Thus we consider an equation of form

DA (=mygy e —my) 3 (0, 1L, 0)=0
i=1 j=1 J
with A; >0, ;>0 for all i, j. Then
Z/\imijz,u,j.
i=1

Let u=(A,,...,A,)". Then M'u=(u,,...,m,)". Thus we have u>0 and
M'u>0. This implies that u=0. We also have M'u=0. Thus ;=0 and
w; =0 for all i, j. Hence Lemma 15.2 shows that the above inequalities have
a solution. Thus there exists v> 0 with Mv <0. Ul
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We now consider our three classes of GCM A. Let
Sk = {A; A has finite type}
S, ={A; A has affine type}
S, ={A; A has indefinite type}.

It is easy to see that no GCM can lie in more than one of these classes.
Lemma 154 S;NS,=¢, SgNS=¢, S NS =4¢.

Proof. If A€ SgNS, then det A0 and corank A =1, a contradiction.

If AeSgNS; there exists u >0 with Au>0. But Au>0 and u >0 imply
u =0, a contradiction.

If AeS, NS, there exists u >0 with Au=0. But Au>0 and u >0 imply
u=0, a contradiction. O

We must therefore show that each indecomposable GCM lies in one of the
three classes.

Lemma 15.5 Let A be an indecomposable GCM. Then u>0 and Au>0
imply that u>0 or u=0.

Proof. Suppose u 0 and u # 0. Then we can reorder 1, ..., n so that u;=0
fori=1,...,sand ;>0 fori=s+1,...,n. Let
P O\ s
A=
(R S)n—s
s n—s

Now all entries of the block Q are <0 and if Q has an entry <0 then Au has
a negative coefficient, which is impossible. Thus Q =0. This implies R=0
by the definition of a GCM, thus A is decomposable, a contradiction. O

Now let A be an indecomposable GCM and define K, by
K,={u; Au>0}.

K, is a convex cone. We consider its intersection with the convex cone
{u; u>0}. We shall distinguish between two cases:

{u; u=0, Au=>0} # {0}
{u; u=0, Au=>0} = {0}.
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The first of these cases splits into two subcases, as is shown by the next
lemma.

Lemma 15.6 Suppose {u; u>0, Au>0}#{0}. Then just one of the follow-
ing cases occurs:

K,C{u; u>0}u{0}

K,={u; Au=0} and K, isa I-dimensional subspace of R".

Proof. We know there exists u7#0 with >0 and Au>0. By Lemma 15.5
this implies that u > 0. Suppose the first case does not hold. Then there exists
v#0 with Av>0 such that some coordinate of v is <0. If v>0 then v>0
by Lemma 15.5, thus some coordinate of v is <0.

We have Au>0 and Av >0, hence A(tu+ (1 —t)v)>0for 0<z<1. Since
all coordinates of u are positive and some coordinate of v is negative there
exists + with 0 <r<1 such that tu+(1—f)v>0 and some coordinate of
tu+ (1 —1)v is 0. But then tu+ (1 —f)v=0 by a further use of Lemma 15.5.
Thus v is a scalar multiple of u. We also have

0=A(tu+(1—1)v)=tAu+ (1 —1)Av.

Since Au>0, Av>0 this implies that Au=0, Av=0.

Now let we K,. Then Aw>0. Either w>0 or some coordinate of w is
negative. If w>0 then w> 0 or w=0 by Lemma 15.5. Suppose w > 0. Then
by the above argument with u replaced by w, v is a scalar multiple of w. Hence
w is a scalar multiple of u. Now suppose some coordinate of w is negative.
Then by the above argument with v replaced by w, w is a scalar multiple of u.
Thus in all cases w is a scalar multiple of u. Hence K, is the 1-dimensional
subspace Ru. Thus we have shown that K, is a 1-dimensional subspace of R".
We have also shown that if we K, then Aw=0. Thus K, ={w; Aw=0}.

Thus if the first case does not hold the second case must hold. We note
finally that the two cases cannot hold together since in the first case K,
cannot contain a 1-dimensional subspace of R”. |

We now identify the first case in Lemma 15.6 with the case of matrices of
finite type.

Proposition 15.7 Let A be an indecomposable GCM. Then the following
conditions are equivalent:

A has finite type
{u; u>0and Au>0}+#1{0} and K,C{u; u>0}U{0}.
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Proof. Suppose A has finite type. Then there exists u>0 with Au>0.
Hence {u; u>0 and Au>0}#{0}. Also detA#0. Thus {u; Au=0}
is not a 1-dimensional subspace of R”. Hence K, C{u; u>0}U{0} by
Lemma 15.6.

Conversely suppose {u; u>0 and Au>0}7#{0} and K, C{u; u>0}U
{0}. Then there cannot exist u#0 with Au=0. For this would give a
1-dimensional subspace contained in K,. Thus det A#0. Now there exists
u#0 with u >0 and Au>0. By Lemma 15.5 we have u > 0. If Au> 0, A has
finite type. So suppose to the contrary that some coordinates of Au are zero
and some are non-zero. We choose the numbering 1, ... , n so that the first s
components of Au are 0 and the last n — s are positive. Let

(P O\ s
A_(R S)n—s

S n—s§

Now the block Q satisfies Q # O since A is indecomposable. We choose the
numbering so that the first row of Q is not the zero vector. We have

an=(35) ()= (i)
R S) \u? Ru'+Su? )’
Hence Pu'+ Qu?>=0 and Ru'+ Su®>>0. We also have u' >0, u*>> 0. Thus
Qu’? <0 and the first coordinate of Qu” is <0. Hence Pu' >0 and the first
coordinate of Pu' is > 0. Since Ru'+ Su®> >0 we can choose € > 0 such that
R(1+&)u' +Su*>0.
We now consider, instead of our original vector u = (Z;), the vector ((Hu? “]).
We have

((1+<29)u')>0

A (I+&)u'\  (Pu'+Qu’+ePu"\ ePu!
u? - \Ru'+Su?+eRu' ) \R(1+e)u'+Su?)
The first coordinate and the last n — s coordinates of this vector are positive
and the remaining coordinates are > 0. Thus

A<(1+f)u1) o

u

and the number of non-zero coordinates in this vector is greater than thatin Au.
We may now iterate this process, obtaining at each stage at least one more
non-zero coordinate than we had before. We eventually obtain a vector v >0
such that Av> 0. Thus A has finite type. |
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We next identify the second case in Lemma 15.6 with that of an
affine GCM.

Proposition 15.8 Let A be an indecomposable GCM. Then the following

conditions are equivalent:

(1) A has affine type

(ii)) {u; u=0 and Au>0}#{0},K,={u; Au=0}, and K, is a I-dimen-
sional subspace of R”".

Proof. Suppose A has affine type. Then there exists u >0 with Au=0. It
follows that {u; u>0 and Au>0}#{0}. Also Aue K, for all AeR. By
Lemma 15.6 we see that K, ={w; Aw=0} and that K, is a 1-dimensional
subspace of R”.

Conversely suppose the three conditions of (ii) are satisfied.

Then corank A=1.

Also there exists u # 0 with # >0 and Au > 0. By Lemma 15.5 we have u > 0.
So there exists # >0 with Au>0. But K, ={u; Au=0}. Hence there exists
u>0 with Au=0. Finally Au>0 implies Au=0. Thus A has affine type.

O

Proposition 15.9 Let A be an indecomposable GCM. Then:

if A has finite type A' has finite type
if A has affine type A' has affine type.

Proof. To prove these results we shall make use of Proposition 15.3.

Suppose A has finite type. We show there does not exist v > 0 with Av<0.
For if Av<0 then A(—v) >0 and so —v> 0 or —v=0. Hence v <0 or v=0.
This contradicts v>0. We may now apply Proposition 15.3 to show there
exists u7#0 with u>0 and A'u>0. So {u; u>0 and A'u>0}#{0}. By
Lemma 15.6 either

K, C{u; u>0}u{0}

or K, ={u; A'u=0} and this is a 1-dimensional subspace. Now det A #0 so
det A' 0. Thus the latter case cannot occur. The former case must therefore
occur, so by Proposition 15.7 A' has finite type.

Now suppose A has affine type. We again show there does not
exist v>0 with Av<0. For A(—v)>0 is impossible in the affine case.
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By Proposition 15.3 there exists ##0 with >0 and A'u>0. So {u; u>0
and A'u >0} #{0}. By Lemma 15.6 we may again conclude that either

K,y C{u; u>0}U{0} or

K, ={u; Au=0} and this is a 1-dimensional subspace.

Now corank A =1 so corank A'=1. This shows that we cannot have the first
possibility. Thus the second possibility holds, and then by Proposition 15.8
we see that A' has affine type. OJ

We may now identify the case not appearing in Lemma 15.6 with that of
an indefinite GCM.

Proposition 15.10 Let A be an indecomposable GCM. Then the following
conditions are equivalent:

A has indefinite type
{u; u>0and Au>0}={0}.

Proof. Suppose A has indefinite type. Then u >0 and Au >0 imply u=0.
Conversely suppose {u; u>0 and Au>0}={0}. Then the same condition
holds for A%, i.e. {u; u>0and A'u >0} ={0}. This follows from Lemma 15.6
and Propositions 15.7, 15.8 and 15.9. But then Proposition 15.3 shows that
there exists v> 0 with Av<0. Thus A has indefinite type. |

We are now able to achieve our aim of proving Theorem 15.1. For each
indecomposable GCM A Lemma 15.6 shows that exactly one of the following
conditions holds:

(a) {u; u>0and Au>0}#{0} and K, C{u; u>0}U{0}.

(b) {u; u>0 and Au>0}+#1{0},K,={u; Au=0}, and K, is a 1-dimen-
sional subspace.

(¢) {u; u=0and Au>0}={0}.

By Proposition 15.7 A satisfies (a) if and only if A has finite type. By
Proposition 15.8 A satisfies (b) if and only if A has affine type. By Propo-
sition 15.10 A satisfies (c) if and only if A has indefinite type. Thus we
have the required trichotomy for GCMs. Moreover Proposition 15.9 shows
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that the type of A' is the same as the type of A. This completes the proof of
Theorem 15.1

Corollary 15.11 Let A be an indecomposable GCM. Then:

(a) A has finite type if and only if there exists u> 0 with Au> 0.
(b) A has affine type if and only if there exists u>0 with Au=0.
(c) A has indefinite type if and only if there exists u> 0 with Au <0.

Proof. (a) Suppose u >0 and Au > 0. A cannot have affine type as then Au >0
would imply Au=0. A cannot have indefinite type as then >0 and Au >0
would imply u =0. Thus A has finite type.

(b) Suppose u>0 and Au=0. A cannot have finite type since det A=0.
A cannot have indefinite type since then #>0 and Au >0 would imply
u=0. Thus A has affine type.

(c) Suppose u>0 and Au<0. Then A(—u)>0. A cannot have finite type
as this would imply —u >0 or —u=0. A cannot have affine type since
A(—u) >0 would then imply A(—u)=0. Thus A has indefinite type.

Remark 15.12 In proving the results of Section 15.1 we have assumed that
A is a GCM. However, we have not used the full force of this assumption.
Inspection of the proofs shows that we have nowhere assumed that A;; =2 or
that A;; € Z. This remark will be useful in some subsequent applications.

15.2 Symmetrisable generalised Cartan matrices

In this section we shall consider a special type of GCM which plays a key role
in the theory of Kac—Moody algebras. These are the symmetrisable GCMs.
Before giving the definition we obtain some preliminary results.

Let A=(A,;;) be a GCM with i, je{l,...,n} and let J be a subset of
{1,....n}.Let A,=(A;),i,jeJ. Then A, is also a GCM, called a principal
minor of A.

Lemma 15.13 (i) Suppose A is an indecomposable GCM of finite type and

A, is an indecomposable principal minor of A. Then A, also has finite type.

(ii) Suppose A is an indecomposable GCM of affine type and A, is a proper
indecomposable principal minor of A. Then A, has finite type.
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Proof. (i) By passing to an equivalent GCM we may choose the numbering

so that J={1,...,m} for some m<n.Let K={m+1,...,n}. Let
P O\ m
A=
(R S)n—m
m n—m

Now there exists u >0 with Au>0. Let u=("’). Then

ug

_ PO up\ [ Pu;+ Qug
Au= <R S> (“K) B (RMJ+SMK>'

Since Au>0 we have Pu;+ Quy > 0. However, Qug <0 so Pu; > 0. Thus
there exists u; >0 with A,u, > 0. By Corollary 15.11 A, has finite type.

(ii) As before we may assume J ={1, ..., m}. This time we have m < n. Let
P O\ m
A=<R S)n—m where P=A,;
m n—m

Since A has affine type there exists u >0 with Au=0. We have

Au— PO\ (u;\ _ (Pu;+Quyg
AR S/ \ug)  \Ru,+Sug )’
Hence Pu; + Qug =0. Now Qug <0 so Pu;>0.
Suppose if possible that Pu;=0. Then Quy =0, and since uy >0
this implies that Q= 0. But then R= 0 also and A is decomposable, a

contradiction. Hence we have u; >0, Pu; >0, Pu; #0. This implies that

P =A, cannot have affine type or indefinite type. Thus A; has finite type.
U

We next describe our trichotomy in the special case in which the indecom-
posable GCM is symmetric.

Proposition 15.14 Suppose A is a symmetric indecomposable GCM. Then:

(a) A has finite type if and only if A is positive definite.
(b) A has affine type if and only if A is positive semidefinite of corank 1.
(c) A has indefinite type if and only if A satisfies neither of these conditions.

Proof. (a) Let A have finite type. Then there exists u >0 with Au>0.
Hence for all A>0 we have (A+Al)u>0. Thus A+ Al has finite type by
Corollary 15.11. (Note that A+ Al need not be a GCM, but the results of
Section 15.1 can be applied to it by Remark 15.12.) Thus det (A4 Al) #0
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when A >0, that is det (A— Al) 20 when A <0. Now the eigenvalues of the

real symmetric matrix A are all real. Thus all the eigenvalues of A must be

positive. Hence A is positive definite.

Conversely suppose A is positive definite. Then det A#0 so A has finite
or indefinite type. If A has indefinite type there exists u >0 with Au<0.
But then u'Au <0, contradicting the fact that A is positive definite. Thus A
must have finite type.

(b) Let A have affine type. Then there exists u >0 with Au=0. Hence for
all A>0 we have (A+Al)u>0. Thus by Corollary 15.11 A+ Al has
finite type when A > 0. (We are again using Remark 15.12 here.) Thus
det(A+ AI) #0 when A > 0, that is det(A — Al) 20 when A <0. Thus all
eigenvalues of A are non-negative. But A has corank 1 so 0 occurs as
an eigenvalue with multiplicity 1, and the remaining eigenvalues are all
positive. Hence A is positive semi-definite of corank 1.

Conversely suppose A is positive semi-definite of corank 1. Then
det A=0 so A cannot have finite type. Suppose A has indefinite type.
Then there exists u >0 with Au <0. Thus u'Au <0, which contradicts
the fact that A is positive semi-definite. Thus A must have affine type.

(c) This follows from (a) and (b). O

In general a GCM need not be symmetric, but it may nevertheless satisfy
the weaker condition of being symmetrisable.

Definition A GCM A is symmetrisable if there exists a non-singular diagonal
matrix D and a symmetric matrix B such that A= DB.

Lemma 15.15 Let A be a GCM. Then A is symmetrisable if and only if

A . A. A . =A . A A

iyt ipiy i ipiy “ gyttt g

Sforallij, iy, ..., i,e{l,..., n}

Proof. Suppose A is symmetrisable. Then A= DB with D=diag(d,,...,d,)
and B= (Bij). Thus A;;=d,B;;. Hence

Ay Ay =d,...d, B, ...B

iy v iy iPiyiy + - Pigiy

A, =d, ...d B, .. B
1%k 1

75 03 PR FY 74

A

iy -
and these are equal since B is symmetric.
Conversely suppose

iy -+ Aiiy = Aigiy - Ad
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foralli,,...,i,. We may suppose A is indecomposable since the result in this
case implies it for all A. Thus for each i€ {1, ..., n} there exists a sequence

I=ji, jos oo sJi=i

with
Ajp 70, A #0004y #0.
We choose a number d; #0 in R. We wish to define d; by
di — ij/jxfl e Ajzfl d,.
1V, I

However, we must check that this definition of d; depends only upon i and
not on the sequence chosen from 1 to i. So let

l=ky ky, ... k=i

be a second such sequence from 1 to i. We claim that
A A c A,

Jidi—1 i Akuku—l

Aj]jz Tt Aj/—ljl Aklkz Tt Akuflku
that is Ay A, - Ar Ay - At = A A, -+ - Aie,_ Aj_i - - Avj,- This
is in fact one of the given conditions on the matrix A. Thus d;eR is well
defined and d; #0. Let D=diag (d,, ... ,d,). Define B;; by A;;=d,B;;. We
show that B;; = B;;, that is % = %. If A;;=0 then A; =0 also and the con-
dition is satisfied. So supposé: A;#0. Let 1=y, j,, ..., j, =i be a sequence
from 1 to i of the type described above. Then 1=, j,,..., j,, j is such a
sequence from 1 to j. These sequences may be used to obtain d; and d,

respectively, and we have

A
d,=-1d,.

Thus B; =B,;. Hence A= DB where D is diagonal and non-singular, and B
is symmetric. Thus A is symmetrisable.

Corollary 15.16 Let A be a symmetrisable indecomposable GCM. Then
A can be expressed in the form A= DB where D=diag(d,,...,d,),B is
symmetric, with d,, ... ,d,>0 in Z and B;;€ Q. Also D is determined by
these conditions up to a scalar multiple.

Proof. We choose any d, € Q with d, >0. Then Lemma 15.15 shows that
d;€Q and d,>0 for each i. Thus by multiplying by a positive scalar
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we may assume each d;€Z with d;>0. Also B;;=A;;/d; lies in Q. The
proof of Lemma 15.15 also shows that D is determined up to a scalar
multiple. |

The following important result shows that indecomposable GCMs in the
first two classes of our trichotomy are symmetrisable.

Theorem 15.17 Let A be an indecomposable GCM of finite or affine type.
Then A is symmetrisable.

Proof. First suppose there is no set of integers iy, i, ... , {; wWith k>3 such
that i, #i,, i # iz, ..., i F iy, iy #1, and

Ay 0. Ay, £, Ay 0, Ay, #0.

Then Lemma 15.15 shows that A is symmetrisable.

Thus we suppose there is such a sequence i,,...,i, with k>3 and we
choose such a sequence with minimal possible value of k. We thus have

A #0 (R e((1,2),(2,3), .., (k 1), (2,1),(3,2), ..., (1,k)}.

The minimality of k shows that A, ; =0 if (r, s) does not lie in the above
set. Otherwise there would be such a sequence with a smaller value of k.

Let J={i,, ..., i}. Then the principal minor A; of A has form
2 -1, 0 - - - 0 -5
-5 2 —r - 0
0 —-s 2
a=| . .
. L2 0
0 Y
-, 0 e 0 =85 2

with r,, s; € Z satisfying r; >0, s; > 0. In particular we see that A, is inde-
composable. Now A; must have finite or affine type by Lemma 15.13. Thus
there exists u >0 with A,u>0. Let u=(u,,...,u,). We define the k x k
matrix M by

M:diag(ul_l,... ,u;l)AJ diag (uy, ..., uy).
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Then M;;=u;" (A,);;u;. Thus
ZMij = Mi_l Z (AJ)U uj 20
J J

In particular we have }; ; M;; > 0. Now we have

2 - 0 - - - 0 —S,
-5y 2 -r - 0
0 —s5 2
vl .
. S . 0
0 .o 2 —rli71
- 0 e 0 =5, 2

—1

: / —1 / .
with 7/ =u; ' ru;y, s;=u; ) s;u;. (We define uy, =u,.)

We note that r/ >0, s; >0 and r/s. =r;s; € Z. We also have

ZMijZZk_("H‘S/l)_“'_(”12“‘51/()~

ij

ris;=./T:s;> 1 hence r/+s;>2. Since }_; ; M;; > 0 we deduce
that 7/ + ;=2 and r{s; = 1. Hence r;s5; =1 and, since r,, s; are positive integers,
we have r;=1, s, =1. It follows that

2 -1 0 - - - 0 -1
-1 2 -1 - 0
0O -1 2
A=
. L. 0
0 A |
-1 0 - - -0 -1 2
Let v=(1,...,1). Then v>0 and A,v=0. Thus A, has affine type by
Corollary 15.11. Lemma 15.13 shows that this can only happen when A; = A.
Thus A is symmetric, in particular symmetrisable as required. O

We are now able to prove the following basic description of our trichotomy.
It generalises the description previously obtained in Proposition 15.14 for
symmetric indecomposable GCMs.
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Theorem 15.18 Let A be an indecomposable GCM. Then:

(a) A has finite type if and only if all its principal minors have positive
determinant.

(b) A has affine type if and only if det A=0 and all proper principal minors
have positive determinant.

(c) A has indefinite type if and only if A satisfies neither of these two
conditions.

Proof. (a) Suppose A has finite type. Then A is symmetrisable by Theo-
rem 15.17, hence A=DB where D=diag(d,,...,d,) with d;>0 and B
is symmetric, by Corollary 15.16. The matrix B need not necessarily be a
GCM, but Remark 15.12 shows that we can nevertheless define the type of B.
Moreover Corollary 15.11 shows that A and B have the same type. Thus B
is a symmetric indecomposable matrix of finite type, and so det B> 0 by
Proposition 15.14. It follows that det A >0 also. Now all principal minors
of A also have finite type by Lemma 15.13. Thus these also have positive
determinant.

Conversely suppose that all principal minors of A have positive deter-
minant. Suppose there is a set of integers i;,..., i, with k>3 such that

i\ #iy, iy F iy, ... i, #i, with

Ay A Ay #0.

iji tiyiy

Choose such a sequence with minimal possible k¥ and let J={i,,..., i}
Then the principal minor A, of A has form

2-10 - - -0 -1
-12 -1 - 0
0 —-12
A=
. 0
0 -2 -1
-10 - - -0-12
by the proof of Theorem 15.17. But then det A; =0, a contradiction. Thus
there is no such sequence i,,...,i,. By Lemma 15.15 A is symmetrisable.
Hence A= DB where D=diag(d,,...,d,) with d; >0 and B is symmetric.

Again B need not be a GCM but we can nevertheless define its type using
Remark 15.12 and, by Corollary 15.11, A and B have the same type. Now
the principal minors of the symmetric matrix B all have positive determinant
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and so B is positive definite. Thus B has finite type by Proposition 15.14, and

so A has finite type also.

(b) Now suppose A has affine type. Then det A=0. All proper principal
minors of A have finite type by Lemma 15.13 and so have positive
determinant by (a).

Suppose conversely that det A=0 and that all proper principal minors
of A have positive determinant. Suppose there is a set of integers i, ... , i;
with k>3 such that i, #i,, ..., i, #i, with

A Aiiy Ay, 0.
Choose such a sequence with minimal &, and let J={i,,...,i,}. Then
the principal minor A; has form
2-10 - - -0-1
-12 -1 - 0
0 -12
A=
. 0
0 -2 =1
-10 - - -0-12

as above. Since detA; =0 we have A, =A. But then A is affine since

Au=0 with u=(1,...,1). Thus suppose there is no such sequence
iy,...,0,. Then A is symmetrisable by Lemma 15.15, and has form
A= DB where D=diag(d,, ... ,d,) with d; > 0 and B is symmetric. Now

det B=0 and all proper principal minors of B have positive determinant.
This implies that the symmetric matrix B is positive semidefinite of corank
1. Hence B is of affine type by Proposition 15.14. Thus A has affine type
also, by Corollary 15.11.

(c) This follows directly from (a) and (b). O

15.3 The classification of affine generalised Cartan matrices

In this section we shall determine explicitly which indecomposable GCMs
lie in each class of our trichotomy. We begin with indecomposable GCMs of
finite type.
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Theorem 15.19 Let A be an indecomposable GCM. Then A has finite type
if and only if A is a Cartan matrix. Thus the indecomposable GCMs of finite
type are those on the standard list 6.12.

Proof. We recall from Sections 6.1 and 6.2 that a GCM is a Cartan matrix if
and only if it satisfies the conditions:

(a) A;€{0,—1,-2, -3} forall i
(b) A;j=—2or —3 implies A; =—1
(c) the quadratic form
Q(xy, ... ,xn)=22xiz—2\/nijxixj

i=1 i#]

is positive definite, where n;; = A;;A ;.

Suppose A is a Cartan matrix. Then A;; =2 (o)) 1o p= diag (d,,...,d,)

(i)
where d;=./{a;, ;). Then (DAD’I)I.].=2#j‘<’zwi> and so DAD™" is
the matrix of the quadratic form Q (x, ..., x,). Since Q is positive definite
det (DAD™") >0 and so det A > 0.

Now any principal minor A, of the Cartan matrix A is also a Cartan matrix.
Hence det A; >0 for all principal minors of A. Thus A has finite type by
Theorem 15.18 (a).

Now suppose conversely that A has finite type. Suppose i # j and consider

the 2 x 2 principal minor
)
A; 2

By Theorem 15.18 (a) the determinant of this minor is positive, hence
A;;A; < 4. Since A;; and Aj; are both non-positive integers such that A;; =0
if and only if A;=0 we deduce that A;; €{0, -1, -2, -3} and that A; €
{—2, -3} implies A; =—1.

Since A has finite type A is symmetrisable by Theorem 15.17. Thus A=
DB where D=diag(d,,...,d,),d; >0, and B is symmetric. Although B
need not be a GCM we may define the type of B by using Remark 15.12.
Thus B is indecomposable of finite type, and so B is positive definite by

Proposition 15.14 (a). Let y; = /d,x;. Then

Q(xy,...nx,) =2 xi =Y /nxx;

i i#j
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2 ) 1 1
=2 Vi =2 v (AA) vy,

i

=Y "B+ By
i i#]

Since B is positive definite we see that Q (x,,...,x,) is positive definite.
Thus A is a Cartan matrix. 0

Having determined the indecomposable GCMs of finite type we next deter-
mine those of affine type. This will also determine those of indefinite type,
as those remaining.

To each GCM A we define an associated diagram A(A) called the Dynkin
diagram of A. This extends the definition of the Dynkin diagram of a Cartan
matrix given in Section 6.2. The vertices of A(A) are labelled 1, ..., n where
A is an n x n matrix. Suppose i, j are distinct vertices of A(A). We explain
how i, j are joined in A(A). This depends on the pair (A,;, A;). We recall
that A;; and A;; liein Z, A;; <0, A; <0 and A;;=0 if and only if A;=0. The
rules are as follows.

(a) If A;A

(b) If A;;A;; =1 vertices i, j are joined by a single edge.

(c) If AjA;=2, A;=-1, A;=-2 vertices i, j are joined by a double
edge with an arrow pointing towards Jj.

(d) If A;A;=3, A;=-1, A;=-3 vertices i, j are joined by a triple
edge with an arrow pointing towards j.

(e) If A ;A; =4, A,;=—1, A,;=—4vertices i, j are joined by a quadru-
ple edge with an arrow pointing towards j.

(f) If A;;A; =4, A;=-2, A;=-2 vertices i, j are joined by a double
edge with two arrows pointing away from i, j.

;jA;; =0 vertices i, j are not joined.

(o mxael
i J
(g) If A;;A;; > 5 vertices i, j are joined by an edge with the numbers [A; [, |A ;]
shown on it.

1451, 1Az
i J
It is clear that the GCM A is determined by its Dynkin diagram A(A).

Moreover A is indecomposable if and only if A(A) is connected.
We now consider a set of connected Dynkin diagrams called the affine list.
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15.20 The affine list of Dynkin diagrams

=<0 ==

~ il
~3 124

B, Bs

B} B¢
c>OoO—0—O<X0

Cy
c<XO—0—C>0

Qx> 0O L 0O > 0o0—O<XO

O > 0O Ll _O—(C >0

cCXo0o<Xo0 cXro—O0<To CEFO—O0—CXO

’ ’

C, C; Cy
5 4 5 5 B 6
(e, O % O O
Eq
(e, O O I O O O
E;
(e, O O O O O O O
P
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O—O0—Q0 > 0—0 oO—O0—C <X 0—oO0
7 Fy
o—C=>0 o—S[ESD
G, G,

We note that many, but not all, of the Dynkin diagrams on the affine list
appeared in Lemma 6.8. We also note that every proper connected subdiagram
of a Dynkin diagram on the affine list appears on list 6.11 of Dynkin diagrams
of finite type. We shall call this the finite list.

Proposition 15.21 Let A be a GCM whose Dynkin diagram lies on the affine
list. Then det A=0.

Proof. First suppose that A(A) has 2 vertices. Then either A(A)=A, and
A= < 2 _2> or A(A) :A/l and A= ( 2 _4). In either case det A=0.
-2 2 -1 2

Next suppose that A(A) =;\, for [ >2. Then the sum of all the rows of A
is zero, and so det A=0.

In all other cases A(A) has a vertex, say 1, joined to just one other vertex,
say 2. Moreover we can choose these vertices so that they are joined by a
single or a double edge. In the case of a single edge we have

det A=2det B—detC

where B is obtained from A by removing row and column 1, and C is obtained
from B by removing row and column 2. This relation between determinants
is obtained as in the proof of Theorem 6.7. The connected components of
B and C are Cartan matrices of finite type, so their determinants are known
from the proof of Theorem 6.7. In all cases this gives det A=0.

In the case when vertices 1, 2 are joined by a double edge we obtain

det A=2det B—2detC

again as in the proof of Theorem 6.7. Again B, C have connected components
of finite type so we know their determinants, and in each case we obtain
detA=0.

Proposition 15.22 Let A be a GCM whose Dynkin diagram lies on the affine
list. Then A has affine type.
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Proof. By Proposition 15.21 we have det A=0. Also the Dynkin diagram of
any proper principal minor has connected components on the finite list. Thus
all proper principal minors have positive determinant. It follows that A has
affine type by Theorem 15.18 (b). O

We shall now prove the converse.

Theorem 15.23 Let A be an indecomposable GCM. Then A has affine type
if and only if its Dynkin diagram A(A) lies on the affine list.

Proof. Suppose A has affine type. Then every proper indecomposable principal
minor of A has finite type, by Lemma 15.13 (ii). Thus all proper connected
subdiagrams of A(A) lie on the finite list, by Theorem 15.19.

If A(A) has only one vertex A has finite type, so there is no possible
affine A.

If A(A) has two vertices then

2 —a
A=
(573)
where a, b are positive integers. Since det A=0 we have ab=4. The possi-
bilities are (a, b) = (1,4)(4, 1)(2,2). Thus A(A)=A, or A/.
Now suppose A(A) has at least three vertices. If A(A) contains a cycle
then the proof of Theorem 15.17 shows that A(A) = A, for some />2. Thus

we suppose that A(A) contains no cycle. Since all the connected subdiagrams
with two vertices lie on the finite list all edges of A(A) have one of the forms

O0——0 OC—>0O C 0]

Suppose A(A) has a triple edge == Then A(A) must have exactly
three vertices, otherwise A(A) would have a proper connected subdiagram
with three vertices containing a triple edge, whereas there is no such diagram
on the finite list. Thus we have

2 —-10 2 -390
A=|-3 2 —a or -1 2 —a
0 —b 2 0 —b 2

where a, b are positive integers. Thus det A=2(1—ab). However, det A=0
and so a=1,b=1. Thus A(A)=G, or é;.

So we now suppose that A(A) has no triple edge. Now A(A) has at
most two double edges, as every proper connected subdiagram appears on
the finite list so has at most one. Suppose A(A) has two double edges.
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Then every edge which can be removed to give a connected subdiagram must
be a double edge. This implies that A(A) must be one of C,, Ct, C|.

Thus we suppose that A(A) has just one double edge. If A(A) has a branch
point then no proper connected subdiagram can contain both a double edge
and a branch point, since the subdiagram lies on the finite list. This implies
that A(A) is B, or B..

Now suppose that A(A) has one double edge but no branch point. Then
A(A) has form

with a+b+2 vertices. We have a >0 and b> 0 since A(A) is not on the
finite list. Also b <2, otherwise there would be a proper subdiagram

oO—C—>0Oo—0—=0
and a <2, otherwise there would be a proper subdiagram
o—O0—C—>0——0
Thus the possibilities are
(a,b)=(1,1),(2,1),(1,2),(2,2).

The case (a, b)=(1, 1) appears on the finite list so is not affine. The case
(a, b)=(2,2) is impossible, since it would give proper subdiagrams as above.
Thus (a, b)=(2, 1) or (1, 2) and A(A) is F, or F[.

Thus we may now assume that A(A) has only single edges. Consider the
branch points of A(A). Each branch point has at most four branches, otherwise
there would be a proper subdiagram

><

which does not appear on the finite list. If there is a branch point with
four branches then A(A)=D,, as otherwise there would again be a proper
subdiagram D,.

Thus we may assume that all branch points in A(A) have three branches.
There cannot be more than two branch points, as otherwise there would be a
proper connected subdiagram with two branch points which could not be on
the finite list.
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Suppose A(A) has 2 branch points. Then any proper connected subdiagram
has only one branch point, and this implies that A(A) = D, for some > 5.

So suppose A(A) has just one branch point. Let the branch lengths be
1y, 1,15 with [, <I, <I; so that there are [, +1,+ 15+ 1 vertices. We must
have [, <2, otherwise there would be a proper subdiagram

which is not on the finite list. Suppose [, =2. Then we must have /, =2 and
1, =2, otherwise there would again be a proper subdiagram as above. Thus
A(A)=E,.

Thus we may assume /, =1. Since /, =1 would give a diagram of finite
type we must have /, >2. However, [, <3 as otherwise there would be a
proper subdiagram

O

(e, O O l O O O O

which is not on the finite list. Thus /, =2 or 3.
Suppose [, =1, [, =3. Then we must have /; =3, otherwise there would be
a proper subdiagram

(e, O O I O O O

which is again not on the finite list. Thus A(A) =E,.

We may now suppose that /, =1, [, =2. Since the diagrams with /; =2, 3,4
are of finite type we must have [;>5. But /; <5 also, as otherwise there
would be a proper subdiagram

O

(e, O l O O O O O

which is not on the finite list. Hence /; =5 and A(A) = Ej.

Finally if A(A) has only single edges and no branch points then it lies on
the finite list so A cannot be affine.

Thus we have shown that whenever A is affine A(A) must appear on the
affine list. This, together with proposition 15.22, completes the proof. |

A GCM A such that A(A) is on the affine list will be called an affine
Cartan matrix.
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Corollary 15.24 Let A be an indecomposable GCM. Then A has indefinite
type if and only if its Dynkin diagram A(A) does not appear on the finite list
or the affine list.

Proof. This follows from Theorems 15.1, 15.19 and 15.23 ]
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The invariant form, Weyl group,
and root system

We now turn to the study of the Kac—-Moody algebra L(A) associated with a
GCM A.

16.1 The invariant bilinear form

We recall from Section 4.2 that when A is a Cartan matrix the corresponding
finite dimensional Lie algebra L(A) has a non-degenerate symmetric bilinear
form

(,) : L(A)xL(A)—C
which is invariant in the sense that

([xy], 2) = (x, [yz])

for x, y, z€ L(A). The Killing form has these properties.

In the case of a GCM A we cannot define the Killing form on L(A) as in
the finite dimensional case. We can nevertheless ask whether there is a non-
degenerate, symmetric, invariant bilinear form on L(A). This is not always the
case, but we shall show that such a form does exist when A is symmetrisable.

Thus suppose A is a symmetrisable GCM. Then A= DB where D is diago-
nal and B is symmetric. Let D=diag (d,, ..., d,). Let (H, I1, I1V) be a mini-
mal realisation of A, where IIY={h,, ..., h,} is a linearly independent subset
of H,II={ay,...,a,} is a linearly independent subset of H*, a; (h;) =A;;
and dim H =2n —[ where [ =rank A.

Let H' be the subspace of H spanned by h,,...,h, and let H" be a
complementary subspace of H' in H. Then we have

H=H &H" dmH =n, dimH =n-1.

360
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We define a bilinear form (, ) : H x H— C by the rules:
(hishj)=ddB; i j=1,....n
(hy, x)={(x, h;) =d;a;(x) for xe H”
(x,yy=0 for x,ye H”.

This is evidently a symmetric bilinear form on H.

Proposition 16.1 This form on H is non-degenerate.

Proof. We have A=DB where D is diagonal and non-singular and B is
symmetric. We have rank B=1[. We observe that the symmetric matrix B of
rank / has a non-singular / x [ principal minor. If /=n we can take B itself
as the principal minor, so suppose [/ < n. Then, for some i, the ith row of B
is a linear combination of the remaining rows of B. Since B is symmetric
the ith column of B is a linear combination of the remaining columns of B.
Let B’ be the (n— 1) x n matrix obtained from B by removing the ith row.
Then rank B'=1. Let B” be the (n—1) x (n— 1) matrix obtained from B’ by
removing the ith column. Then rank B” =/. Now B” is symmetric of degree
n—1 and rank /. Thus by induction B” has a non-singular / x [/ principal
minor, and this is the required principal minor of B.

It follows that the symmetrisable matrix A has a non-singular / x [ principal
minor. For let B, be non-singular where J is a subset of {1,...,n} with
|J|=1. Then A,=D,B, where D, =diag{d;, j€J} with each d;#0. Since
D, is non-singular A, is also non-singular.

We now consider the special case in which J={1,...,I}. Then A has
form

A= Ay Ap) |
Ay Ayp)n—lI A, non-singular.

I n-1I
By Proposition 14.2 we may extend the linearly independent sets &, ..., h, €
H,a,...,a,€H" tobases hy, ..., hy, ;5 @;,..., 0, ;suchthat a; (h;) =

C;; where

A, A, O [

C=|A4, Ay, I]|n-I
o I 0) n—I
I n—Iln-—I
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Let

i
—

D, O l
O D,)n—-I
[ n-1
Then

DB, DB, O
C=\|DyB, D,By, 1
0 I o

The symmetric matrix M of the bilinear form <h h ) iLjell,...

i 'Y

D\B,,D, DB\,D, o
M=|D,B, D, D,B,D, D,
o D, o

This matrix is non-singular since

det M =+ (det D,)* (det D,)* det B,, #0.

2n—1}is

Now suppose A is any n x n symmetrisable GCM of rank /. Then A has

a non-singular / x [ principal minor A, for some J C{l,...,n}. Let K be
the complementary subset of J in {1,...,n} and L={n+1,...,2n—1}.
Then there exists a realisation hy, ..., hy,_; ; of,...,a,,, whose matrix

@, (h;) = C;; may be written symbolically in the form

A, Ax O\ J
C=|Ay, Ax [I]K
(0] 1 0O/ L
J K L
Let
D, O\J
=% o)
J K
Then

D,;B, D;By O
C= Dy By, Dy By

~
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This time the symmetric matrix M of the bilinear form (h,-, h j) for i, je
{1,...,2n—1}is

D,B,;D, D,ByDy O

M=\ DgBy;D; DgBxgDyx Dy

0 Dy 0
Since det M == (detD,)* (det D)’ det B, #0 the bilinear form is non-
degenerate on H. O

Theorem 16.2 Suppose A is a symmetrisable GCM. Then the Kac—Moody
algebra L(A) has a non-degenerate symmetric invariant bilinear form.

Proof. We have L(A)= @& L,. For a=m,a,+---+m,a, € Q we define the

acQ
height of & by htaoe=m, +---4+m,. Then
L(A)=PL,
i€Z

where L, is the direct sum of all L, with hta=i. Since [L,Lg]CL,,z we
have [L,-Lj] CL,;,,. Thus L(A) may be considered in this way as a Z-graded
Lie algebra.

We define, for each integer » >0,

Lin= L.

—r<i<r

Then we have
H=LO)cL(l)cL2)cC---

and J,-oL(r) =L(A).
We have already defined a symmetric bilinear form on H = L(0). We shall
extend this definition to give a symmetric bilinear form on L(r) for r=
1,2,3,... thus eventually defining such a form on L(A). We shall define
the form on L(r) by induction on r, assuming it is already defined on
L(r—1).

We begin with the case r=1. We have

i=1 i=1

L(1)= (éCﬁ) OH® (é@ei) .
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We define a bilinear form (, ) on L(1) which is uniquely determined by the
following rules:

(, ) agrees with the form already defined on H

<L,-, LJ-):0 unless i+ j=0

(e i) =([fi»e)=d;

(e fi)=(f;re)=0  if i)

This bilinear form on L(1) is clearly symmetric. We show

(bl 2y = (x, [yz)

for all x, y, z€ L(1). In showing this we may assume x€ L;, y€ L;, z€ L, for
some i, j, z € Z with |i], | j|, |k| < 1. We may assume i+ j+ k=0 as otherwise
both sides of our required equality are zero. The relation is known already
when i, j, k are all 0. Thus we may assume i, j, k are 1, —1, 0 in some order.
There are six possible orders, but it is only necessary to check three of them
as the other three follow from them. Thus we show

([eih] > f]) <ei7 [thD
(lhe,]. £) = (h, [e.f;])
([nfi], e)={n.[f;e])

for h € H. Both sides are zero in these relations if i j. If i = the relations
are valid because

(h;, h) =d,;a;(h) for all he H.
This follows from the definition of the form (, ) on H. Thus we have
([xy], z2) = {x, [yz]) for all x,y,z€ L(1).

Now suppose inductively that a symmetric bilinear form has already been
defined on L(r—1) and satisfies:
(Ll-,Lj)=O unless i+ j=0 for |i|, |j|<r—1

{{xy], 2y ={x, [yz]) forall xeL;, yeL;,ze L, with [i|, |j], |k|<r—1
and i+ j+k=0.
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We shall show this form can be extended to one on L(r) with analogous
properties. We extend the form to L(r) by defining

(L, L)=0 unless i+ j=0 for |i|, |j| <r.

We must also define (x, y)=(y, x) forxeL,,yeL_,. We assume r > 2.
Now we have L(A)=N"@®H®N with H=L,, N =P, L, N=
D,.,L;- The algebra N~ is generated by fi,..., f,, thus each element of

N~ can be written as a Lie word in f,..., f,, so is a linear combination
of Lie monomials in fi, ..., f,. An element of L_, is a linear combination
of Lie monomials in fj,..., f, such that the number of factors in each

Lie monomial is r. If r>2 each Lie monomial is the Lie product of Lie
monomials of degree s,7 say with s+¢=r. It follows that each element
yeL_, can be written in the form
y=>[esd]
J
where ¢; eL,uj, dj eL,v] with u;> 0,v;>0 and ujtv,=r. The expression
of y in this form need not be unique.
Given xeL,,yeL_, we write y=}; [cjdj] as above and wish to define

(e )= ([xc]. 4).

The right-hand side is known since [xcj] and d; lie in L(r—1), so if there
is a form of the required type on L(7) it must satisfy the above relation in
order to be invariant. However, the right-hand side appears to depend on the
particular expression y=>3; [c jdj] for y which need not be unique. We must
therefore show that the right-hand side remains the same if a different such
expression for y is chosen.

In a similar way we can write x € L, in the form

x:Z [a;b;]

where a,€ L, b, €L, and s5;> 0, ;>0 with 5,4+, =r. We shall show

Yo (a [byl) =" ([xc;]. d).

t J

This will imply that the right-hand side is independent of the given expres-
sion for y, and also that the left-hand side is independent of the given
expression for x. In fact it is sufficient to show

(ais [b: [C,-d,-]])z ([[aibi] Cj] ’ dj>-
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Now

using the invariance of the form on L(r—1). Hence our form (x, y) is now
well defined on L(r), where it is bilinear and symmetric.
We must now check that

(bl 2y = (x, [yz)

when xeL;,ye€L;,z€ L with [il, |j|, |k| <r and i+ j+k=0. This is known
already by induction unless at least one of ||, |j|, || is equal to r.

It is impossible for all of |i|, | j|, |k| to be equal to r since i+ j+k=0. We
suppose first that just one of |i|, ||, |k| is r. Then the other two are non-zero.
If |i| =r then

(x, [yz]) = ([xy], 2)

by definition of the form on L(7). Similarly if |k| = r this relation also holds
by definition. So suppose |j| =r. We may assume that y has the form y = [ab]
where ae L, beL,,s+t=jand 0 <|s| <|j|,0<|7] <|j|.- Then

([xy], 2) = ([+labl]. z)
= ([[bx]al, ) +([[xa]b], 2)
= ([bx], [az]) +([xa], [bz])
= ([xb], [za]) +([xa], [bz])
= (x, [b[za]]) +(x, [a[bz]])
= (x, [[ab]z])

= (x, [yz])

using the invariance of the form on L(r—1).

Now suppose that two of |i, | j|, |k| are equal to r. Then i, j, k are r, —r, 0
in some order. Thus one of x, y, z lies in H.
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Suppose x € H. We may again assume y=[ab] whereae L, beL,,s+t=
J, 0<lsl<ljl, 0<[t] <ljl.
Then

([xy]. z) = ([x[ab]], z) = ([[xa]b]. 2) — ([[xb]a]. z)
= ([xa], [bz]) — {[xD], [az]) by definition of(, Yon L(r)
= (x, [a[bz]]) — (x, [blaz]]) by invariance on L(r—1)
= (x, [[ablz]) = (x. [yz])-

If z € H the result also holds by using the symmetry of the form.
Finally suppose ye€ H. Then we may assume z=[ab] where a€L,,
beL, s+t=k,0<]|s|<|k|,0<]|t] <|k|. Then

(x, [yz]) = (x, lab]]) = (x, [a[yb]]) + (x. [[ya]b])
= ([xa], [yb]) + {[x[yal], b) by definition of(, ) on L(r)

[
= {[[xa]y], b) + ([x]va]], b) by invariance on L(r—1)
= ([[xyla], b)
= ([xy], [ab]) by definition of{, Yon L(r)
= ([xy], 2).

We have therefore proved invariance when xelL; yeL; z€L, with
lil, |j], |k|<r and i+ j+k=0. It follows that invariance holds for all
X, Y,z €L(r). By induction the form is therefore invariant on L(A).

Thus we have now defined a symmetric invariant bilinear form on L(A).
We show it is non-degenerate. Let I be the kernel of (, ), i.e. the set of
x€L(A) such that {x,y)=0 for all ye L(A). Since the form is invariant /
is an ideal of L(A). Since by Proposition 16.1 the form is non-degenerate on
restriction to H we have N H = O. But the Kac—-Moody algebra L(A) has no
non-zero ideal 7 with /N H = O. Hence I = O and the form is non-degenerate
on L(A). O

Note The proof of this theorem shows that any symmetric invariant bilinear
form on L(A) is uniquely determined by its restriction to H.

Definition The form constructed in Theorem 16.2 will be called the standard
invariant form on L(A).

Corollary 16.3 For each i€ Z the pairing L, x L_;— C given by x,y—
(x,y) is non-degenerate.
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Proof. Suppose x € L; satisfies (x,y)=0 for all yeL_,. Since (L;, L;)=0
unless i+ j=0 we have {x, y) =0 for all ye L(A). Hence x=0. O

Corollary 16.4 (L, Lg)=0 unless a+p=0.

Proof. Suppose a+fB#0 and let x€ L,, y € Lg. Choose h € H with

(a+B)(h)#0.

Then

([xh], y) = (x. [hy])
implies

—a(h)(x,y) =B(h)(x,y)

that is

(a+B)(h)(x, y)=0.
Hence (x, y)=0. O

Since the form {, ) is non-degenerate on H it determines a bijection H* — H
given by a — h/, where

(K, h) =a(h) for all he H.

Corollary 16.5 (i) Suppose xeL,,yeL_,, Then [xy]|={(x, y)h,.
(ii) The pairing L, x L_,— C given by x, y— (x, y) is non-degenerate.
(iii) For each x € L, with x#0 there exists y € L_, with [xy]#0.

Proof. (i) Consider the element [xy] — (x, y)h, € H. For all h€ H we have
([ey] = (x. y) g By = ([xy], h) = (x, ) (G )
= (x, [yh]) —a(h)(x, y)
=0.
Since the form is non-degenerate on H we deduce that [xy]— (x, y)h, =0.
(ii) Since the form is non-degenerate on L(A) and (La, LB) =0 unless

B =—a the pairing L, x L_, — C must be non-degenerate.
(iii) For each xe L, with x#0 there exists ye L_, with (x, y) #0. Hence

[xy]#0 by (D). O
We now consider to what extent a non-degenerate symmetric invariant

bilinear form on L(A) is unique. The following proposition deals with this
question.
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Proposition 16.6 Suppose A is an indecomposable symmetrisable GCM and
{, } is a non-degenerate symmetric invariant bilinear form on the Kac—Moody
algebra L(A). Then there exists a non-zero & € C such that

{x,y}=E&{x, y) for all x,ye L(A).

Thus such a form is determined on the subalgebra L(A) up to a non-zero
constant.

Proof. The argument of Corollary 16.4 shows that {L,, L} =0 whenever '+
B #0. In particular we have {H, L,} =0 whenever a #0. Since L(A)=H &
> a0 L, it follows that {, } is non-degenerate on restriction to H. The form {, }
on L(A) is determined by its restriction to H and by the map L, x L_,— C
given by x, y— {x, y} for each @ € ®. The argument of Corollary 16.5 shows
that, for xe L,,yeL_,, we have

[xy] = {x, y}k,,

where k/, is the unique element of H satistying {k/,, h} =a(h) for all he H.
We therefore have

—a’

[L,L . ]=Ch,=Ck,

o -

for each a € ®. Thus there exists a non-zero &,€C with A =¢,k,. This
implies that

{h,,h} =&, (N, h) forall he H

since both sides are equal to §,a(h). Let ;, a; be simple roots. Then we
have

{ha[’ ha/} zga,‘ <ha,’ ha/>
and so by the symmetry of the forms
o (1t 0, )= €6, (0, ).

If A;;#0 then (A, , h;j) #0 and we have £, =¢, . If the GCM A is inde-
composable this shows that there exists {#0 in C such that £, = ¢ for all
simple roots «;. Thus

{h;i’h}:§<h:x,-’h> for all he H.
Now for any a € ®  h;, is a linear combination of the 4, . Hence

{n,,h}=¢&(n,, h) for all he H.
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Thus &, =¢ for all a« € ®. Using the equations
[xy] = {x, y}ko = (x, ) L,
forxelL,,yeL_, we deduce that
{x, y}=&(x, ) forxeL,,yeL_,.

Now L(A)’ was defined as the subalgebra of L(A) generated by ¢, ... , e,
fis---» f,- We recall from Proposition 14.21 that L(A)' =[L(A)L(A)]. It
follows that L(A)' N H is generated by [L,L_,]=CHh,, for all a € ®. It follows
that

{W,h}=&(W, h) for all h, ¥ e L(A)NH
{x, v} =€&(x, ) forall xeL,, yeL_,

But L(A)' = (L(A)NH)®3_,. L, also by Proposition 14.21. Thus we see
that

{x,y}=&(x,y) for all x, ye L(A)'. N
Corollary 16.7 L(A)' NH is the subspace of H spanned by h, ..., h,.

Proof. We saw in the proof of Proposition 16.6 that L(A)' N H is the subspace
generated by the elements A, for all @ € ®. Each A, is a linear combination
of hy, ..., h, and so the result follows. |

Corollary 16.8 Any non-degenerate symmetric invariant bilinear form on a
finite dimensional simple Lie algebra is a constant multiple of the Killing
form.

Proof. Since L(A) is simple we have L(A) =[L(A)L(A)]=L(A). Thus the
given form is a constant multiple of the Killing form on the whole of L(A).
U

Important comment on notation. In the case when L(A) has finite type
the standard invariant form is not the same as the Killing form. It is a constant
multiple of the Killing form.

In our development of the theory of finite dimensional simple Lie algebras
we have used the notation (, ) to denote the Killing form. In the theory of Kac—
Moody algebras the Killing form does not exist in general, but the standard
invariant form exists whenever the Kac—Moody algebra is symmetrisable.
In the subsequent development the notation (,) will denote the standard
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invariant form of a symmetrisable Kac—-Moody algebra. This will be so even
in the case of finite dimensional simple Lie algebras, i.e. {, ) will subsequently
denote the standard invariant form rather than the Killing form.

16.2 The Weyl group of a Kac-Moody algebra

Lemma 16.9 Letr x € L(A) and J be the ideal of L(A) generated by x. Then
J=U(L(A))x.

Proof. The adjoint representation of L(A) gives a Lie algebra homomor-
phism L(A) — [End L(A)]. By Proposition 9.3 there is an associative algebra
homomorphism

U(L(A))— End L(A).

A subspace K of L(A) satisfies [L(A), K] CK if and only if 1I(L(A))K C
K. Now we have [L(A),J]CJ. Hence U(L(A))J CJ. Since x€J we have
U(L(A)xCJ.

On the other hand U(L(A))(U(L(A))x)=1(L(A))x, thus

[L(A), N(L(A))x]CU(L(A))x.

Hence U(L(A))x is an ideal of L(A) containing x. Hence 1(L(A))xDJ.
Thus we must have equality. 0

Proposition 16.10 In L(A) we have, for i#j, (ade,)' " e;=0 and
(ad f)' " f;=0.

Proof. We shall show (ad f;)' =" f;=0. The other relation holds similarly.

Let x=(ad f,)' " f;€ N~. We shall show [e,, x]=0 for all k=1,... ,n.
Suppose this is so. Then the set of all ye L(A) with [yx]=0 is a subalge-
bra containing e,, ... ,e,, so contains N. Thus [N, x] =0 and so U(N)x=
Cx. Since L(A)=N-@® H® N we have LI(L(A)) =1 (N )U(H)U(N) by the
PBW basis theorem. Hence

W(L(A))x = W(N")UHE)I(N)x = (N )I(H)x.
Since [H, N"]C N~ we have U(H)N~ C N~ and U(H)x C N~. Thus
W(L(A)xCU(N")N"CN".

Let J=U(L(A))x. This is the ideal of L(A) generated by x, by Lemma 16.9.
We have JC N~ so JANH=0. This implies J= O by definition of L(A).
Thus x=0.
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Thus in order to obtain the required result x =0 it is sufficient to show
[ek, (ad £,)' fj] —0  when i%].
We first suppose k #i and k # j. Then
[ews (@ £)' ] = e [ £ @a ) 1]
= [[ews £ @af) ™ 1)+ [ £ [e @)™ 1 ]]
= [/ [ew @)~ 1]]-
Repeating we obtain, for each ¢,
[ek, (adf,-)’fj] =(ad f))’ [ek,fj] =0.
Next suppose k= j. Then
le) ad £)) f;]=(@d f))' [e;, f;] = (ad £))" B

as above. If 1—A;;>2 then this shows that [e;, (ad f,)'~%if;]=0. If
1—A;=1then A;=0so [f;, h;]=A;f,=0. Thus [e;, (ad f;)' "% f;]=0 in
this case also.

Finally we suppose k =i. Then

[en @ f)' 1] = [ e [ £ ad £ 1]
=[le £1]. )" 1]+ [ [ ad )1 1]
= [ @ £y f) [ i [ a1 ]]
= = ((=Day+a) () @d £) " f;+[ fis [en @ £ 1]
= (-20=1)=A,) @d £)" £, +[ £ [en @af) " 1]

Repeating, we obtain
(—2(t—=1)—A;) (ad £) fi+ (2t —=2)— A;)) (ad £)' ™" f;+--
+(—Ay) @df,) " fi=—t(t—14+A;) (ad £)" f,.
We now put t=1—A,;;. Then we have
[e. ad 1) 1] =0.

This completes the proof in all cases. |



16.2 The Weyl group of a Kac—Moody algebra 373

Using this result of Proposition 16.10 we may deduce, as in Proposi-
tion 7.17, that the maps ad e; and ad f; are locally nilpotent. Then the proof
of Proposition 3.4 shows that expade; and expad (—f;) are automorphisms
of L(A). Let

n;=expade;-expad (—f;)-expade; € Aut L(A).
Proposition 16.11 n,(H)=H. For x € H we have
n;(x) =x—a;(x)h;.
Proof. Let xe H. Then

expade;-x=(l4+ade;) x=x+[e;x] =x — a;(x)e;

(ad f;)°
2

expad (—f;)- (x—a;(x)e;) = (1 —ad fi+ ) (x—a;(x)e;)

=x—a,(x)e;—[fix]+o;(x) [fie;]+ 3 ad f; ([fix]+ o;(x) ;)
=x—a;(x)e;— a;(x)f; — a;(x)h; + %ai(x) 2f;
=x—a;(x)e;—a;(x)h;
exp ade; (x —a;(x)e; —a,(x)h,) = (1+ad e;) (x — a;(x)e; — a; (x) ;)

=x—o;(x)e; — a;(x)h; +[e;x] — a,(x) [e;h;]
=x—a;(x)e;— a;(x)h; — a;(x)e; +2a;(x)e;
=x—a;(x)h;.

This gives the required result. UJ

Proposition 16.12 The map s; : H— H induced by n; satisfies s?=1,
s;(h))=—h; s;(x)=x when {h;, x)=0.

i

Proof. This follows from s,(x) =x—a;(x)h; together with «;, (h;,)=2 and
(h;, x) =d,;o;(x). Ul

The maps s; : H— H are called fundamental reflections. The group W
of non-singular linear transformations of H generated by s, ..., s, is called
the Weyl group W of L(A).

Proposition 16.13 The bilinear form {, ) on H is invariant under W.
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Proof. Let x,ye€ H. Then

(s;x, 8,y) = (x—;(x)h;, y —a; (V) ;)
=(x, y) —a;(x) (h;, y) —a;(y) {x, b)) +a;(x)a;(y) (hys hy)
=(x, y) —a;(x)d;e;(y) — ;(y)d;a;(x) + a;(x) e, (y) - 2d;
=(x,y). O
We may also define an action of W on H* by
(w)\)x:)\(w’lx) forweW, A\e H*, xc H.

This action is compatible with the isomorphism H* — H given by A — k)
where (4, x)=A(x) for all xe H. For suppose w(A)=pu for A, weH*
Then

(w(hy), x) = (A, w™' (X)) =A (w™' (x))
= (wA)x=p(x)= (h;, x)

for all x € H. Thus w (h))=h,,.

Proposition 16.14 The action of s; on H* is given by

s; (M) =A=A(h) ;.

Proof. Let x€ H. Then
(s M) x=A(s7'x) = A (5;x) = A (x — o (x) ;)
=A(x) = A(h) a;(x) =(A—A(h) a;) x. U

In fact the Weyl group acts on the root system ® of L(A).

Proposition 16.15 If ac®,weW then w(a)eP. Moreover dimL,=
dim L

w(a)*

Proof. The proof of Proposition 7.21 also applies in our present situation.

O

We shall now determine the order of the product s;s; of two distinct
fundamental reflections.
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Theorem 16.16 Suppose i# j. Then the order of s;s;,€ W is:

2 if AyA; =0
30 if AyA =1
4 if AyA; =2
6 if AyA;=3
oo if AjA;z4

Proof. The Weyl group W acts faithfully on H*. Let K be the 2-dimensional
subspace of H* given by K =Ca;+Ca;. We have

si(a) =—a;, 5 (aj) =a;— A

si(a)=a,—Aza;, s (a)=—a;.

Thus the subgroup (s;, s;) of W acts on K. We obtain a 2-dimensional repre-
sentation of (si, sj) given by

NG (10 (1 A4 4,
A N4, %iS —A, 1)

Consider the order of this 2 x2 matrix representing s;s;. Its characteristic
polynomial is

lJ j[

A )H—l

JU

=N+(2-A;4;)A+1.

l] ]l

‘)\—H AjA;  —A;

The discriminant of this polynomial is

D= (2 AIJAJI) —4=A,4; (A’JAJI 4)
Thus there are two equal eigenvalues if A;;A ;=0 or 4, two distinct complex
eigenvaluesif A;;A ;=1,2 or 3, and two distinct real eigenvalues if A;; A ; > 4.

ij4tji ijerji
Suppose A;;A; =0. Then s;5; — (' %) and the matrix has order 2.

ijetji
Suppose A;;A; = 1. Then the characteristic polynomial is A>+ A+ 1 so the
eigenvalues are w, @ where @ =e>"/3. Thus the matrix is similar to (¢ %)

and so has order 3.
Suppose A;;A;=2. The characteristic polynomial is then A+1=
(A—1) (A+1). Thus the matrix is similar to (} %) and so has order 4.
Suppose A;;A;=3. The characteristic polynom1al is A>—A+1=

(A4 ) (A+ ®?). Thus the matrix is similar to (7 °,) and so has order 6.
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Suppose A,;A; =4. The characteristic polynomial is A* —2A+1= (A —1)?.
The eigenvalues are 1, 1, so the matrix is similar to (§¢) with £#0. This
matrix has infinite order.

Now suppose A;;A;; > 4. Then the eigenvalues are real and their product is
1. They are also positive and unequal, so have form &, £~! where ¢ > 1. Thus

the matrix is similar to ( 0 ) so has infinite order.

0¢!
We have so far considered the action of s;s; on the 2-dimensional subspace

K of H*. We now consider the action of s;s; on the whole of H*. Let
={AeH*; A(h;)=0, A(h;)=0}.
Then dim K’ =dim H* —2. Let A€ KNK'. Then A =§a; +mna; and

A(hi):2§+77Aij=O
/\(hj)zfAj,-+2n=0.
NOW‘A ‘—4 A; A, Thusif A, A,;#4 wehave £=0,1=0s0 KNK'=

ijerjit ijtrji
O. Then H=K®K'. Now 5;8; acts trivially on K’ since, for A € K’, we have

55, (0)=s;(A=A(h)) ;) =5,(A)=A—A(h;) ;=\

Thus the order of s;5; on H* is equal to the order of s;5; on K provided
A A #4 1 AA;, _4 the order of s;s; on K is infinite, so s;s; has infinite

order on H*. O

We now define /(w) and n(w) for w € W in the same way as when L(A) is
finite dimensional. /(w) is the minimal length of w as a product of generators
Sis--- 58, and n(w) is the number of € ®t with w(a)e€ ®~. Then the
proof of Theorem 5.15 also applies in our present situation and shows that W
satisfies the deletion condition. Also the proof of Corollary 5.16 applies in
our situation and shows that /(w) =n(w). Finally the proof of Theorem 5.18
applies and shows that W is generated by s, ... , s, as a Coxeter group. Thus
we have:

Theorem 16.17 The Weyl group W of the Kac—-Moody algebra L(A) is a

Coxeter group generated by s,, ... , s, with relations
57 =
(slsj) =1 if A;A;=0
(5 =1 if A A;=1
(ss) =1 if A A;=2
(s5)' =1 if A A;=3.
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16.3 The roots of a Kac-Moody algebra
Let A be a GCM and L(A) the corresponding Kac—-Moody algebra. Then
L(A)=H®) L,

acd

where ®={a#0; L,#0}. ® is the set of roots of L(A). We recall that
O=PTUD where DT =DPNQO" and @ =PN Q. These are the positive
and negative roots. II={a,,...,«,} is a subset of ®*t called the set of
fundamental roots. The multiplicity of the root « is defined as dimL,. We
know from Proposition 14.19 that the fundamental roots «, ..., «, have
multiplicity 1. We also know from Proposition 16.15 that the Weyl group W
acts on @ and preserves multiplicities.

Definition «a € @ is called a real root if there exist o; €Il and we W such
that a =w (;).
a € D is called an imaginary root if « is not real.

We note that if « is a real root so is —a. For let e =w («;). Then —a=
ws; (o). It follows that if « is an imaginary root so is —a.

Proposition 16.18 Let a be a real root. Then o has multiplicity 1. Also, for
keZ, ka is a root if and only if k==1.

Proof. Since o« =w («;) and «; has multiplicity 1, Proposition 16.15 implies
that @ has multiplicity 1. We also know from Proposition 14.19 that if k > 1
then ka; is not a root. Since ka=w (ka;) , ke is also not a root. U

We now consider the imaginary roots. Let @ be the set of positive
imaginary roots.
Proposition 16.19 If a € ®, and we W then w(a) € Py
Proof. We know that W acts both on ® and on the set @y, of real roots.

Hence W acts on the set @, of imaginary roots. We must show that an
element w € W cannot change the sign of an imaginary root. Let

n
a=) ka; k,>0.
i=1
Now at least two coefficients k; must be positive. Otherwise a would be
a multiple of some «; and hence equal to «;. But then o would be real,
a contradiction. Now s;(a) =a—a (h;) ¢;, thus s;(a) contains at least one
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fundamental root with positive coefficient. Hence s;(a) € ®; . Since we W

is a product of fundamental reflections s; we have w(a) € ®; . O

We now introduce the fundamental chamber in the context of Kac—Moody
algebras. We recall that in Section 12.3 the fundamental chamber was defined
for finite dimensional semisimple Lie algebras. In the present context we
begin with a GCM A and take a real minimal realisation (Hy, IT, IT") as in
Remark 14.20. We then define the fundamental chamber as

C={\AeH;; A(h)>0 fori=1,...,n}.

Its closure is

C={AeH;; A(h)=0 fori=1,...,n}.

Proposition 16.20 Suppose a € @, . Then there exists we W with w(a)
e—C.

Proof. Consider the set of all elements w(a) for w e W. These are all positive
imaginary roots by Proposition 16.19. Let 3 be such a root for which ht 3
is as small as possible. Let 8= k;a;. Then s,(8)=8—B(h;) e;. Since
hts,(8) > ht 8 we have B8 (h;) <0. This holds for all i, thus 8 € —C. O

Proposition 16.21 Let a e ®,a=>"}_, k;o; and supp a={i ; k;#0}. Then
supp « is connected.

Proof. We may assume a € ®*t. Let supp a=J C{l,...,n}. Suppose if
possible that J is disconnected, that is J =J, UJ, with J;, J, non-empty and
A;;=0forallieJ,, jeJ,.

We shall show that [e; ¢;,] =0 for all i € J,, j € J,. We first show the weaker
condition

[[el-ej]fk]zo foriel,, jel,, k=1,...,n.
We have
[[eie;] fi]=[e:[e;fi]]+ [leifid e] -
If k&{i, j} then [e;f,]=0 and [ejfk] =0.
If k=i then [[eiej] fk] = [h,-ej] =A;e;=0.
If k=j then [[e;e;] fi]=[eh;]=—A,e;=0.

Thus in all cases [[eiej] fk] =0 for all k.
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Write x=[ee;]. The ideal of L(A) generated by x is 1(L(A))x
as in Lemma 16.9. Since L(A)=N@®H®N~ we have U(L(A))=
U(N)U(H)L(N™). Now N~ is generated by f,...,f, and [x f;]=0 for
each i, thus I (N~)x=Cux. Since [HN]C N we have U(H)N CN and so
U(H)U(N")xCN since xe€ N. Finally W(N)U(H)U(N~)xCU(N)N CN.
Thus 1(L(A))x is an ideal of L(A) intersecting H in O. By definition of
L(A) this ideal must be O. In particular we have x=0. Thus [¢; ¢;]=0 for
allieJ,, jeJ,.

We use this fact to obtain the required contradiction. Since a € ®* we
have L,# O and L, C N. The elements of L, are Lie words in e, ... ,e,
of weight «, and so are linear combinations of Lie monomials in
e, ...,e, of weight a. Thus there exists a non-zero Lie monomial m in
e;,...,e, of weight . We show that any such Lie monomial must be 0
since it contains factors e; both with i€ J; and with i€ J,. We can write
m=[m, m,] where m,, m, are shorter Lie monomials. If either m, or m,
involves factors e; both with i € J; and with i € J, we have m; =0 or m,=0
by induction. Otherwise all factors e; of m; have i€ J, and all factors e; of
m, have i€ J,, or vice versa. But then [m, m,]=0 since [e,- ej] =0 for all
ield,, jeJ,. Thus m=0 and we have the required contradiction. |

In order to understand the imaginary roots it will by Proposition 16.20 be
sufficient to understand the positive imaginary roots which lie in —C, the
negative of the closure of the fundamental chamber. Such roots satisfy the
conditions:

aeQ", a#0, supp« is connected, a € —C.

It is a remarkable fact that, conversely, any element « satisfying these condi-
tions is a positive imaginary root. Before being able to prove this we need a
lemma.

Lemma 16.22 (i) Suppose a € O, a # ta,, satisfies a —a,; & ® and a+a; ¢

d. Then a (h;)=0.

(ii) Suppose a € O, a # —a,, satisfies a+a; & P. Then a (h;) > 0.

Proof. (i) Since « € ® we have L, # O. Let x € L, with x #0. Let
n;=expade;-expad (—f;)-expade; € Aut L(A).

We show that n,x € L (. For [hx]=a(h)x for all h€ H, hence [n;h, n;x]=
a(h)n;x. Now n;(H) = H by Proposition 16.11 and so

(W, nx]=a(n;'h)nx for all ¥’ € H.
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We have n;'h'=s;'"h' =s5;h' also by Proposition 16.11. Thus [/, n;x]=
a(s;h')nx=(s;a) (W) n;x for all i’ € H. Hence n;x € L ).

Now ade;-xeL,, and so ade;-x=0 since a+a; ¢ P and a+a,; #0.
Thus expade;-x=x. Also adf;-xeL,_, so adf;-x=0 since a—a; ¢ P
and a—a;#0. Thus expad (—f;)-x=x. Hence n,x=x. Since x€L, and
nx € L, we deduce s5;(a) =a. But 5;(a¢) =a—a (h;) @; and so a (h;) =0.
(ii) Again let x be a non-zero element of L,. As before expad e, - x=x since

a+o; ¢ P and a+a; #0. We have

(ad f
2

), @)

expad (—f;)x=x—ad f,-x+ ‘ ’
! p!

X

where (ad f,)”*' x=0, since ad (—f,) is locally nilpotent. Thus

de)
nl-xzexpade,--expad(—f,-)-x:Z(at—’e’)(x—adf,-x—i—---).

t>0

Now (ade;) ™" (ad f;)' x=0 for each positive integer 7, since a+a, & ®
and o+ a; #0. Hence (ad e,)* (ad f,)' x=0 for all k > 1+ 1. It follows by
considering the above expression for n;x that

nx e La D Lafa,- D @Lafpa,-'

However, n,x€ L, as in (i). Thus s;(e)=a—a(h;) a;=a—ka; for
some k with 0 <k < p. Hence a (h;) >0. O

We now define

K={aeQ", a0, suppa is connected, a€ —C}.
Proposition 16.23 K C ;.

Proof. Let a € K. Then a=}""_, k;a; with each k; >0 and k; > 0 for some i.
Also suppa={i ; k;#0}.
We define a set ¥ of roots by

v={Bed"; B=> mua; with m; <k; foreachiy.
i=1

W is a finite non-empty set of positive roots, since it contains at least one
fundamental root. We choose a root S€ ¥ such that htf is as large as
possible. We aim to show that 8=« and hence that a € ®. We shall show
first that supp 8 =supp a.



16.3 The roots of a Kac—Moody algebra 381

Suppose if possible that supp 8 7 supp «. Since supp « is connected there
exist j € supp @ —supp B and j’ € supp B such that A, #0. Let B=3"7_ m
Then m; =0. Now B —a; ¢ ® since m; =0 and B+ a; ¢ ® by the max1mahty
of ht 8. By Lemma 16. 22 (i) we have ﬁ( ;)=0. But
B(h)= 3 mai(h)= 3 mA;<0
iesupp B iesupp B
since m; >0, A; <0 and A, <0. This contradicts 8 (h]) =0. Thus supp =

supp a.
Now we have a =)/, k;a;, B=)""_, m;at; with m; <k;. Let

J={iesuppa; k;=m,}.

We aim to show that J =supp « and so that S =«.
Suppose if possible that J #supp a.. Let i € suppa —J. Then m; < k;. Hence
B+ a; € ® by the maximality of ht 8. Thus B8 (#;) >0 by Lemma 16.22 (ii).
Let M be a connected component of suppa—J. Then B(h;) >0 for all
ieM.Let B'=>",., m;c;. Then
B (h;) =B (h;)— Z m;a; (h;)

jesuppa—M

=B (h;)— Z minj'
jesuppa—M
If ieM then B(h;)>0,m;>0 (since suppB=suppa) and A;; <0. Hence
B’ (h;)>0. Since supp « is connected there exists i/ € M and j e suppa—M
with A, #0. Then

B (h)=B(hy)— 3. mA,
jesuppa—M
We have ' (h;) >0 as before; however, in fact we have B’ (h;)>0. The
strict inequality holds since m; >0 and A;; <O.
Let A, be the principal minor (A;;) w1th i,jEM. Let u be the column
vector with entries m; for j€ M. Since
B (h)=7) A;m,; forieM
JjeEM
we have u>0, Ayu>0, A, u#0. Now we recall that if the indecomposable
GCM A, is of affine type then A, u >0 implies A,u=0. Also if A, is of
indefinite type then A,,u>0 and u >0 imply #u=0. Thus A,, cannot have
affine type or indefinite type. Hence A,, has finite type.
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Now let y =",y (k; —m;) ;. We have k; —m; > 0 for all i € M. We recall
that

a—p= Z (k;—m;) a;.

iesuppa—J

Thus for i € M we have

(a=B)(h)= Z (kj _mj) Aij = Z (kj - mj) Aij =y (h;)
jesuppa—J jeM
since M is a connected component of suppa —J. Thus y (h;) =« (h;) — B (h;)
for all ie M. Now a(h;) <0 since « € K and B (h;) >0 since i€ M. Thus
v(h;)<Oforallie M.

Now let u be the column vector with entries k; —m; for i€ M. Then we
have u >0 and A,,u <0. Since A, has finite type A,,(—u) >0 implies —u >0
or —u=0, that is u <0 or u=0. This is a contradiction since u > 0. This
contradiction shows that J =supp « and hence that 8 =«. Thus a € ®. Since
ae Q' we have a € ®*. Thus a €K implies a € ®". Now a €K implies
2a €K, so 2a € ®*. By Proposition 16.18 this implies that o € ®; . This

Im*

completes the proof. 0

This remarkable proof, due to V. Kac, enables us to determine the set of
all positive imaginary roots, and hence the set of all imaginary roots.

Theorem 16.24 The set of positive imaginary roots of L(A) is given by
Dpf, = U,y w(K)
where
K={aeQ"; a0, suppa is connected, a € —C}..

The set of all imaginary roots is ®;;, U(—®f).
Proof. This follows from Propositions 16.19, 16.20, 16.21 and 16.23. O
Corollary 16.25 Let a € ®; . Then ka € ®, for all positive integers k.

Proof. This follows from Theorem 16.24 and the fact that a € K implies
kaekK. U

We next consider the real and imaginary roots of L(A) when A is sym-
metrisable. Then L(A) has an invariant bilinear form (, ) described in Sec-
tion 16.1. This form is non-degenerate on restriction to H, so determines
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an isomorphism H* — H under which A — &), where A(x)=(h, x) for all
x € H. We can then transfer the bilinear form to H* by defining

() =(iy. 1),
In particular we can define (a, @) for a € ®.

Proposition 16.26 Suppose A is a symmetrisable GCM. Then if « is a real
root of L(A) we have {«, &) > 0. If a is an imaginary root then {«, a) <0.

Proof. The form (, ) on H is W-invariant by Proposition 16.13, so the induced
form on H* is also W-invariant. By definition of the form on H we have

(h;, x) =da,(x) for all xe H.
Hence d;a; € H* corresponds to h; € H under our map H* — H. Thus

1 2
(a;, a;) = d_12 (his hy) = E

1

In particular {e;, @;) > 0. Now each real root has form w (¢;) for some we W
and some i. Hence

(w(a;), w(e,))=(a;, ;) >0.

Now consider the imaginary roots. Let @ € K. Then =) k;c; with each
k;>0 and « (h;) <0 for each i. Thus

(@) = Tk @ @) = k- e () <0

since k; >0, d; >0, a (h;) <0. Every positive imaginary root has form w(«)
for some we W, a € K, thus

(w(a), w(a))={(a, a) <0.
For the negative imaginary roots we have
(—w(a), —w(a)) =(w(a), w(a)) <0. 0

We next obtain information about the imaginary roots in the three cases of
our trichotomy.

Theorem 16.27 Let A be an indecomposable GCM.
(1) If A has finite type then L(A) has no imaginary roots.
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(ii) Suppose A has affine type. Then there exists u>0 with Au=0. The
vector u is determined to within a scalar multiple. Thus there is a unique
such u whose entries are positive integers with no common factor. Let
u=(a,...,a,). Let 6=a,a,+---+a,a,. Then the imaginary roots of
L(A) are the elements ko for ke Z, k #0.

(iii) Suppose A has indefinite type. Then there exists a € ®f such that a =
Yo ki with k; >0 and o (h;) <0 foralli=1,...,n

Proof. (i) If A has finite type L(A) is a finite dimensional simple Lie algebra

by Theorem 15.19. Thus each root of L(A) is real by Proposition 5.12.

(i1) Suppose A has affine type We first consider the imaginary roots in K.
Let « € K satisfy a=}""_, k;a;. Let v be the column vector (k, ..., k,).
Then we have v>0 and Av < 0, since a (h;) <0 for each i. But in affine
type A(—v) >0 implies A(—v)=0. Thus v#0 and Av=0.

We also have u >0 and Au=0. Since A has corank 1, v is a multiple
of u. Since the coefficients of u have no common factor v=ku for some
k € Z with k> 0. Thus o =k$.

Now every positive imaginary root has form w(«) for some a € K, by
Theorem 16.24. We have

5(8)=8—58 (h) ;=

since 6 (h;) =0 follows from Au=0. It follows that w(8) =0 for each
w e W. Thus the only positive imaginary roots are the elements k6 with
k €Z, k> 0. Hence the only imaginary roots are the k6 with k € Z, k #0.

(iii) Suppose A has indefinite type. Then there exists u>0 with Au<0.
Suppose u=(k,, ... ,k,). Let a=>""_, k;a;. Then a € K and a (h;) <0
for all i. Thus « is a positive imaginary root of the required kind.

O

A significant consequence of the last result is as follows.

Corollary 16.28 If A is an indecomposable GCM of affine or indefinite type
then the dimension of L(A) is infinite.

Proof. In both cases L(A) has an imaginary root «. Thus it has infinitely
many imaginary roots ka for k € Z, k #0, by Corollary 16.25. Since L(A) =
H®Y ..o L,,dim L(A) must be infinite. O
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We next consider which of the imaginary roots of L(A) when A is sym-
metrisable satisfy (@, a) =0.

Proposition 16.29 Let A be symmetrisable and o be an imaginary root of
L(A). Then {a, &) =0 if and only if there exists w € W such that the support
of w(a) has a diagram of affine type.

Proof. First suppose {(a, @) =0. We may assume without loss of generality
that @ € ®*. Thus there exists w € W with w(a) € K, by Theorem 16.24. Let
B=w(a). Then B (h;) <0 foralli. Let J be the support of Band B=3",, k; ;.
Then J is connected. Now

(B.B) = ki (B.a) =X B ().
ie ieJ 71
Now k;>0,d;>0 and B (h;) <0 for all i€ J. Since we also have (8, 8) =
(w(a), w(a)) =(a, a)=0 we deduce that 8 (h;)=0 for all ieJ. Hence
> ek (h;)=0, that is 37, ; A;;k;=0. Let u be the column vector with
entries k; for j€J. Then u>0 and A,u=0. Since A, is an indecomposable
GCM this implies that A, has affine type, by Corollary 15.11.

Conversely suppose 3 is a positive imaginary root whose support J has a
diagram of affine type. Then Lg# O and so L(A) contains a non-zero Lie
monomial in e, ..., e, of weight 8. The letters ¢; in this Lie monomial all
have i € J. Thus the Lie monomial lies in L (A,) and so B is a root of L (A,).
If B were a real root of L (A;) it would have form w («;) for some we W (A))
and i € J, and so 8 would be a real root of L(A). Thus 8 is an imaginary root
of L(A,). Since L(A,) has affine type, B=k6 where 0 is the element for
L (A;) defined in Theorem 16.27 (ii). Let 6=)",., a;;. Then

(8.8) =3 a, (8, ) =3 =8 () =0
iel ie] di
since 6 (h;) =0 for all i e J. Thus (B, B) =0 also. Finally if « is any root of
L(A) satisfying w(a) = for some we W, we have («, a) =0 also. O
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Kac—Moody algebras of affine type

17.1 Properties of the affine Cartan matrix

We now consider the Kac—-Moody algebras L(A) where A is a GCM of affine
type. Let A be an n x n matrix of rank /. Then we know that n=17+41. We
shall number the rows and columns of A by the integers O, 1, ..., [. There
exists a unique vector a=(ay, a,,...,a;) whose coordinates are positive
integers with no common factor such that

a, 0
a, 0
A =1 .
a, 0

The possible Dynkin diagrams of such matrices A were obtained on the affine
list 15.20. We shall choose the numbering of the vertices in such a way that
node O is the one in black in the diagram below. We also show in each
diagram the integer a; associated to each vertex.

17.1 The integers a, a,, ... , a,.
1 1 2 1
«e—<o —
A Al
| 1
1
1 1
1 1 |
| 1
I
A A A
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1 1 1
: 2 2 : 2 2 2 2 2 2
1 - 1 ~ 1 ~
B; B,
1 1 1
2 1 : 2 2 1 2 2 2
1 1 - 1
B

o=
Py

Bt
B?

1 2 1 1 2 2 1 1 2 2
« (o) D & T ) D @& T
C, Cy C,
1 1 1 1 1 1 1 1 1 1
« (o) D & T ) D @ T
cy é c4
2 2 1 2 2 2 1 2 2 2
« (0] 0 & 6 Y D @ T
c ¢ é,
1 1 1 1 1 1
2 2 2 2 2 2
1 1 1 1 1 1
D, Dy D¢

—_
[S)
w
[§)

[ R
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1 2 3 4 5 6 4 2
[ 4 O O O O O O O
E o}
$ 3
1 2 3 4 2 1 2 3 2 1
&—0—0 5 0—o0 S D, o e ¢ S\
F, F,
1 2 3 1 2 1
G, 512
There exists also a unique vector (cg, ¢;, ... , ¢;) whose coordinates are pos-

itive integers with no common factor such that
(cgs€ys-v-5c))A=(0,0,...,0).
In fact the vector (cy,c(,...,c;) for A is the same as the vector

(ag, ay, ..., a;) for the transpose A'. Thus the vector (cy, ¢y, ..., ;) may
also be read off from the diagrams in the list 17.1.

Proposition 17.2 (i) ¢,=1.
(if) ay=1 unless A has type C; or A|. In these cases ay=2.

Proof. This is clear from 17.2 O

Let (H,II,I1V) be a minimal realisation of A. Then dimH=2n—1=
1+2. IIV={hy, hy, ..., h} is a linearly independent subset of H and I1=
{ag, @, ..., @} is a linearly independent subset of H*. These exists an ele-
ment d € H such that

ay(d)=1 a,;(d)=0 fori=1,...,1L

d is called a scaling element.

Proposition 17.3 hy, hy, ..., h;,d is a basis of H.
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Proof. We must show that d is not a linear combination of A, i, ... , h;. Sup-
pose if possible that d=Y"I_, k;h;. Then o,(d) =Y\, ka; (h) =Y I_ k;A;;.
Hence

1
S ki (A ... Ay)=(1,0,....,0).
i=0

In particular, omitting the first column of A,

1
S ki (A ... A)=(0,....,0).
i=0

However, we also have

I
i (A, ... A =(0,...,0).
i=0

Since the (/4 1) x [ matrix (A,-j), 0<i<lI, 1 <j<I has rank [, this implies

that (k,, ... , k;) is a scalar multiple of (cy, ... , ¢;). But this would imply that
(ko> kyy ..o s k) A=(0,0,...,0)

a contradiction. |

We now define an element y € H* determined uniquely by

v(hy)=1 v(h)=0 fori=1,...,1 v(d)=0.
Proposition 174 o, ay, ..., a;, 7y is a basis of H*.

Proof. The (I42) x (I+2) matrix obtained by applying these elements of H*
to the basis of H in Proposition 17.3 is

20 - - - x|l
* o] ©
AO . 1
[
* 01141
1o- - - 0|0
o1 - - - [I+1

where A° is a Cartan matrix of finite type. Thus det A° 0 and so the deter-
minant of the above matrix is also non-zero. Hence a,, «;, ... , o), y must be
a basis of H*. ]
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We know that any indecomposable GCM of affine type is symmetrisable.
We shall now express the affine Cartan matrix A in an explicit way as the
product of a diagonal matrix D with positive diagonal entries and a symmetric
matrix B. The diagonal entries of D are rational, but not necessarily integral.

Proposition 17.5 We have A= DB where D=diag(d,,d,, ... ,d,) and B is
symmetric, where d;=a;/c;.

Proof. By Theorem 15.17 there exists a diagonal matrix D with positive diago-
nal entries and a symmetric matrix B such that A= DB. Letc=(cy, ¢, ..., )
and a'=(ay, a,,...,qa;). Then Aa=0 so DBa =0, and hence Ba=0. Thus
a'B=0. Also cA=0so (¢cD)B=0. Since B has corank 1 ¢D must be a scalar
multiple of a'. In fact we can choose D so that cD=a', thatis d;=a;/c;. [

Now we have a non-degenerate bilinear form on H defined as in Proposi-
tion 16.1. This form satisfies

<hi, hj>=diijij=ajC;1Aij fori, j=0,1,...,1
(ho, d) =dyy(d) =ay
(h;,d)y=0 fori=1,...,!
(d,d)=0.

This standard invariant form on H defines a bijection H*— H given by

A— R, where A(x)=(h), x) for all xe H.

Proposition 17.6 Under this bijection between H and H*, h; € H corresponds
to a,-ci’lai eH* fori=0,1,...,l and d € H corresponds to a,y € H*.

Proof. For j=0,1, ..., we have
a;ci'e;(h)=d;A;=(h;, h)  fori=0,1,...,1
a;c;'a;(d)=d;a;(d)=(h;. d)
thus ajcj"aj € H* corresponds to h; € H. We also have
ayy (h)={d, h;) for i=0,1,...,1
ayy(d) =(d, d)

thus a,y € H* corresponds to d € H. |
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We may transfer the standard bilinear form from H to H* using this
bijection. The form on H* is then given by

(@, a))=a;'c;A;  i,j=0,1,...,1

(@, v)=a;'
(a;,y)=0 i=1,...,1
(v, 7)=0.
We note in particular that
_ 2(01,., aj)
RCNH

Corollary 17.7 Under the given bijection between H and H*, h; € H corre-

2a;
sponds to <anaai> € H*

Proof. This follows from Proposition 17.6. |

We now define an element ce H by c=Y"'_¢;h;. Under the bijection
H — H* ¢ corresponds to 6. For 6§ = Zf.:o a,a; and h; corresponds to a,c; 'e;
by Proposition 17.6.

Proposition 17.8 The element c lies in the centre of L(A). In fact the centre
is 1-dimensional and consists of all scalar multiples of c.

Proof. For each simple root &; we have a;(c) = Y, ca;(h)= PO c;A;=0.
It follows that a(¢) =0 for all « € ®. Now L(A)=H® ), L,- Thus each
element of L(A) has form 2+ )" x, where he H, x, € L, and finitely many
x, are non-zero. Thus

|:c, h+2xa:| =Y a(c)x,=0.

[e3

Hence c lies in the centre of L(A).
Now let h+3_, x,, be any element of the centre of L(A). Then we have

|:x,h+Zxai|=0 for all x € H.

Thus Y, a(x)x, =0 for all x € H. This implies a(x)x, =0 for all x € H. Now
for each a € ® there exists x € H with a(x)#0. Hence x, =0. This shows
that the centre of L(A) lies in H.
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So let h € H lie in the centre of L(A). By Proposition 17.3 we have

1
h=> &h+é&d for ¢, £eC.
i—0

Let x€L, . Then [hx]=ea;(h)x. Hence a;(h)=0 for each j=0,1,...,L
Thus

Zfiaj (hi)+§aj(d) =0
i=0

that is
!
ZgiAij:O for j=1,...,1
i=0
and
!
Z §Ay=—¢
i=0
However, we have Zj‘:o Aja;=0, hence A,=-—a;' Zj':l Ajja;. Thus

zfzogiA,.jzo for j=1,...,0 implies Y| ,&A,,=0. Thus we deduce
that £€=0, and so h:Zsz &h;. This in turn gives ZﬁzofA =0 for

i“hij

j=0,1,...,1 This implies that (&,, &,,...,¢&,) is a scalar multiple of
(cgs €y --- ;) since A is an (I4+1) x (I+1) matrix of rank /. Thus % is a
multiple of ¢. Thus the centre of L(A) is the 1-dimensional subspace spanned
by c. Ul

c is called the canonical central element of L(A).

Summary

We will find it convenient to summarise in one place the properties of the
various elements discussed in this section:

(a) hg, hy, ..., h;, dare abasis of H.
(b) c=cyhy+---+c,h, is the canonical central element.
(c) ag, ), ...,y are a basis of H*.

(d) 6=ayay+---+a,q, is the basic imaginary root.
(e) The standard invariant form on H is given by

(i hj)=a;c;'A; 0, j=0,1,...,1
(ho, d) =ay

(hydy=0  i=1,...,1
(d,d)y=0.
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(f) The standard invariant form on H* is given by

(ai,aj)zai_lciAij i,j=0,1,...,1
(@, ) =a,'

(a;, y)=0 i=1,...,1

(v, v)=0.

(g) The action of H* on H is given by

aj(hi):Aij i,j=0,1,...,1

ay(d)=1
a;(d)=0 i=1,...,1
Y (hy)=1
y(h)=0  i=1,...,1
v(d)=0.

(h) The properties of the central element c.

(h,c)=0  i=0,1,...,1
(d,c)=ay,
(c,c)=0
a;(c)=0 j=0,1,...,1

y(eo)=1.
(i) The properties of the imaginary root §.

(@, 8)=0  j=0,1,...,1
(v,0)=1
(8,8)=0
8(h)=0  i=0,1,....1
o(d)=a,
8(c)=0.

393
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(j) Properties of the standard bijection H — H*.
hi—>a,-c[._1ai i=0,1,...,1
d—ayy

c— 6.

17.2 The roots of an affine Kac-Moody algebra

Let A° be the matrix obtained from the affine Cartan matrix A by removing
the row and the column 0. Then A° is an [ x [ Cartan matrix of finite type.
By list 17.1 we see that A° is given in each case by the following list.

The underlying Cartan matrix A°

A A°

A 1>1 A,

A A,

B, >3 B,

B >3 C

C, 1>2 C

Ct 1>2 B,

C, 1>2 C

D, >4 D,

E, 1=6,7,8 E,

p A

o F,

G, G,

G G,
Let ®° be the set of roots of the finite dimensional Lie algebra L (A°). ®°
has a fundamental system I1°={a;, ..., «,}. Let W° be the Weyl group of
®°. Then WP is generated by the fundamental reflections s, ... , s,.

Now we know that the imaginary roots of L(A) are the elements k6 with
ke€Z and k#0, by Theorem 16.27 (ii). (However, we do not yet know the
multiplicities of these roots.) Thus we shall now consider the real roots of
L(A). These have the form w («;) for some we W and i =0, 1, ..., l. We con-
sider the squared lengths («, &) of the roots a € .. Since (w (e;) , w(e;)) =
(a;, a;) the length of any real root is equal to the length of some fundamental
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root. The relative lengths of the fundamental roots may be obtained from list
17.1 using the formulae

=

(o 2

(a;, a;)

>
I
o

i

i Q@ ji
Proposition 17.9 (a) If A is an affine Cartan matrix of types A,, D,, Eq, E,, Eq
all the fundamental roots have the same length.

(b) If A has types B, B, C,, C!, F,, F} there are fundamental roots of two
different lengths. The ratio (B, B)/{a, &) where a is short and B is
long is 2.

(c) If A has type G, or Gtz there are fundamental roots of two different
lengths with (B3, B)/{a, a) =3.

(d) If A has type ;\’] there are fundamental roots of two different lengths with
(B.B)/ (e ) =4,

(e) If A has type C; there are fundamental roots of three different lengths,

say a, By, with (B, B)/{a, a) =2 and (y,y)/(B, B) =2.

Proof. This is clear from list 17.1. |

We shall denote by @y, ¢ the set of short real roots, by @y, | the set of long
real roots and by ®y, ; the set of real roots of intermediate length. The latter
set is non-empty only when A has type 6’[ for some /. If all real roots have
the same length we use the convention @, = Py, (.

We now aim to characterise the set ®y, .. We consider the possible values
of (a, ) for € Q. Let a=Y"}_ k;;. Then (a, ) =Y, ;k;k;(a;, a;). Now
(e, a;) € Q for all i, j. Thus there exists d € Z with d >0 such that (a;, a;) €
27 for all i, j. Thus if (a, &) >0 then (a, a) > 1. Hence there exists m >0
such that m =min («, a) for all @ € Q with (@, a) > 0.

Proposition 17.10 If a € Q satisfies (@, &) =m then a € Q" or a € Q™.

Proof. Suppose if possible there exists a € Q with (a, a)=m but a & Q"

and a ¢ Q. Then a=B—y where B,y Q",B#0,y#0 and supp B N
suppy = ¢. Hence

(a,a)=(B,B)+(v.v)—2(B,7)
and (B, y) <0 since supp B8 N supp y=¢. Hence (e, a) > (B, B) + {7V, ).
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Now all proper connected principal minors of A have finite type. Thus,
considering the connected components of supp 8, we have B=8,+---+8,
with supp 3; connected for each i, (B;, B;)=0 for i # j, and (B;, B;) > 0. Thus

(B,B)=(Bi,B1)+---+ (B, B,)>0.

Hence (B, B) > m. Similarly (y, y) >m. But then (@, @) >2m, a contradic-
tion. Hence € Q" or a € Q™. O

Proposition 17.11 Let A be an indecomposable GCM of finite or affine type.
Then the set @y, ; of short real roots of L(A) is given by

(I)re,s:{aeQ; <a,a>=m}.

Proof. Suppose a € Q satisfies (@, a) =m. We show a € ®.. By Proposi-
tion 17.10 « € Q" or a € Q. We may suppose « € Q. Consider the set

{w(@) ; weW}nQ*.

We choose an element 8= k;«; in this set with ht3 minimal. Then
(B, B)y=m, so > ;k;{a;, B) =m. Since k; >0 and m >0 there exists i with
(a;, B) > 0. Thus B (h;) =22£ > 0. Now 5,(8) =B—B (h;) @, s0 hts5,(B) <

ht 8. By minimality of ht 8 we must have s5;(8) € Q. But B 0", 5,(B) € O~
imply 8= ra; for some r € Z with r> 0. Since

(ra;, ra;) = r? (ay, o;) > r2m

we have r=1. Thus =, and («;, o;) =m. Hence 3 € O, , and so o € Py
also.

Conversely if a € @y, then a=w (;) for some we W and some i, and
(a, a) ={a;, ;). However, we have seen that the short fundamental roots
have («;, ;) =m. Thus (@, a) =m also. O

We aim next to characterise the set ®y, of long real roots. In order to do
this we compare the roots of L(A) and L (A"). Here A can be any GCM.

Proposition 17.12 If (H, I1, I1¥) is a minimal realisation of the GCM A then
(H*, T1Y, 1) is a minimal realisation of A'.

Proof. Let A be an nxn matrix of rank /. Then dimH =2n—[,II"=
{hy,...,h,} is a linearly independent subset of H,I[1={a,,...,a,} is a
linearly independent subset of H*, and «; (h;) = A,;.
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We now replace H by its dual space H*. We still have dim H*=2n—1,
(H*)* can be identified with H by means of the formula

h(A)=A(h) for he H A H*.
Since

hi () =a; (h;) =A;

Jt

we see that (H*, I1, IT) is a minimal realisation of A". ]

Now suppose A is symmetrisable. Then we have an isomorphism between
H and H* induced by our standard invariant form. Under this isomorphism
h; corresponds to (az:zi> =d;a;. For each real root a € @, we define the
corresponding coroot /1, € H to be the element of H corresponding t <jz>
H*. The element &, can also be described by using the Weyl group. Since
the W-actions on H and H* are compatible with the above isomorphism, if
a=w (a;) then h, =w (h;). For h; corresponds to < o5 and (a, @) = (a;, a;).
Thus the coroots A, for a € @y, for L(A) may be 1nterpreted as the real roots
for L (A"). Moreover we have

2a 2a >= <O:1a>'

Hence « is a short root for L(A) if and only if %, is a long root for L (A").
The fact that short roots give long coroots and long roots give short coroots
is very useful. We shall apply this to characterise @y, in the case when A is
of finite or affine type.

(hos =

(a, @) {a, @)

Proposition 17.13 Let A be an indecomposable GCM of finite or affine type.
Then the set @y, of long real roots of L(A) is given by

Rel_{ =Y ke ;(a,a):M,ki<$:Z;>eZ foralli}

where M =max {{a, @) ; ae€dy.}.

Proof. We first show the long real roots satisfy the given conditions. Let
a € ®y, . Then (o, a)=M. Let a=)_k;a;. Then

2 (o, ;) 2a;

(a, a) _Z i (a, @) {a;, @;)
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and so
(@;, @ )
hy=> k,————+
=2 (a, a>
This expresses a root for L (A") as a linear combination of fundamental roots,

(@, @)

thus the coefficients k; () lie in Z.

Conversely suppose « € Q satisfies the given conditions. Then h, € Zh;
and (h,, h,)=4/M. Now 4/M is the minimum possible value of (8, 8) for
all real roots 3 of L(A"). Thus by Proposition 17.11 A, is a short root of
L (A"). Hence « is a long root of L(A). U

We next wish to characterise the set @y, ; of intermediate roots of L(A)
when A has type C;. We first need a lemma.

Lemma 17.14 (a) Suppose A is an indecomposable GCM of finite or affine
type. Then the set of all a=Y k;a; € Q satisfying k; <21a2>> €Z for all i is
invariant under W.

(b) [fa=

oraeQ .

Proof. (a) Suppose « satisfies our condition. It is sufficient to show that
5;(a) satisfies it also. Now s5;(a) =a —a (h;) a;. Thus it is sufficient to show
that

(@)
(kj_a(h )) (a, @) €Z

that is a (/) %Z? € Z. Now we have

(o> @) (o> a))
a(h) (a, @) Zk’a’( ) (a, a)
= T ) T =Rk e

as required.
(b) Suppose the result is false. Then « =8 —y where 8, ye O, B#0, y#0
and supp B N suppy = ¢. Then

(a,a)=(B,B)+ (v, v)—2(B.v) =(B. B) + (v ¥)-



17.2 The roots of an affine Kac—Moody algebra 399

Now B = Ziesuppﬂ kiai Y

(B, B>—Zk2<al,a>+22kk< @)

l<_[

and
B, B) (01 gl e)
—=> k| k,— Ak .
X ) IO Gy
Hence &£ B> € Z. Similarly we have (” =

(a, (@
Now all proper connected principal mlnors of A have finite type. Thus

we have B=p, +--+ B, with suppB; connected for each i, (B;, B;)=0
for i# j, and (B3;, B;) > 0. Thus

(B, B) :Z (B:s B;) > 0.

Similarly we can show (7, y)>0. Thus (a, @) >0 also. But now we
have EB B) e 750 (B, B) > (a, a), and 2 € Z so (y, y) > (@, a). Hence

(@)

(a, a) > (B B)+ (v, v)>2{(a, a), a contradiction. O

We now suppose A is a GCM of affine type C‘l’ The diagram of A is
o I e o % o o o o ' B c— )

0 1

Let m' be defined by {«;, a;) =m’ fori=1,...,l—1. Thus m’ is the squared
length of the intermediate roots.

Lemma 17.15 Suppose A has type 61/ Suppose a:Zf;o k;a; € Q satisfies
(a, @) =m'. Then k2% € 7, for all i,

Proof. The required condition is obvious for all i#0 since (a;, a;) =m’ for
i=1,...,1—1and (e, a;) =2m’. We must therefore show ko% € Z, that
is that k is even.

Now a=kya,+ Y\, k,a;, thus

i=1 "%

I :
(a, a) = kg (o, ag) +2kok, (ay, ;) +<Zkiai’ Zkiai>

i=1 i=1

—k (ag, ay) +kok, A10<0‘1v‘11>+zk <0‘n0‘>+2 kik j [/<ana>
i=1 i,j=1
i<j
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Thus (a, a) €ki {(ay, ay) +Zm'. But (a,a)=m' so ki{a,, ay)€Zm'.
Since (ay, ay) = 2m’ we have kj/2 € Z and so k, is even, as required. O

We can now characterise @y, ;.

Proposition 17.16 Suppose A is a GCM of type C’I’. Then
Op. i ={acQ; (a,a)=m'}.

Proof. Let a € Q satisfy («, @) =m’. By Lemma 17.15 CV:ZLO k;a; with
ki%eZ for each i. By Lemma 17.14(b) a € Q" or ¢ Q™. We may
assume a € Q.

Consider the set

{w(a) ; weW}NQO™.

We choose an element 8=Y"'_ ko, in this set with ht/3 minimal. Then
(B,B)=m'" and so ¥\_, K, (a,;, B) =m'. Since m’' >0 and k,>0 there exists
i with (a;, )>0. Thus B(h)=2{2L >0. Now s5,(B)=B—B(h)a; so
hts;(8) <ht 8. By the minimality of ht 3, 5,(8) € O". But 5,(8) € Q" or O~
by Lemma 17.14 (a) and (b). Thus B € Q" and s5,(8) € Q. Hence B=ra; for
some r €7 with r>0. Thus {8, B) =r?(a;, o;) =m’. However, {(a;, ;) >
im' thus r=1. Thus B=a; € Pg, ;. It follows that a € Dy, ; also. O

We are now able to obtain explicitly the set @y, of all real roots of each
affine Kac-Moody algebra individually. We recall that ®° is the root system
of the Lie algebra L (AO) of finite type obtained by removing vertex O from
the diagram of A. We denote by ®°, ®? the set of short and long roots in ®°.

If all roots of ®° have the same length we write ®? = ®°.

Theorem 17.17 The real roots of the affine Kac—Moody algebra L(A) are
as follows.

(a) If A is one of the types A, B,,C,, D, Es, E,, Eg, F,, G, then ®g, =
{a+r6 s aed, reZ}.

(b) If A is one of the types Bj, C}, F; then

Dy ={a+rd; ac®, re}

Dp, ={a+2r6; acd), reZ}.
(c) If A is of type G‘z then

@Re,sz{a—i—rS; aeCDS,reZ}

@Re,lz{a+3r8; aeCI)O,reZ}.
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(d) If A is of type C’[ then
Dp o = {2(a+2r—1)8) ; ac®),rez}
Dy ={a+r8; acd, reZ
Dy = {a+2r8 s aed?, reZ}.

(e) If A is of type A!, then
D, = {(a+@2r—1)8) ; acd’, rez}
Dy = {a+2r8 s aed?, reZ}.

Proof. (i) Suppose first that A is not of type C‘l’ or ;\’l. Then ®? C &y, ,. Let
a € ®?. Then (@, a) = m. Hence for r € Z we have {a+r8, a+rd) = m since
(a, 6) =0 and (8, 6) =0. By Proposition 17.11 this implies a4 76 € ®, .

Conversely suppose B=Y"'_ k&, € Dy . We have ay=1, thus 0 =a,+
Y aa,. Hence B—kyd=Y"_, (k;—koa;) ;. Thus (B—k,8,B—k,8)=
(B,B)=m. Again by Proposition 17.11 we deduce B—k,8€ P’. Let
a=pB—ky8. Then B=a+kyd for a € P’ k, € Z.

Thus the short roots in @ have the required form. We now consider the
long roots. We have @) C &y, |.

Let a € ®). Then (a,a)=M and so {(a+s6, a+s8)=M for all s€Z.

Let @=Y"!_, k;a;. By Proposition 17.13 we have k; <a"’“") € Z for i:l L1
The same proposition shows that a+s6 € @y, if and only if sal <a a) e
for i=0,1,...,1. Now (e, a;) =1 %% thus the condition is <jc‘ s€Z for
i=0,1,.. l We note that {a,, a0> 2 since a,=1.

First suppose that « is a long root, that is that we are in case (a). Then

(a, @) =2 and so (i”% =c;s€Z. Hence a+ 56 € Py, for all seZ.

Conversely suppose 3= Zf:o k;a; € Oy, ;. Then

!
B—kod= Z (ki —koa;) a;
i=1

and we have (B—ky6,B8—k,06)=(B,B)=M. Since Be P, we have
k; % g’> €Zfori=0,1,...,1. Wehave ka; % g’> € Z also since {a;, a;) = ZH—C
and (3, B) =2. Hence B ko8 € ®° by Proposition 17.13. Thus B=a+k,d
for some o€ P) and k, € Z.

Next suppose that ¢ is a short root, i.e. that we are in case (b) or (c). Let

(&9 _ 1, Then p=2 in case (b) and p=3 in case (c). Thus

(erg. )

2¢;

(@, @)

s .
s=c¢;— since(a, a)=2p.
p
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Since ¢, =1 this lies in Z for all i=0, 1, ...,/ if and only if s is divisible
by p. Thus by Proposition 17.13 a+ pré € @y, for all re Z.

Conversely suppose 3= Zﬁ:o k;a; € Oy, ;. Then

i
B—ko6= Z (k; —koa;) ;.

i=1

We have (8 —k,6, B—k, i <B B)
for i=0,1,...,0 In partlcular ko% fe7, We show kya <<ag Z) €Z
fori=1,..., 1L For kya, % g‘>> = }c; €Z since (a;, ;) = 2;‘ and (B, B) =2p.

Thus by Proposmon 17.13 B—ky6 € @Y. Let a =B — k8. Then B=a+ prd
for some a € D), r e Z.

We have thus proved the required result in cases (a), (b) and (c).
(ii) We now suppose that A has type C /. Then we have ®° C ®p ; and D) C
Dy ,. First suppose e € @Y. Then («, a) =m’ and so (@ +r8, a+r8)y =m'.
By Proposition 17.16 a+r8 € @y, ; for all a € Y, r e Z.

Conversely suppose B=Y1_k;a, € Py, ;. Then &, <§3 Z; €Z for

i=0,1,...,[ by Lemma 17.15, in particular k, ‘Zl‘; Z‘>’> = k“ € Z. Now

LR z(k——a)

We have (8— %8, B—“8)=m’ and so by Proposition 17.11 B— %8¢
@0 Let o= —228. Then f=a+2L8=a+r for some a € P’ reZ.

We now turn from the intermediate roots to the long roots. Suppose
ae®). Then (@, a)=M and (a+s8, a+s8>=M for seZ. Let a=
! k,a,. Then k, ““>erorz_1 , 1. Now

i=1 "%

! I
a+s8=Y ko, +Y sa;a;.
i=1 i=0

We wish to know for which s € Z we have

(a;, a;)

sa;
e, @)

el forall i=0,1,...,1..

Now <a0,010)_2‘(;J =1, thus (a, a)=4. Hence sq; <§‘a Z>> . Since

co=1 this lies in Z for all i=0,1,...,[ if and only if s is even. Thus
by Proposition 17.13 a+2r8 € @y, for all a € P}, r e Z.
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Conversely suppose B=3"_ k;a; € Dy, . Then k, <<“B;>> €Z for i=

0,1,...,1, in particular ko% = %” € 7. Now

ko ! k,
— V5= k——a |a
B 2 ;( i 2al>al

satisfies (B — %06, B— %“8)=M. Also %ai% = %ci €Z. Thus by
Proposition 17.13 we have 8— k—296 ed). Let a=B— %8. Then =
a+2r8 for some a e P!, reZ.

We now consider the short roots of ®. There is no root of ®° of the
same length as the short roots of ®g.. The squared length of the short
roots of @y, is one half that of the long roots of ®°. So suppose a € ®.
We consider elements of form %(a +s56) where s € Z. We consider which

of these elements lie in Q. Since the long roots of ®° have form
+{e, 20, +ap, ..., 20+ 420, +a,}

and 6 =2a,+2a,+---+2a,_,+a, we see that (a+s8)€Q if and
only if s is odd. Thus we consider elements of Q of form %(a +(2r—1)9)
with r € Z. We have

(%(a+(2r— 1)é), %(a+(2r— 1)8)) = %(a, a)y=m.

By Proposition 17.11 this implies that 1 (a+ (2r—1)8) € Pg, .
Conversely suppose B=3"'_ ke, € Dy, . Then k; %‘ég’f €eZ for i=
0,1,...,L Then 28 —k,8=3"_, (2k; —kya;) a;. We have (28— k85,

2B—kyB) =4(B. B) =4.

This is the squared length of the elements of ®f. We also have

kailana) ko o iy
(2B.28) 2
since ky€Z and ¢;=2 for i=1,...,[. By Proposition 17.13 we have
2B—koS€®). Let a=2B—kyd. Then B=1(a+k,d). Since B€Q,
k, is odd. Thus

BZ%(OH'(zr_l)ﬁ) for some ae(l)?,rEZ

Finally we suppose that A has type A’l The diagram of A is

===

0 1
with ay=2,a,=1,c,=1, c, =2. We also have

(ag, ap) =1,{a;, a;)=4.
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Now ®° C ®g, . Let a € ®°. Then (a + 58, a+s8>—M We can write
a=k,a,. Then a+s6=2sa,+ (k,+s)a,. We have k1 favap) “‘ €Z and

we consider which s € Z have the property that sa, "~ L e Z for i=0,1.

Since sq; <<a a'>> =3 and ¢,=1 this lies in Z for 1—0 1 if and only if
s is even. By Proposition 17.13 we deduce that a+2r6 € Oy, for all
aed®, re’.

Conversely suppose B=kya,+k o, lies in Pp, ;. Then B— ko 26=
(ky— ]‘0%) a;. We have (B— %05, B— %"6) M. Also ko~ g* {og.a0) “‘)) ko eZ.
By Proposition 17.11 we have 3 — %"8 €. Leta=B— 2 8. Then B=
a+ %8:014—2}’8 for some a € P°, r e Z.

We now consider the short roots. Suppose a € ®° and consider the ele-
ment %(a +50) for seZ. Since a =+« and 6 =2¢,+ «, this element
lies in Q if and only if s is odd. We have

<%(a+(2r— 1)8), %(a+(2r— 1)5)): %(a, a)y=1.

This is the squared length of the short roots of @, .. By Proposition 17.11
%(a—}— (2r—1)0) € @y, , for all re Z.
Conversely suppose 8=k, +k a; € Dy, . Then

k k
505 (155,

We have (28 —k,6, 28 —k,0) =4(B, B) =4. This is the squared length
of the roots in ®°. So by Proposition 17.11 we have 28 —k,6 € ®°.
Let «=283—k,6. Then B= % (a+ky0). Since B€ Q k, must be odd.
Hence S = %(a +(2r—1)8) for some a € ®°, r € Z. This completes the

proof.
U

17.3 The Weyl group of an affine Kac-Moody algebra

Let A be an affine Cartan matrix and W the Weyl group of L(A). Then
W ={sy,5,...,5). The subgroup W= (s,,...,s,) is the Weyl group of
the finite dimensional simple Lie algebra L (A°). In order to investigate
the structure of W we introduce the element 0 =06 — a,«, =Zﬁ:1 a;a;. This
element 6 lies in Q°=Q (A").

Proposition 17.18 (i) If the affine Cartan matrix A is not of type
E}, cj, E{, G, then 0 is the highest root of PO,
(i) If A is of type B!, C’l‘, Fl, G‘Q then 0 is the highest short root of ®°.
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Proof We first show that 6 € ®°. We have (0, 6) = (5 —aya,, 6 —ayo,) =
a3 (@, ay) =2a,. First suppose a,=1 and a is a long root. Then (0, 6) =
(@, ag) =2. Also

(a;, a;)
a; =c,€Z.
(6,0)

Thus 6 € ®) by Proposition 17.13

Next suppose ay=2. Then (0, 0) =4 (a,, ay) =4. Thus 6 has the same
squared length as a long root. Also a; <‘<19 ;’>> = 2‘ .Thisliesin Z fori=1,...,!
since ¢; =2 for such values of i. Hence 6 € ®! by Proposition 17.13.

Finally suppose a,=1 and «, is a short root. This occurs for the cases
in (ii). Then (6, 6) = (a,, ). Hence 6 € ®° by Proposition 17.11.
Thus we have shown 6 € ®° in all cases. We also have

(0, a;) = (8 —ayay, a;) = —ay (ay, ;)
_ Ao @)
2
Thus (0, ;) >0 fori=1,...,[. Hence A e CO, the closure of the fundamental

chamber for ®°. This implies that 6 is the highest root of ®° in the cases in
(i) and the highest short root of ®° in the cases in (ii), by Proposition 12.9.
U

Now let s, be the reflection corresponding to the root 6. Then s, : H* — H°
is given by s,(h) = h— 6(h)h,.

Lemma 17.19 The coroot hy is given by hy= alo (c—hy).

(a[,m) 2q;

Proof. Since 6=Y"\_, a,a; we have @, 9>_Zl 147550 Taary > heNCE
! !
(a;, ;) 2¢;h
1= L4 g M G,
LS =L e 0
= — c:n,——I(C— .
a() P it a() 0

Now the affine Weyl group W is generated by W° and s, so is also
generated by W° and s,s,. We consider the action of s,s, on H.

Proposition 17.20 Let he H. Then

so8p(h) =h~+8(h)hy— (<h67 h) + % (hgs hy) 5(h)) C.
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Proof.

$o89(h) = 59 (h—0(h)hg) = h— ay(h)hy— O(h) (hg— g (hy) hy)
= h—ay(h) (c—aghy) —0(h)hy+0(h)ay (hy) (c —aghy)
= h+(agay(h) — 0(h) — ag0(h)ag (hy)) he+ (0(h)ay (hg) — ag(h)) c.

Now « (hy) =« (% (c— ho)) = —%. Thus

30 (1) = - (ageey () + 6(1)) By — (a%e(mao(h)) c

= h+48(h)h, — ai (6(h)+56(h))c
0
=h+8(h)hy— ((hg, hy+ 1 (hg, hy) 8(h))

since. (g, 1) =209 = L0(h) and (o hy) =( 25, )= iy = 2. We

©.0) — ©.6)° 0.6)| — 0.6) — a°
define 7, : H— H by

1y, (B) =h+8(h)hy— ((hg, hY 43 (hy, hy) 8(R)) c.

Thus we have sysy =1, . Hence W is generated by WO and Ty

More generally, for any x € H® we define ¢, : H— H by
t.(h)y=h+8(h)x—((x, h)+1(x,x)8(h))c. O

Proposition 17.21 (i) 1,1, =1, for all x, y e H'.
(ii) wr,w™"' =t for all we W°, x e H'.

Proof. The linear map ¢, : H— H is uniquely determined by the properties
t.(h)=h—{x, h)c when 6(h) =0
t.(d) = d+apx—1ay(x, x)c
since 8 (h;) =0 and 6(d) =a,. If 6(h)=0 then
tt,(h) =t (h=(y, hye) =h—(x, hye = (y, h)(c = (x, ¢)¢)
=h—{(x+y, h)c since {x, c) =0

=t.,(h).
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Also
1.1,(d) =t (d+agy—1ay(y, y)c)
=d+ayx— %ao(x, xyc+ag(y—{(x,y)c)— %a()(y, y)(e—{x, c)e)
= d+ay(x+y) —ag (3(x. x) + (x, ) +3 (. 0) €
= d+ay(x+y)—ay 3 (x+y, ¥ +y)c
= 14,(d).

Thus 7,1, =1, for all x,ye H.
Now let we W, and h € H satisfy (1) =0. Then

wt,w™ (h)=w (w™' (k) —(x, w™' (h))c)
since 8 (w!(h)) = (w8)(h) =&(h) =0. Thus
wrw™! (h) =h— (w(x), h)c =1, (h)
since w(c) =c. Also w(d)=d for all we W° and so
wr,w™'(d) = wi, (d) = w (d +apx — 1 (x, x)ayc)
=d+ayw(x)— %(w(x), w(x))ayc
=ty (d).
Hence wr, w™' =1,,). O

Let M be the additive subgroup (i.e. lattice) of H generated by the elements
w (hy) for all we WO. Let t(M)={t,, ; me M}.
Proposition 17.22 W = t(M)W° where t(M) is normal in W and t(M) N W° =
1. Thus W is a semidirect product of t(M) and W°.

Proof. We know that 7, € W, hence wthgw“ =tym,) €W forallwe WO, Thus
t(M) is a subgroup of W. Since W is generated by W° and t,,» W is generated
by t(M) and W°. But W° lies in the normaliser of #(M) by Proposition 17.21
(ii). Thus W =1#(M)W°. Finally t(M)NW°=1 since #(M) is a free abelian
group whereas WP is finite. O

The lattice M C H} will be important in understanding the affine Weyl
group W. We shall now identify it in each case.
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Proposition 17.23 (i) If A is an affine Cartan matrix not of types Z?}, 6},
Fy, Gy then M=, Zh;.
(ii) If A has type B}, C;, F;, G then

M= ) Zh+ Y pZLh,
a; short a; long
where p is the ratio of the squared lengths of the long and short roots
(p=3 for G, and p=2 in the other cases).

Proof. By Proposition 17.18 6 is a long root in the cases in (i) and a short
root in the cases in (ii). Thus %, is a short coroot in (i) and a long coroot in
(ii). Thus M is generated by all short coroots in (i) and by all long coroots
in (ii). Now it follows from Proposition 8.18 that the set of all short coroots
generates the coroot lattice Zﬁzl Zh,. But the set of all long coroots generates
the sublattice with basis A; for &, long (i.e. @; short) and ph; for h; short (i.e.
«; long). The result follows. |

We have been considering an action of the affine Weyl group W by linear
transformations of the vector space H of dimension /+2. However, we now
show that there is a simpler action of W by affine transformations on the
real vector space HY of dimension /. We recall that the group of affine
transformations of a vector space is generated by the group of non-singular
linear transformations and the group of translations.

We first define Hy | ={he Hy ; 6(h)=1}. The space Hy ,, although not
a subspace of Hp, is invariant under W. For

8(w(h))=(w™'8) (h)=8(h)
since w(8) = 8. Now we have a decomposition
Hy=H) @ (Rc+Rd)

into subspaces of dimension [ and 2 which are mutually orthogonal.
For (h;,¢)=0 and {(h;,d)=0 for i=1,...,1. Since &(h;)=0 for i=
1,...,1,6(c)=0 and 6(d)=aq, the elements of Hy which lie in Hy , are
those of form

!
1
S AhitAct—d  MeR,AeR.
=1 do

Now heHy, implies h+puce Hg, for weR. Since w(c)=c for all we
W, W acts on the quotient space Hy ;/Rc. Also we have a bijective map

Hy /Rc— Hp,
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given by
] 1 !
Re+Y Ahi+—d— ) Ak,
)

i=1 i=1

and this bijection may be used to define an action of W on HY.

Proposition 17.24 The action of W=t(M)W° on HY is as follows. The
WP-action on H, is that previously considered. For me M, he€ H} we have
t,,(h)=h+m. Thus t,, acts on HY as translation by m. Hence W acts on H}
as a group of affine transformations.

Proof. If we W° then w(c)=c and w(d) =d. This implies that the w-action
on Hp defined above is the usual w-action. If me M, h € Hg | then t,,(h) =
h+m+uc for some we€R. This induces an action of 7, on HY given by
t,,(h)=h+m. Thus 1,, acts on HY as translation by m. Ul

Corollary 17.25 The action of W on HY is faithful.

Proof. Suppose t,,w, we WP, acts trivially on H3. Then #,w(0)=0. This
implies m=0, that is ¢,,=1. Hence we W° acts trivially on HY. Since W°
acts faithfully on HY this implies w=1. |

Corollary 17.26 s, acts on HY as the reflection in the affine hyperplane

Ly,={heHy ; 6(h)=1}.

Proof. For he H} we have
so(h) =ty,59(h) =h—60(h)hy+hy=h+(1—0(h)) hy.
This is the reflection in L, ;. UJ
For each a € ®° and k€ Z let L, be the affine hyperplane given by
L,,={heHy ; a(h)=k}.

Thus the generators s, s,, ... ,s; of the affine Weyl group W act on HY as
the reflections in the hyperplanes Ly, L, o, --- » Lq, o respectively.

We now introduce a collection of affine hyperplanes whose corresponding
affine reflections will lie in W.

Let ={L,; ; ac®’ keZ, p divides k if a is a long root and A is
one of B!, C!, !, G}}. Here as usual p=2 in the first three cases and p=3
for G.
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Let s, , be the reflection in L, ;. Then s, () =h+ (k—a(h))h,. For

h+(h+(k—a(h))h,) c
2
and h+ (k —a(h))h, differs from h by a multiple of h,. Thus s, , =1y $,-

Loz,k

Proposition 17.27 The reflection s, , € W forall L, ; € L. In fact s, , = Sq_ 5.

Proof. The reflection s,_,5 : Hy — Hy is given by
Sa—to(h) =h—(a—k8) (M) ho_ys-
Thus the restriction of s, 5 to Hy ; is given by

Sq—is(R) =h—(a(h) —k)h,_s-

Since 0 € H* corresponds to ¢ € H under our bijection between H and H* we
have f,_5=ho— g c. Thus the action of s,_;5 on Hy ;/Re is 5,_45(h) =
h— (a(h) —k)h, and the action on Hy is given by the same formula. Thus
Sq—is =Sq On HY. Moreover we know from Theorem 17.17 that s,_,5 € W

whenever L, ; € L. U
We note that Ly, L, o, --- > Lg, o all lie in £. For by Proposition 17.18 6

is a short root when A has one of the types B!, C!, F%, G}.

Definition The connected components of the set HY —J,
alcoves.

wiee Loy are called

Proposition 17.28 The set
A={heHy ; a,(h)>0 fori=1,...,I, O(h)<1}

is an alcove.

Proof. We show ANL,,=¢ for all L,, €& Let he ANL,,. We may
assume « € (@°)". Suppose 6 is a long root. Then 0 < a(h) <@(h) <1 by
Proposition 12.9 and so & cannot lie in L, ; for k € Z. So suppose 6 is a short
root. If « is a short root we again have 0 < a(h) <6(h) <1, so h cannot lie
in L, , with k€ Z. Thus suppose « is a long root. Then a(h) <0,(h) where
0, is the highest root of ®°. Let §,=Y"!_, b,;. Then we have

i=1"i~i

!
6, =Y b, is the highest root of ®°
i=1

I
6 = a,a; is the highest short root of ®°.
i=1
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By considering the coroot of the highest root, or by a case-by-case check,
one may show

b a; if o; is long
o pa; if «; is short.

In particular b, < pa; for all i. Hence
0<a(h) <6,(h) <pb(h) <p.

Thus & cannot lie in L, ; with k € Z divisible by p.

Thus A lies in an alcove. But
A=AUL, (U---UL, (UL,

This shows that A cannot be properly contained in an alcove, since
Ly o5+ Lg 0o Lo, lie in €. Thus A is an alcove. |

Let 2 be the set of alcoves. We show that W acts on 2. Since W is
generated by s, ..., s, sy it is sufficient to prove the following lemma.

Lemma 17.29 (i) s; (L, ;) =Ly (a4 for i=1,..., 1L
(li) So (La,k) :on(a),k+a(h6)' Also lf‘ La,k e X then LSQ(O(),k+CK(h9) e

Proof. (i) Let he HY. Then heL,, if and only if a(h)=k, and this is

equivalent to (s;(@)) (s;(h)) =k, thatis 5;(h) € L4 +- Thus s, (Lmk) =Ly, (k-

(i) so(h)=s0ty,(h) =150 (h+hg) =s4(h) + s, (hy). Thus a(h) =k if and only
if (so(a)) (so(h)) =k, that is (sy(a)) (so(h) + 5o (hg)) =k + a (hy). 1t fol-
lows that s, (La’k) =Ly, () k+a(hy)-

Now suppose L,,€X. Then k is divisible by p if « is a long
root and Ae{B, C},F},G.}. If we are not in this special case then
L (@) ktatny) €L since a(hy) €Z. So suppose A is one of the above
four possibilities and « is a long root. We know p divides k and must
show p divides a(hy). Now h,=-L (c—h,). We have a,=1 in the

T
given cases and a(c)=0, thus a(h,)=—a (hy). Let a=Y"'_, k;a;. Then
a(hy) =1 ka; (hy) =Y!_, Ayk;. There is precisely one ie{l,...,I}
with Ay, #0. For this i, Aj;=—2 in type C‘} and A,; = —1 in the other cases.

In the latter cases «; is a short root. Thus
k (a;, a;) _ k;

ey,
(a,a) p
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This shows that p divides "\, Ak;, and so p divides a (h,) in all cases.
Thus Lso(a),k+a(h5) e L. O

Corollary 17.30 If we W, A’ €2 then w(A") €.

Proof. This follows from the definition of alcoves, together with the fact that

the elements of W permute the affine hyperplanes in €. |

We define L,=L, , for i=1,...,l and Ly=Ly,. Thus Ly, L,,...,L,
are the walls bounding the alcove A and s, s, ..., s; are the reflections in
Ly, Ly, ..., L, respectively.

Given we W we say that L, separates the alcoves A and w(A) if these
alcoves lie on opposite sides of L,.

Lemma 17.31 L, separates A and w(A) if and only if [(w)=1(s,w)+ 1.

Proof. First suppose w’ € W has the property that w'(A) lies on the same side
of L; as Abut w's;(A) lies on the opposite side of L, to A. Then w'(A), w's;(A)
lie on opposite sides of L; so A, 5;(A) lie on opposite sides of w'~' (L,). This
implies w'~' (L;)=L; so L;=w' (L;). Hence s,=w's,w'" and w's; =sw'.

Now suppose w € W is such that w(A) is on the opposite side of L; to A.
Let w=s, ...s; be areduced expression for w. Then there exists g > 1 such
thats; ...s;  (A) lies on the same side of L; as A but s; ...s; (A) lies on the
opposite side of L;. Then we have

S;o..08 8 = e e S;
iy ig-1"ig Y1) ig-1

as above. Hence

SW=S;8; oS =8 S S

and so [ (s;w) < I(w).
If w(A) is on the same side of L, as A then s,w(A) is on the opposite side.
Hence [ (s;- s;w) < (s;w), that is I (s;w) > I(w). Ul

Theorem 17.32 The map w— w(A) is a bijection between the elements of
the affine Weyl group W and the set 2 of alcoves.

Proof. Given any alcove A’ € 2l we can find a sequence of alcoves

A=A, A, ..., A=A
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such that A; is obtained from A, , by reflection in a common wall. Such
reflections lie in W by Proposition 17.27. Hence A’ =w(A) for some we W.
Thus the map w— w(A) is surjective.

Next suppose w(A)=w'(A). Then w'~'w(A)=A. We show wlw=1.1If
this is not so then

wlw=sw’ with [(w'w)=1(sw'w)+1

for some i. By Lemma 17.31 L, separates A and w'~!w(A). This is a contra-
diction so w''w=1and w=w'. O

Theorem 17.33 The closure A of A is a fundamental region for the action
of the affine Weyl group W on HY, i.e. each W-orbit on H}) intersects A in
exactly one point.

Proof. Each point in H lies in the closure A’ of some alcove A’. By Theo-
rem 17.32 A’=w(A) for some we W. Thus the W-orbit of the given point
intersects A.

Now suppose x,y€ A satisfy y=w(x) for we W. We shall show x=y
by induction on /(w). If /(w)=0 then w=1 so x=y. So suppose I(w) > 0.
Then w=s;w’ with [ (s;w) <I(w). By Lemma 17.31 L, separates A and w(A).
Thus ANw(A) C L;. Now y € ANw(A) hence ye L,. Thus s,(y) =y. But then
s;(y) =w'(x) so y=w'(x). Since [ (w') < Il(w) we deduce x =y by induction.

O

Remark 17.34 We may also define an action of the affine Weyl group W
on H* in a way which is compatible with the bijection H — H* determined
by the standard invariant form (,) on H. Under this bijection the element
hy € H corresponds to i@ e H*.

For each a € (HO)* we may define ¢, : H*— H* by
t,(A)=A+Ac)a—({A, @)+ % {a, a)A(c))é.

Then we have sysy=1(,,,,)p On H*. Moreover we have t,/5=1,,5 and
wt,w! = Ly for we WO, 1t follows that we have a semidirect decomposi-
tion W=t (M*) W° where t (M*) is the set of ¢, for « € M* and M* is the

sublattice of (Hg)" spanned by w( : (9) for all we W°.

ao
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The lattice M* is given explicitly as follows.
!
M*=)Za, for types A, D,, Eq, E,, Eq
i=1

M= > Zaj+ Y. pZa; for types Bl,ff,,iﬂ,éz

a; long a; short
l ~ ~ ~ ~
M*=) Za, for types B}, C}, F, G,
i=1

M= Y 1Za+ Y Za;  fortype C,
a; long a; short
M*=17a, for type A’.
Now the affine Weyl group W acts on the subset
Hy  ={AeHg ; A(c)=1}

and this induces an action on the orbit space Hy /RS. However, there is a
natural bijection between this orbit space and (HH%)*. This defines a W-action
on (HY)". The Wy-action on (H3)" is just as before, and the remaining
generator s, of W acts as the reflection in the affine hyperplane

Ly iy = {’\ € (HD%)* s A(hg) = 1/ao} :

The element ¢,, « € M*, acts on (HH%)* as translation by «, thus W acts on
(HH%)* as a group of affine transformations.

We may also introduce alcove geometry in (HH%)*. We define a set &* of
affine hyperplanes in (HH%)* as follows.

L={L; ,; ae®’, kasbelow}

where L;  ={\e(H2)" : A(h,)=k}. The number k runs through the set
given as follows.

For types A,, D,, Eq, E;, Eg keZ.
For types B,, C,, F,, G, keZ if a is long
k e pZ if «a is short.
For types B!, 6’;, f’j, G; keZ.
For type C| ke3Z if a islong
keZ if «a is short.

For type A’ keil.
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Then the elements of the affine Weyl group W permute the set £* of affine
hyperplanes. The connected components of

Hy— |J L*

L*e*

are called the alcoves of HY. The set A* given by
Ar={re(HY) s A(h)>0fori=1,...,1, A(hy)<1/ay}

is an alcove called the fundamental alcove. The group W acts on the alcoves
and the map w— w(A*) is a bijective correspondence between elements of
W and alcoves. Moreover the closure A* is a fundamental region for the
W-action on (HY)".

We omit the proofs of these facts, which are entirely analogous to the
corresponding results for the W-action on H, or may be deduced from these.
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Realisations of affine Kac—Moody algebras

18.1 Loop algebras and central extensions

Let A° be an indecomposable Cartan matrix of finite type. We have A= (A7)
fori, j=1,...,1.LetL°=L (AO) be the finite dimensional simple Lie algebra
with Cartan matrix A°. We may construct an (I+1) x (I+1) affine Cartan
matrix A from A° by adding an additional row and column, labelled by 0, as
follows. Let 0= Zf.:l a;a; be the highest root of L° and h, = Zf.:l c;h; be the
coroot of . We then define A by:

0 e
A =Aj ifi,je{l,...,1}

l
Ap=—2 a;A}, ifie{l,.... [}
j=1

1
AOj:_ZCiA?j if je{l,...,1}
i=1
Agy=2.
Proposition 18.1 A is an affine Cartan matrix. The type of A is as follows.

Type of A°:A,, B, C,, D,, Eq, E;, Eg, F,, G,
Type Of A :Alﬁél’ él»blaE65E7»E87F4, Gz

Proof. We have

a, 0
a, 0

Al .| =1. where a,=1.
a, 0

416
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For ! g Aya;=Ay+Y | A;a;. If i#0 this is 0 by definition. If i=0 we
have

1 1 [
Do Aga; =243 Aga; =233 cAja;.
=0 j=1

i=1 j=1

However, Y/, Zj.:l cAda; = (Z§.=l a;e;) (X1, ¢;h;) =0 (hy) =2, thus
2520 Ag;a;=0.

A similar argument shows that
(cpcy-..c)A=(00...0) where ¢,=1.

Now A is determined by A° and the relations

ag 0
a 0

Al 'l =11 (e...c)a=0...0).
a, 0

But the affine Cartan matrix A of type L,, where L, is A, B,, C,, D, E, E;,
Eg, F,, G, gives A’ when row and column 0 are removed, and satisfies the
above two relations, by Proposition 17.18 and Lemma 17.19. Thus our given
matrix A is the affine Cartan matrix of type io. |

Definition An affine Cartan matrix A is of untwisted type if it is one of
A, B, C, Dy Eo ) By B Gy,

Since any affine Cartan matrix A of untwisted type can be constructed as

above from a Cartan matrix A° of finite type by the addition of an extra row

and column, it seems natural to ask whether the affine Kac—-Moody algebra

L(A) can be constructed in some way from the finite dimensional simple Lie

algebra L’ =L (A°). We shall now describe a method of doing this.

Let C[z,17'] be the ring of Laurent polynomials Y, ; {;¢' for {;€ C with
finitely many {; #0. Let

L(L)=C[t, 17" ]|®cL".
Then £ (LO) may be made into a Lie algebra in a unique way satisfying

[P®x,q®y]=pq®[xy]
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for p,geC|[t,t7'], x,yeL’. This Lie algebra ¢ (L°) is called the loop
algebra of L°.
We now wish to construct a 1-dimensional central extension of & (LO).

Lemma 18.2 Let L be a Lie algebra over C and L be the set of elements
x+AcwithxeL and AeC. Let k : L x L— C be a bilinear map satisfying
k(y,x)=—«(x,y)  forx,yeL
«([xy]. 2) +k([yz]. ©) +«([zx]. ) =0 for x,y,z€L.

(k is called a 2-cocycle on L.) Then the Lie multiplication
[x+Ac, y+pe] =[xy]+«k(x, y)c

makes L into a Lie algebra.

Proof. This is elementary. The two relations satisfied by k give anticommu-
tativity and the Jacobi identity on L. |

We note that L is a 1-dimensional central extension of L, i.e. there is a
surjective homomorphism

:L—>L

given by 0(x + Ac) = x, such that dim(ker 6) = 1 and ker  lies in the centre of L.

We apply this idea to construct a 1-dimensional central extension of £ (LO)
by taking a 2-cocycle on £ (LO). Let {, ) be the invariant bilinear form on L°
satisfying (h,, hy) =2. Since an invariant bilinear form is determined up to a
scalar multiple on L°, this condition determines it uniquely. In fact this form
on LY is the restriction to L° of the standard invariant form on L=L(A),
since for the standard form we have (6, ) =2 as in Proposition 17.18, hence

(he,h9)=< 20 20 > 4

0.0y 0.0y~ 6.0) >
We next define a bilinear form
(1 (L) x2 (L) —>C[r 1]
by (p®x, g®y), = pg{x,y). We define the residue function
Res : C[1,17']>C

by Res (Y 4r) =2...
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Lemma 18.3 The function k: ¢ (L°) x £ (L") — C defined by

da
,b)=Res{—, b
k(a, b) es<dt >

t

is a 2-cocycle on { (LO).

Proof. To show that k is anticommutative it is sufficient to verify that
K (ti®x, tj®y) =—K (tj®y, ti®x) .
Now
K (ti R x, tj®y) = Res(iti_1 Qx, 1! ®y)t
= Res (it (x, y))
i{x,y) ifi+j=0

B !o if it j£0.

The anticommutativity follows.
We also need

k([fox,/®y].i'®z) +k([f®y *®z], ' ®x)
+k([f®zf®x],/®y)=0.
Now we have
k([fox eyl f®z) =k (" ®[xy]. * ®2)
=Res((i+ )t ' ®[xy], t* ®2z),
=Res ((i+))r™ ! ([xy]. 2))
_ (+){xy],z) ifi+j+k=0
0 if i4+j+k#0.

If i+j+k+#0 the required property is clear. If i+ j+k=0 the required
sum is

—k([xy], 2) —i{[yz], x) = j([zx] ¥)
= —k(lw], 2) = i([w], 2) =[], 2)
=0

since the form is symmetric and invariant. |
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We may therefore construct the 1-dimensional central extension Q (LO) of
2 (L") given by

G (1) =2 (L% @Ce
whose Lie multiplication is given by
[a+ Ac, b+ puc]=]a, b],+«(a, b)c

where a, b€ 2 (L°) and [a, b], is the Lie product of a, b in £ (L°).
We next wish to adjoin to Q (LO) an element d which acts on £ (LO) as a
derivation.

Lemma 18.4 The map A:2(L°) — € (L°) given by A(a+ Ac) = 15 for ae
Q (LO) ,AeC, is a derivation.

Proof. Since [a+ Ac, b+ pc]=[a, b],+«(a, b)c we must show that

d da db
t—la,bly=|t—,b Ac, t—
dt[a lo [dt +,uc}+[a+ c dt:|

that is

da db da da db
t|—,b| +t|la,— | =t|—,b| +x|t—,b)c+|a,t—
dr |, dr |, dr |, dr dr |,
+ tdb
Kla,t— )¢
dr

that is « (1%, b) +« (a, 152) =0. It is sufficient to prove this when a=p®x,
b=qQ®y with p,qeC[t,17'], x,y€eL’. Then

9 ) bk (a2 =k (1P ox goy )tk (pox e
T ?) T\ tq )=\ Iqp O 4@y ) T pox 1 8@
d d
=K<P®xJ—g®y>—K(q®yJ—£®x>

dt dt

dp dg dg dp
— X, t— —Res{ —®y,1—
dt®x dt®y>t es<dt®y dt®x ;

dp dg dp dg
= Res | r— —(x, —Res [ r——(x,
eS(dtdt<xy>> es( dtdt<xy>

=0. U

= Res<

We now define & (L°) by

(L) =2 (L") eCd
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and make ¥ (L°) into a Lie algebra by defining the Lie product as
[a+Ad, b+ pd]=[a, b]+ AA(b) — nA(a).

This is clearly skew-symmetric, and the Jacobi identity follows from the fact
that A is a derivation. In particular we have

[(F®x)+Ac+pud, (F®y)+Nc+u'd]
= (" Qxy]) +uj (F @y) —wi(f ®@x)+8, _i{x,y)c

for x,yeL®, A, u,N,ueC.

18.2 Realisations of untwisted affine Kac-Moody algebras

We aim to show that £ (LO) is isomorphic to the affine Kac—Moody algebra
L(A). Thus L(A) can be constructed from L°=L (A°) by the following
procedure. First form the loop algebra (LO). Then form the 1-dimensional
central extension (LO). Finally extend this Lie algebra by a derivation to
give ¢ (L0).

Theorem 18.5 Let L°=L (A°) be a finite dimensional simple Lie algebra
and let A be the untwisted affine Cartan matrix obtained from A° as in
Section 18.1. Then L(A) is isomorphic to (LO).

Proof. We shall define elements ey, e,, ..., ¢;5 fo, fis---5f13 ho- By oo ly
in £ (LO) with the aim of using Proposition 14.15 to show that our Lie algebra
is isomorphic to L(A).

LetE,,...,E ; F,...,F,; H,...,H, be corresponding generators of
L°. We define

ei=1®Ej7 ‘fl=1®l:z’ hl=1®Hl

for i=1,...,1 Then [e,f;]=h; for each i. We must also define e, f, i, €
2 (L0).

We consider the root spaces LY, L°, where 6 is the highest root of L.
We have dimLj=dimL’,=1, and the map L] x L%, — C given by the
invariant bilinear form (, ) on L° defined in Section 18.1 is non-degenerate.
Let @’ be the automorphism of L° satisfying w° (E;)=—F,, «° (F,)=—E,.
Then ° (Lg):L(le. We claim it is possible to choose elements F, € Lj,
E e L, such that 0’ (Fy) = —E, and (F,, E,) = 1. First choose any non-zero
element Fj € L) and let E) = —a° (F}). Let (F;, E;) = £. Then we have £ #0.
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Now let Fy=AF) and E,=AE| for A€ C with A#0. Then we have E,=
-’ (F,) and (F,, E;) = A*¢. By a suitable choice of A € C we can ensure
that A2£=1.

We now define e, =t® E, and f,=1"'®F,. Let H be the subspace of L°
spanned by A, ..., h; and

H=(19H’)®CcaCd.
We define h, € H by
hy=(1®(—Hy))+c.
Then we have
leofol =[1 @ Ep, 17 @ Fy | = (1 ®[E Fy)) + (Ep, Fy)c.
But
[EoFo]l=(Ey, Fo))H y=H_y=H_y=—H,
by Corollary 16.5, since (6, ) =2. Thus
leofo]l=(1®(—Hy))+c=h,.

We also define elements «,,@;,...,,€H*. We have -elements
oy ee. O € (HO)* and we extend these to H* by saying that «;(c) = a;(d) =0
fori=1,...,1. We also define § € H* similarly, saying that 8(c) =0(d) =0.
Let 6 € H* be the element defined by

8(x)=0 forxeH’, &(c)=0, &(d)=1.

We then define oy € H* by ay=—60+0.

We now show that (H,II,TI¥) is a realisation of A where 1=
{ag, @, ..., )} and IIY={hy, hy,..., h;}. II is linearly independent since
a,, ..., are linearly independent and «(d) #0, a;(d)=0 fori=1,..., L
ITV is linearly independent since £, ..., h; are linearly independent and £,
involves ¢ whereas h; does not for i=1, ..., [

We show that a; (h;) = A;; fori, j€ {0, 1,...,[}. Thisis clearif i #0, j #0.
Also for i #£0 we have

i !
ay(h)=—0(h;)+68(h;)=—0(h)=— Z a;a; (h)=— Z Aijaj =Ayp.
j=1 j=1
Similarly for j#0 we have

! !
a; (hy) = a; (=hy+c)= —Q; (hg) =— Z G, (h)=— Z CiAij = AO_/"
i=1 i=1
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Finally a, (hy) =(—0+0) (—hy+c)=06(h,)=2. Thus (H, 11, II") is a real-
isation of A.
We next verify the relations

[e;

[e; ] 0 ifi#j

xe;|=a;(x)e; for xe H
xfil=—a;(x)f; for xe H

where i =0, 1,..., . These relations certainly hold when i£0 and j#0. We
have shown above that [e,f,] = h,. For i #0 we have

[e./o]=[1®E, 7' ®F)|=1t""®[EF]=0
since F, € L) and 6 is the highest root of L°. Similarly for j#0 we have
[eof;]=[t® Ep. 1@ Fj] =1® [ E,F;] =0.
Now let x=x,+ Ac+ud € H where x,€ H® and A, u € C. Then
ay(x) =—0(x) +6(x) = —0 (xo) + u
since 6(c)=6(d) =0, 6 (x,) =6(c) =0, 6(d)=1. Also

[xeo] = [xo+Ac+pd, t @ Eg] = (1@ [x,Ey]) +p (1 ® Ep)

=—0(x)) (®E)) +u(1QE,)
= o (x)e.
Similarly one shows [xf,]=—a,(x)f,- Thus the required relations are all
satisfied.
We show next that ey, e, ..., e, fo, f1,---,f; and H generate Q(LO).
Let M be the subalgebra of Q (LO) generated by this subset. Since
E,,....,E,F, ..., F, generate L%e,,...,e,fi,...,f generate 1® L.

Thus 1Q L’ C M.
Let I={xeL’; t®xeM]. Since ¢y=1QE, we have E, €I’ so I’ #0.
Also if x€ I°, y e L then [xy] € I° since

t@[xy]=[t®x, 1Qy]e M.

Thus 1° is a non-zero ideal of L°. Since L is simple we have I° = L°. Thus
t®x €M for all xe L°. We may now use the relation

[t®x, ! ®y] =" ®[xy]
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to deduce by induction on k that t* ® x e M for all xe L® and all k> 0. In an
analogous way, starting with f,=¢"'® F, we can show t *®x e M for all
x€L? and all k> 0. Now

L) =H+(18L)+Y (Pl + Y (FeL’)

k>0 k<0
hence M = (LO).
It remains to show that £ (L°) has no non-zero ideal J with JNH =0. Let
L=iw)=He ¥ (‘o))
(i,)#(0,0)

summed over i€Z,a € (HO)* with (i, &) # (0, 0). We claim that this is the
weight space decomposition of L with respect to H. For let he H, x € (Lo)a.
Then h=hy+ Ac+ pud with hy€ H°, A, u € C. Thus

[, ' ®@x] = [hy+Ac+pud, ' @ x| = (' ® [hox]) +pi (1 @ x)
= (e (hy) 4+ pi) (f ®x)
= (a(h)+i8(h)) (f ® x)
= (a+id)(h) (' ®x)

since a(h)=a(hy),8(h)=mp. Thus ' ®x is a weight vector with weight
a+i6. Thus we have

L=L,® Z La+i6
(a,1)#(0,0)

where Ly=H and L, ;;=1'®(L°),.
Let J be a non-zero ideal of L with JNH = 0. By Lemma 14.12 we have

J=LeND® Y (Loysnd).
(e,1)#(0,0)

Since L,NJ =0 we have L, ;;NJ#O for some (,i). Let # @xeJ for
x€ (L"), with x#0. Then there exists y € (L°)__ with (x, y) #0. Thus

[ ®x, ' @y]=[xy]+i(x, y)e
lies in J N H, and hence
[xy]+i{x,y)c=0.

Since [xy] € H® and (x, y) #0 we must have i =0. But this implies [xy] =0,
whereas we have

[xy] = (x, y)h,, #0
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by Corollary 16.5. This gives us the required contradiction. Thus JNH =0
implies J = 0.

We have now verified all the conditions of Proposition 14.15. We may
therefore deduce that ¢ (L) is isomorphic to L(A). O

We can deduce from this theorem the multiplicities of the imaginary roots
of L(A). These multiplicities were not obtained in Chapter 17. We recall from
Theorem 16.27 (ii) that the imaginary roots of L(A) have form k6 where
keZ and k#0.

Corollary 18.6 Let A be an indecomposable affine GCM of untwisted type.
Then the multiplicity of each imaginary root kb, k #0, is [ =rank A.

Proof. We use the realisation L(A) = Q (LO). The weight space decomposition
of & (L") shows that the root space for the root k8 is * ® H°. The multiplicity
of k6 is the dimension of this root space, which is dim H 0=1. O

We now make some comments on the isomorphism between L(A) and
& (L") which we have obtained. Firstly the standard invariant form on L(A)
maps under this isomorphism to the form on Q (LO) given as follows:

(t R x, t’®y) if j#—i, forx,yeL®
(ffox. ' ®@y)=(xy)
(t ®x, c)
(f®x,d)=0

{c,c)y=0

(d,d)=0

(c,dy=1.
For it is readily checked that the form defined in this way on Q (LO) is invari-
ant. Moreover we also see that the above form on the subspace (1 ®H0) ®
CcdCd of & (LO) agrees with the standard invariant form on the subspace H
of L(A) under our isomorphism between these subspaces. However, the proof
of Theorem 16.2 shows that a symmetric invariant bilinear form on L(A) is
uniquely determined by its restriction to H. Thus the above form on ¥ (LO)
corresponds to the standard invariant form on L(A).

We also observe that the element ¢ € £ (Lo) corresponds to the canonical
central element in L(A) under the isomorphism. For we have

hy=(1®—Hy)+c  inl(L)
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and hence Y_!_;c;i;=c inQ(L°). It follows that the image of ¢ under the
isomorphism is the canonical central element of L(A).

Also, since ay(d)=1,a,(d)=0 for i=1,...,1 the element d e (L)
corresponds under the isomorphism to an analogous scaling element d
for L(A).

18.3 Some graph automorphisms of affine algebras

We now wish to find realisations of the remaining affine Kac—-Moody alge-
bras L(A) where A has type B, C‘},Fj, G‘Z,;\’l or C‘l/. These are called the
twisted affine Kac—Moody algebras. We shall obtain realisations for them as
fixed point subalgebras of certain automorphisms of untwisted Kac—-Moody
algebras. Before doing so, however, we consider the graph automorphisms of
the untwisted algebras which fix the vertex 0 and therefore arise from graph
automorphisms of the corresponding finite dimensional simple Lie algebras.
The graph automorphisms of the finite dimensional simple Lie algebras were
considered in Section 9.5. We recall from Theorem 9.19 that if o is a graph
automorphism of the finite dimensional simple Lie algebra L(A) then L(A)“
is isomorphic to the simple Lie algebra L (Al) where A! is obtained from A
as follows.

A : Ay Ay Dy Dy Eg
Order of 0 : 2 2 2 3 2
Al : B, C, B, G, F,

We shall now prove an analogous result to Theorem 9.19 for affine algebras.

Theorem 18.7 Let A be an affine Cartan matrix of type AZk—l , Dk+1 , D, or Eg
and let o be a graph automorphism of the Kac—Moody algebra L(A) which
fixes vertex 0 and has order 2,2, 3, 2 respectively. Let A° be the corresponding
finite Cartan matrix and A' be the finite Cartan matrix associated with A° as
above. Let A' be the untwisted affine Cartan matrix obtained from A'. Then
L(A)? is isomorphic to L (A')

Specifically we have

L(Ay.) = L(C)
L(Di)" =L (B,)
L(D,)" = L(G,)
L(E) =L(F)
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Proof. The algebra L (A°) has a Cartan decomposition
L(A)=H'® ) L.
ac®?
Thus L(A) has a corresponding decomposition
L(A)=H'®CcoCda)_ (*®oH")+> (F*QL)).
k0 ka
Similarly we have decompositions
L(AY=H'® ) L.
acd!

L(A)=H'®@CcaCda) (FeH" @) (F®L)).

k0 ko
Consider the graph automorphism o : L(A) — L(A). We have
o(H)=H', o(FeH)=roH’, o(FeLll)=reL,.
o(c)=c, o(d)=d.
Hence

L(A)=(H’)"@CcaCdd)_ (F®(H°)")+ Y (F®(LY)")
k50 kS
where S is an equivalence class of roots in ®° and L} =3, s LY (cf. Propo-
sition 9.18). Now the isomorphism L (A°)” — L (A') of Theorem 9.19 gives
rise to bijective maps

(H)" - H'

(LS)” — L.  where ae ®' corresponds to S

reH) > eH

*e(Ly)" - L.
These maps, together with ¢—c,d—d, determine a bijective map
¢ L(A)—L (;\') We wish to show this map is an isomorphism.

Under this bijection ¢ the subalgebra (H°)” ® Cc @ Cd maps to H' @ Cc ®
Cd and both are abelian. The action of (H°)” on #*® (H°)” and t*® (L$)”
agrees with the action of H' on **® H' and t* ® L! respectively. The element
c lies in the centre on both sides. The action of d on #*® (H°)” and t*® (L$)”
(i.e. multiplication by k) agrees with the action of d on @ H' and t*Q L

respectively. Thus it is sufficient to compare the multiplication of the root
spaces on both sides. These multiplications are trivially preserved by ¢ unless
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we take two roots whose sum is 0. So suppose x, y € (HO)U and x,, y, are the
corresponding elements of H'. We have

[tk Qx, 17" ®y] =k(x, y)oc

[tk ®x, 17" ®y1] =k(x;,y),¢
where (, ), is the standard invariant form on L (A°) and (,), the standard
invariant form on L (A").
Also if x e (Lg)", ye (L(i S)(r and x,, y, are the corresponding elements of
L!, L' then we have

[t ®x, 17 @] = [xy]+k(x, y)oc
[tk®x1’ t_k®)’1] =[xy ]+k{xp,9), ¢

Thus to show that ¢ is an isomorphism it is sufficient to show that the
isomorphism L (A°)” — L (A') preserves the standard invariant form, that is
if x— x;, y—y, then (x, y),={(x;, y;),. Since any two symmetric invariant
bilinear forms on a finite dimensional simple Lie algebra are proportional it
is sufficient to check this for just one non-zero value. To do this we choose
a l-element orbit (i) of o on {1,...,1}. Such a 1-element orbit exists in all
the cases being considered. Then we have an element h; € L (AO)(T mapping
to an element /; € L (A'). We have

(hishi)o=2 and  (h;, h;), =2d;=2a,/c;.

A glance at the values of a;, ¢; for L (Al) for i coming from 1-element orbits
of o shows that a;=c; in these cases, so d;=1. Hence (h;, h;),=(h;, h;),
and it follows that the isomorphism L (A°)” — L (A") preserves the standard
invariant forms. This completes the proof. |

Note The reader will have noticed that the case L (Z\Zk)a has not been included
in this theorem. The above proof breaks down in this case because o has no

1-element orbit on {1, ..., }. The diagrams of A%, A! are as shown.

1 2 k

O O O O
1 2 k
o O O O—>—0

O O O O

2k 2k-1 k+1

A° Al

In fact, if we take the o-orbit (k, k+1) on {1, ..., 2k}, then the isomorphism
L (A" — L(A") of Theorem 9.19 maps

2(he+hy) €L (A% to heeL(A").
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We have

<hk’ hk>0 =2, <hk+l > hk+1>0 =2, <hk’ hk+l>0 =-L
Thus
<2 (hk + hk+l) ,2 (hk + hk+1)>o =3.
On the other hand

(s by, =225 =2d, =4.
Ck
Thus

QA1) > 2 (et hy)) 7 (s iy )y

and so the isomorphism between L (A,,)? and L (B,) does not preserve the
standard invariant form. It does not therefore lead to an isomorphism between
L (Azk)o and L (Ek) in the manner described in Theorem 18.7.

18.4 Realisations of twisted affine algebras

In order to obtain realisations of the twisted Kac-Moody algebras L(A)
where A has types B, C!, F%, GS, A}, C; we must consider the fixed point
subalgebras of so-called twisted graph automorphisms.

Let L'=L (AO) be a finite dimensional simple Lie algebra and o : L° — L°
be a graph automorphism of L°. Then o extends to a graph automorphism of
Q (L) =2 (L") ®Cc @ Cd given by

o(fex)=r'®o(x)  forxelL’
o(c)=c, o(d)=d.
Suppose o has order m and let & =¢e?™/™ Then we may define an automor-
phism 7 of £ (L°) by
T (ti®x) =§""®ao(x) for xelL’
T(c)=c, 7(d)=d.

7 is called a twisted graph automorphism of € (L°), and also has order .
In fact m=2 or 3 in the cases which can arise. We shall consider the fixed
point subalgebras Q (LO)T. In order to do so we first obtain more information
about the action of ¢ on L°.
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Proposition 18.8 (i) Let L° be a simple Lie algebra of type A,,_,, D, or
E, and o be a graph automorphism of L° of order 2. Let (LO)7I be the
eigenspace of o on L° with eigenvalue —1. Then

L'=(L")"®(L)_,

and (L°)_, is an irreducible (L")’ -module.

(ii) Let L° have type D, and o be a graph automorphism of L° of order 3.
Let (L°) , (L"), be the eigenspaces of o with eigenvalues w, w* where
w=¢e*"/3. Then

L'=(L")"&(L),& (L"),
and (Lo)w, (Lo)w2 are both irreducible (LO)”—modules.

Proof. Let xe (L")°, ye (L°), where ¢ is an eigenvalue of 0. Then

olxyl=[o(x), o(y)]=g[xy].
Thus [xy] € (L°), and so (L°)_ is an (L°)”-module.

Suppose first that ¢ has order 2. Let (a, 8) be a 2-element orbit of ¢ on
®° and E,, Eg e L° be root vectors such that o (E,)=Eg. Then E,—Egz €
(LO)_1 and the weight spaces of (LO)_ , are spanned by such elements for all
2-element orbits («, B). The roots a, B e (HO)* have the same restriction to
((H°)")" and a|((H0)o)* is the weight of E, — Eg. The highest weight of the

(L°)”-module (L) _, is obtained from the highest 2-element orbit (c, 8). Let
us choose the labellings

1 2

o O e e 1 2
z>310 O

o e e e

o)
o)
T

20-1  21-2 I+1 I+1
3 4
(;_C
6 5

for the Dynkin diagrams of A,_;, D, , Es. Then the highest 2-element
orbits are

() +ay+-tay ,  aytetoy oy ) for Ay,
() +ay+-ta +a, atay+-ta_ +ay,) for Dy,
(o420, +205+ o, +as+ag, o +20,+a;+a,+as+20) for Eq.
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In these three cases the subalgebra (LO)U has type C,, B, or F, respectively
by Theorem 9.19. We choose the labellings

1 2 -1 L1 2 -1 1 2 3 4

for these Dynkin diagrams. Thus the highest weights for the (LO)U—modules
(L°)_, are
—1

o +2a, 4+ 420 +a for C,
o to,+-+o to for B,
o +2a,+ 30,4+ 20y for F,.

Using the equation a; =3 ; A;w; we see that these highest weights are w,
for C;, w, for B, and w, for F,.

Now dim (L) _ =dim L°—dim (L°)" and this is 22— [—1=(3) -1 for
C,, 21+1 for B;, and 26 for F,. However, we also have

21
dimL(a)z):(z)—l inC,
dimL (w,)=21+1 inB,
dim L (w,) =26 inF,

by Weyl’s dimension formula. Thus in each case dim (LO)71 is the dimension
of the irreducible module with the appropriate highest weight. Thus (Lo)f
is isomorphic to this irreducible (LO)U—module.

Now suppose o has order 3. Then L° has type D,. Let («,8,7) be a
3-element orbit of o on ®° and E,,, Eg, E, be root vectors such that o (E,) =
EB’ o (EB) :Ey. Then we have

1

E,+®’Eg+wE, €(L°),
E,+0Eg+w’E, € (L)

w?

where » =e?™/3, and the weight spaces of the (L°)”-modules (L°), and (L°) ,
are spanned by such vectors for all 3-element orbits. We choose the labelling

2
1 3
4

for the Dynkin diagram of D,. The highest 3-element orbit of o on ®° is then

(g +a,ta;, atata, ataytay).
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The subalgebra (L°)” has type G,, for which we take the labelling
lo—=—)

1 2

Thus the highest weights of the G,-modules (L°) and (L°)_, are both
a,+2a,. Now in G, we have a;+2a,=w, and dim L (w,) =7. However,
we also have
1 o
dim (L°) =dim (L°) ,= 3 (dim L° —dim (L°)") =7.
Thus the G,-modules (L°) and (L°) , are both irreducible and isomorphic
to L (w,). O

Theorem 18.9 Let L° be a simple Lie algebra of type Ay,_,, D,,,, Eg or D,

and let o be a graph automorphism of L° of order 2, 2, 2, 3 respectively. Let

T be the corresponding twisted graph automorphism of Q (LO). Then the fixed

point subalgebra Q (LO) " is isomorphic to a twisted affine Kac—Moody algebra.
Explicitly we have

Proof. The method of proof is broadly similar to that of Theorem 18.5 giving
the realisations of the untwisted affine Kac—Moody algebras. The basic idea
is to show that the given subalgebra of 7-invariant elements satisfies the
conditions of Proposition 14.15, and is therefore isomorphic to the appropriate
twisted affine Kac—Moody algebra.
We have
L) =Y (FRL)®CecpCad.

kel
If o has order 2 we have
LY =Y (o) )oY (P o (L) ) eCeacd
keZ keZ
whereas if o has order 3
& (Lo)f _ Z (t3k ® (LO)(T) @ Z (t3k+l ® (LO)w) ® Z (t3k+2 ® (LO)wz)
keZ keZ keZ

@ Cc o Cd.
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LetE,,... ,E.F,,...,F,H,...,H, bestandard generators of L. We wish
to define analogous elements

€ps€1sveslyy fosfiseeesfrn hohy,... by in(L%)".

We pick a representative 6§° € ®° of the highest 2- or 3-element o-orbit on ®°,
Specifically we have

0" =a,+ay+--+ay, inAy_,
C=a,+a,+ - +a inD,,
6° =, + 20, + 20, +a, +as+a inEq.

The elements e;, f;, h; are then chosen as follows.
Type A,

o
T

o O~
(@)

o O

o O

o 0O
Y

e =1Q(E\+Ey_),....e1=1®(E_+E,), ¢=1QE
H=1Q@F +Fy ). ... i =10 (F_ +F), [i=18F
h=1®H +Hy_y),....h_  =1®H_+H,), h=18H,
w=1@(Fo=Fym). fo=t"@(En—Ey))

ho=1® (-Hgo - HU(GU)) +2c.

Type D, ,

el=1®El,...,el,1=1®E1,1, 61:1®(E1+El+l)
H=1QF,, ..., fiL=1®F_,, f1=1®(F1+F1+1)
h=1Q®H,,...,h_=1QH,_,, h=1®(H+H,,)

e =1® (F(,U . FU(GO)) . fo=t'® (Ego —Ea(eo))

ho=18 (—Hyp— H, () ) +2¢.



434 Realisations of affine Kac—Moody algebras

Type E;
3 4
—
6 5

e, =1QE,, ¢,=1QF,, e;=1Q(E;+E;), e,=1Q(E,+E;)
f[i=1QF, f[=18F, f[=1Q(F+F), fi=18(F+F;)
h=1®H,, h=10H, h=18(H,+H,), h,=1Q(H,+H;)
0 =1® (Fgo —Fa(eo)), fo=t"" ®(E(,0 —Ea(eo))

hy=1® (—Heo —Hg(go)) +2c.

2
1 3
4
e, =1Q®E, e,=1Q(E,+E;+E,)

fi=1®F, f2:1®(F2+F3+F4)
hy=1®H,, h,=1®(H,+H;+H,)

Type D,

e =1® (Fgo +(1)2F0_(00) +owkF 2(6”))
fO = [71 [ <E90 +wEa'(90) + w2E02(90)>
hO =1 ® (_HF)O _HG'(QO) _H02(90)> +3C

Let HC 2 (L°) be given by H=(1® H’)®Cc@®Cd. We define maps
oy, ¢y, ..., a; : H7— C. We have roots a; € H* and such roots in the same
o-orbit have the same restriction to H?. We define a, ..., a, € (H?)" to be
the restrictions of the corresponding roots in H*. We also define o, € (H?)"
by ay=—0"+34.

Let & (L°)=L(A) as in Theorem 18.5. We wish to show that Q (L) =
L (A’) where A’ is the affine Cartan matrix of type given below:

A 1:421—1 ?1+1 Es ?4
A B; C; F, G,
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We shall first show that (H?, I, I1") is a realisation of A" where
I ={hy, hy,..., 0} CH?, T={ay,a,...,a}C(H")".

We know from Theorem 9.19 that a; (h;)=Aj; for i, je{l,...,I}. This
I x ] matrix is non-singular and so h,,...,h, and «,..., @, are linearly
independent. The element A, involves ¢ whereas h,...,h; do not, thus
hy, hy, ..., h; are linearly independent. We have «;(d)=0 for i=1,...,!
but a,(d)#0, thus «, &, ..., «, are linearly independent. We must show
that

a; (hy) = Ay, j=1...,1
ay (h)=A), i=1,...,1
g (ho) =2.

We recall the integers a;, ¢; associated with the affine Cartan matrix A’, which
are as follows.

Ay, Ay, ..., 4 CosClsvnvs ()
1 2 2 2 2 2 1 1:>é 2 2 2 2 2
) O )] O
1Z>C 1
1 1 1 1 1 1 1 1 2 2 2 2 2 1
< T O > O = [ 35O
1 2 3 2 1 2 4 3 2 1
o O O o)
1 2 1 3 2 1

We then note that the following significant equations hold in each of the cases
being considered:

1
> c¢;h; =mc where m is the order of o.
i=0

We then have

i I
@ (h)=— Zajaj (h)=— ZA;‘jaj =Aja,=A},
j=1 j=1
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fori=1,...,[ since a;=1 in the cases being considered. Similarly

a;(hy)=— Zc,aj(h)— Zc, L= CoAy; = Ag;
for j=1,...,1. Also

oy (hg) = (—6°+9) (1 ® ( Hyp—Hy oy =+ ) +mc> = 6" (Hyp) =2.

We also note that A’ is an (/4 1) x (I+ 1) matrix of rank / and that dim H? =
[+2. Thus we have shown that (H?, I1, I1") is a realisation of A’.

We next verify the relations necessary for applying Proposition 14.15. We
first show that

[h,.e] A:J j [hifj]Z_A;‘jfj

fori, je{0,1,...,1}. These are known for i, je {1, ..., I} by Theorem 9.19.
So we must check

[hOej]ZAé)jej» [hij]z_Aé)jfj j=1,...,1
[hieo] = ;060, [hifo]l = _A;ofo i=1,...,1
[hoeol =2¢q,  [hofo]l=—2f,.
For j=1,...,1 we have
i
[hoej]z_zci [hie] ( ch lj) €; _Aé)j j
i=1
and similarly for i=1,..., [ we have [h,f;]= —Aj;f;. Also
[h e()]— [h,,t®(F90—|—€ (90)"‘ )]
=1®—0°(h) (Fp+& 'Fyq,+---)

=6 (hi)e():(—;ajaj(hi)) ( ZAU j>

= Ajye,.
Similarly we have [k, f,] =—A), f,- We also have
[hoeo]:[1®(—H90_H0(90)_"'), t®(F90+8 (90)+ )]
= 2t ® (Fgo + e (90) + ) 260.
Similarly we have [h,f,]=—2f,-
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Finally we have relations

[ce]=0=a;(c)e; i=1,...,1
[cfi]=0=—a;(c)f; i=1,...,1
[de]=0=0;(d)e;, i=1,...,1
[df]=0=—ad)f, i=1,....1
[dey] =ey=ay(d)e,
[dfo]l=—fo=—ay(d)fy

Since H"=(1® (H°)”) ® Cc® Cd we have now verified all relations neces-
sary for applying Proposition 14.15.

We next show that the elements e, e, ... , e, fo, fis ..., f; together with
HT generate £ (L°)". We know that e, ..., e, fi, ..., f, generate (LO)U by
Theorem 9.19. Since

YUY =T (e (L))o X (*e (L) ) eCeacd

keZ keZ

when o has order 2 and

L) =1 (o) )er (Me(L),)e ) (e (L), )eCcoCd

kel keZ keZ

when o has order 3, it is sufficient to show that the subspaces (tzk ® (LO)U)
for k#0 and **'®(L°)_, lie in the subalgebra generated by the above
elements when o has order 2, and the subspaces (t3"®(L°)U) for k0,
(F'® (Lo)w) (e (Lo)wz) lie in this subalgebra when o has order 3.

Let M be the subalgebra of <(L°)" generated by ey, e,..., e,
fo» f1s--- > fi» H™. Suppose first that o has order 2. We have

ey=1® (Fjo — Fyn)) €M and Fpo — F, 0 € (L°) .

Now if x € (Lo)a A (LO)_1 then
[®x,1@y]=1®[xy]cr®(L’)_,.

Thus the elements y € (L°) _ for which t® y € M form an (L)’ -submodule of
(L°)_,. However, (L°)_, is an irreducible (L°)”-module by Proposition 18.8.
Thus t® (L°)_, lies in M. Now we can find elements x, y € (L°)_, such that
[xy] #0. Then [t®x, t® y] = > ®[xy] is a non-zero element of M. However,
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the set of z€ (L°)” such that ?®z € M is an ideal of (L°)” and (L°)” is a
simple Lie algebra. Thus 1 ® (LO)(r lies in M. The relations

[t2®x, t2k®y] =2 g [xy] X, y€ (LO)(T

[t2®x, t2k+l®y]=t2k+3®[xy] XE(LO)U,ye(LO)_l

can then be used to show by induction on k that *® (L°)" CM and
@ (L°)_, C M when k> 0. Starting with f; instead of ¢, will similarly
show this when k <0. Thus M = 2(L°)" .

Now suppose that o has order 3. We have

€)= r® (FHO + (1)2Fa.(90) + wFO.Z(HO))
FOO + (I)ZFO.(GO) + (I)FUZ(OO) S (Lo)m .

An argument similar to the above shows that ® (L), C M. Now there exist
elements x, y € (L), with [xy] #0. Then
[tex, t®y]=r®[xyle # Q(L°)

®? "

We can then show as above that ®(L°) , C M. There exist elements
xe(L%),.ye (L"), with [xy]0. Then

[t®x, t2®y] =rQ[xy]ef® (LO)U.

We then see as above that * ® (LO)U C M. Induction on k can then be used
to see that the subspaces

e (L())‘T . g (LO)(U L P (LO)wz
all lie in M when k>0. A similar result is obtained when k <0 starting
with f, instead of e,. Thus M =Q(L°)T. Hence in all cases the elements
€0r €1n-nr s € fos f1s-. [ and H™ generate 2(L°)7.

Finally we must show that £ (L°)" has no non-zero ideal J with JNH" = O.
To see this we decompose Q (LO)T into root spaces with respect to H™. We
first suppose o has order 2. For each 1-element orbit () of o on ®° we
choose E, € L°. We showed in the proof of Theorem 9.19 that o (E,)=E,.
For each 2-element orbit (a, B) of o on ®° we choose E,, € LY, Eg € Ly such

that o (E,) = Eg. Then Q (LO)T is the direct sum of H” and the following
weight spaces.
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*®(H")"  with weight 2k
t2k+l ® (H0)7

*®@CE,  with weight a4 2k& where () is a 1-element orbit

| with weight (2k+1)6

*®C (Ea +EB) with weight a4+ 2k where (a, 8) is a 2-element orbit

M QC(E,— Ep) with weight «+ (2k+1)8 where (a, B) is a
2-element orbit.

By Lemma 14.12 the ideal J is the direct sum of its intersections with these
weight spaces. Thus J has non-zero intersection with one of these weight
spaces. Taking a non-zero element x in this weight space and in J we can
find an element y in the negative weight space such that [xy] is a non-zero
element of H”, and this contradicts JNH™ = O.

When o has order 3 a similar argument can be applied. This time the
weight spaces are

*®(H’)”  with weight 3k8
@ (HY),  with weight (3k+1)8
t3k+2 ® (H())

*®CE,  with weight a4 3k& where () is a 1-element orbit

with weight (3k+2)0

w?

**eC (Ea +E; +Ey) with weight @+ 3k6 where (a, B, ) is a
3-element orbit

M QC(E,+w’Eg+wE,) with weight a+ (3k+1)6 where («, 8, v)
is a 3-element orbit

P QC(E,+wEs+w’E,) with weight a+ (3k+2)6 where (o, 8, )
is a 3-element orbit.

Any non-zero ideal J with JNH™ = O must have non- zero intersection with
one of these weight spaces. We can then multiply it by an element of the
negative weight space to give a non-zero element of H”, and this contradicts
JNH™=0. Thus we deduce that J =0.

We have now verified all the conditions of Proposition 14.15 and can
conclude that £ (LO)T is isomorphic to L (A’). O

As a corollary we obtain the multiplicities of the imaginary roots of the
affine Kac-Moody algebras of types B}, C;, F}, G5.
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Corollary 18.10 The multiplicities of the imaginary roots are as follows.

Type B}. The roots 2ké (k#0) have multiplicity | and the roots (2k+1)6
have multiplicity [ — 1.

Type 6’,‘ The roots 2ké (k #0) have multiplicity | and the roots (2k+1)6
have multiplicity 1.

Type F. The roots 2k& (k#0) have multiplicity 4 and the roots (2k+1)8
have multiplicity 2.

Type é‘z The roots 3k (k#0) have multiplicity 2 and the roots (3k+1)6
and (3k+2)6 have multiplicity 1.

Proof. For types B!, C‘},Fj Theorem 18.9 shows that the multiplicity of
2k& (k#0) is dim (H°)”, which is equal to /. The multiplicity of (2k+1)8
is dim (HO),L» which is I —1, 1, 2 in the three cases respectively.

For type G5 the multiplicity of 3k8 (k#0) is dim (H°)” =2, and the
multiplicities of (3k 4 1)8 and (3k 4-2)8 are dim (H°) =dim (H°) ,=1. [

We now make some comments on the isomorphism between L (A’) and
2 (LO)T which we have obtained. The standard invariant form on L (A’) does
not map under this isomorphism to the restriction of the standard invariant
form on £ (L°). For let (i) be a 1-element o-orbit on {1, ... , [}. Such an orbit
exists in each of the cases. Then h; € L (A") corresponds to 1® H; € Q (LO)T.
We have

(1®H;, 1QH;)=2
(s hi)' =2a,/c;.
However, we may check that ¢; =ma; for all 1-element o-orbits, hence
(his hy)' =2/m
where m is the order of o. Thus

(IQH, 1QH,y=m (h;, ) .

Also the isomorphism does not map the element ¢ € Q (LO)T to the canonical
central element ¢’ € L (A’). We noted in the proof of Theorem 18.9 that

I
> cihi=mc inﬁ(LO)T
i=0

and hence our isomorphism maps mc to ¢’

However, the scaling element d € £ (LO)T maps to a scaling element d' €
L (A’). For we have ay=—6°+6 and so ay(d)=6(d)=1. Also «a;(d)=0
fori=1,...,L
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We also see that, if x, y € ¢ (L°)" map to x', y € L (A'), then

(r.y)=mx.y)
where (,) and (, )’ are the standard invariant forms. This is true for x', y" €
L (A") since any two symmetric invariant forms are proportional on L (A’)".
However, it is also true when y=d, y'=d’ since

(h;,d)=0 fori=1,...,1

(c,dy=1
(d,d)=0
Thus it is true for all x', y" € L (A"). Ul

We now wish to obtain realisations of the remaining twisted Kac—Moody
algebras of type 6‘,/ for [>2 and ;\’,. These will be obtained as fixed point
subalgebras of the untwisted Kac—-Moody algebra of type ;\2, under the twisted
graph automorphism 7. We begin by recalling from Theorem 9.19 that the
fixed point subalgebra of the finite dimensional Lie algebra L (A,,) under its
graph automorphism o is given by

L(Ay)"=L(B).

Q
VRN
o
) [e
o——-O0
o -
)
o
QT

Ay B
In order to show that L (Az,)T =L (C‘l’) if [>2and L (AZ)T =L (A/l) we shall
compare the diagrams
1 2 -1 1

0 1 2 -1 /
0< I [© = ¢ D B 0]

21 20-1 1+2 I+1
Ay ¢/
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We note that the numbering of the vertices of the graph for C‘; is not the
same as the numbering previously used when 6‘,/ was constructed from C,
by adding an extra vertex labelled 0. Here we are starting from the finite
dimensional simple Lie algebra B, rather than C,. In Theorem 17.17 (d) and
(e) we obtained the roots of C‘,/ and A/l in terms of those of C,. For our present
purpose we require these roots in terms of those of B,.

We consider the diagram of C; labelled as follows.

O O O O O O o> O
0 1 2 -2 -1 I

and let B, be the subdiagram obtained by omitting vertex 0 and C, be the
subdiagram obtained by omitting vertex [. We recall that

0=ay+2a,+- - +2a,_,+2¢,.

The following lemma will be useful by relating the roots of B, and C,.

Lemma 18.11 (i) Each long positive root of C, involves . Each short

positive root of B, involves «,;. There is a bijective correspondence o <> 3

between long positive roots of C, and short positive roots of B, satisfying

a+2B=20.

(ii) There is a bijective correspondence a<> 3 between short positive roots of
C, and long positive roots of B,. If a, B do not involve «, a; respectively
this correspondence is the identity map. If o involves o, and [ involves
«, the correspondence is given by a+[=25.

Proof. This follows immediately from expressing the roots of B, and C; in
terms of the fundamental roots «;, ..., ¢; and o, @y, ... , a;_, respectively.
U

Example The above bijection between ®* (C;) and ®* (B;) is as given
below.

> o—a >0

eT(G) PT(By)
a, a +a,+a;
oy +2a, a,+ oy
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ay+2a,+2a, oy
a @
a, 2%)
o ta, o ta,
o+ o o +20,+ 20,
ayto +a, o +oa, 420,
oy 20, +a, a, 420,

By using Lemma 18.11 together with Theorem 17.17 we may express the
real roots of C; in terms of the roots of B,.

Proposition 18.12 (i) The real roots of L (C‘;) 1>2, are

Oy ={a+rd; acd], re}

Dy = {a+r3 ; aeCD?, reZ}

Dy = {2a+ Qr+1)8; acd®, re Z}
where g, ¢, Py, ;, Py, are the short, intermediate and long roots respec-
tively, and ®?, @) are the short and long roots of B,.

(ii) The real roots of L (;\/1) are

Dy s = {a+r8 ; aeq)o,reZ}
Dp, = {2a+(2r+1)8 ; acd’, reZ}

where ®° is the root system of type A, obtained from the short funda-
mental root of A).

Proof. (i) We know from Theorem 17.17 that

1
Dy = {E(a—i—(Zr—l)S) : ae@?(Cl),reZ}

D = {01+1’5 ; aeCDS(CZ),reZ}
Dy = {a+2r8; acd)(C),re}.

We make use of the bijection a <> 3, —a <> —f of Lemma 18.11 where
ac®t(C),Bed (B). For each a € ®° (C,) we choose the corresponding
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B € ®° (B)). First suppose a € ®! (C,). The corresponding 3 € ®? (B,) is given
by a+2B8=24 if a is positive and o +28=—0 if « is negative. Thus

—B+rd if @ is positive

1
—(a+(2r—1)5)=
2( ( %) {—ﬁ—i—(r—l)S if « is negative

—2B+(2r+1)5 if « is positive

a+2ré6=
—2B+(2r—1)5 if « is negative

This gives the required formulae for ®y,  and ®y, ; as r runs through Z. Next
consider @y, ;. If a € Y (C,) does not involve «, we have B=a € ) (B)). If
a € ®?(C)) does involve «, the corresponding B € P (B,) satisfies a+B=235
if « is positive and a+ 8= —4§ if « is negative. Then

a+r6=B+rd in the first case

—B+(r+1)8 if a is positive

a+rd=
—B+(r—1)8 if a is negative

in the second case. This gives the required formula for @ ; as r runs

through Z.

(i) In type A/ the argument is exactly the same except that ®° = ®? has type
A, and @) is empty. Thus P, ; is empty in this case. Ul

We shall next prove the analogue of Proposition 18.8 in our present case.

Proposition 18.13 Let L° be the simple Lie algebra of type A,, and o be
its graph automorphism of order 2. Let (LO)_1 be the eigenspace of o on
L° with eigenvalue —1. Then L°= (L°)" & (L°)_,. The eigenspace (L°)_, is
an irreducible (LO)U-module. The algebra (LO)U is isomorphic to L (B,) and

(LO)71 is isomorphic to its irreducible module L 2w,).

Proof. Ttis clear that (L°)_ is an (L°)”-module and that L° = (L°)” & (L) _,.
We have

dim L’ =dim L (A,,) =21(2]+2)

dim (L°)” =dim L (B)) =1(21+1).
Thus dim (L°)_ =dim L —dim (L°)” =1(214-3). Let =0, +--+ay be
the highest root of A,. Then a corresponding root vector E, lies in (L°)
and gives the highest weight of (Lo)fl. It gives rise to the weight 2o, - - -

+2a; of L(B,). By considering the Cartan matrix of B, we see that a; +- - -
+a;=w, and so the highest weight of the L (B,)-module (LO)_l is 2w,.
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Weyl’s dimension formula shows that dim L (2w,) =1(2/43). Since this is
also the dimension of (L°)_, we see that (L°)_, is an irreducible L (B,)-
module isomorphic to L 2w, ). ]

By using this result we can prove the analogue of Theorem 18.9 in the
A, case.

Theorem 18.14 Let L° be a simple Lie algebra of type A, with [>2 and
a be its graph automorphism of order 2. Let T be the corresponding twisted
graph automorphism of Q (LO). Then the fixed point subalgebra ¢ (LO)T is
isomorphic to L (C'l’)

When =1 the fixed point subalgebra is isomorphic to L (A/l)

Proof. The general idea of the proof is like that of Theorems 18.5 and 18.9.
We aim to obtain the result by applying Proposition 14.15.
We first suppose / >2. We have

LL)=Y (F®L)@CcaCd

keZ
LY =X (P8 (L)) + X (P o (L)) eCeaCa
keZ keZ
Let E,,...,E,, F,,...,Fy, Hy,...,Hy be standard generators of L°. We
wish to define analogous elements e, e, ... , €, fo, fi>--- > fi hos By oo By

in ¢ (LO)T. These are chosen as follows.

e =1Q(E +Ey)), .... ¢, =1Q(E_+E), ¢=10J2(E+E,)
H=18(F +Fy), ... fiu=18F_+F,), [i=10J2(F+F)
h=1®H +Hy), ..., h_=1®H_ +H,,), h=182(H+H_)

e =1®F), fo=t"'®FE) hy=—(1®H;)+c

where 0 is the highest root of L°.
Let HC 2 (L°) be given by H=(1®H")@Cc@Cd. We define maps

ay, 0y, ...,0;,: H”— C.Fori=1,..., [ these are the restrictions of the roots
a;: H— C. For i =0 we define oy =—6+439.
Let IIV={hg, hy,...,,}CH’ and M={a,, ay,...,a;}C(H?)". We

show that (H7, I1, I1") is a realisation of the Cartan matrix A’ of type C’; .
We know from Theorem 9.19 that «; (hi)zA;-j for i, je{l,...,1}. This
I x I matrix is the Cartan matrix of type B,. In particular it is non-singular.
Thus hy,...,h; and a,, ..., a; are linearly independent. Now £, involves
¢ whereas hy, ..., h; do not, thus hy, h, ..., h, are linearly independent.
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Also we have ay(d) #0 and o;(d)=0fori=1, ..., I thus a, &, ... , @, are
linearly independent. We must show in addition

a; (hy) = Ay, j=1,...,1
ay (h)=Aj, i=1,...,1
g (hy) =2.

We recall that the integers a;, ¢; associated with the affine Cartan matrix
A’ are

ap, ay, ..., q; Cs Cps v s €

N N N N
a < T > O a < O T > O
1 2 2 2 2 2 2 2 2 2 2 1

In particular we have a, =1, ¢, =2. (The change of labelling explains the fact
that ¢, is not 1, as it usually is.) We note that

I
> a;=5
i=0

i
> c¢ih,=2c.
i=0

We then have

! 1
ay (hy) == a;a;(h)==3_ Ajja;=Ajag= Ay
J=l1 j=1

1 ! 1 : ’ 1 ’ ’
CYj (hO) = —5 ;ciaj (hi)Z_E;CiAijZECOAOjZAOj

ay (hy) = (=0+06) (1®—Hy)+c)=0(Hy) =2.

We observe that A’ is an (/4 1) x (/+ 1) matrix of rank / and that dim H” =
[+2. Thus we have shown that (H?, 11, I1") is a realisation of A’.
We next verify the relations

[hie]]|=Ale,  [ifi]=—ALf;

for i,j€{0,1,...,1}. We know this already for i, je{l,...,[} by Theo-
rem 9.19. Thus we must verify

[hoe;]=Abie;  [hofi]=—Ayf;
[h;e0] =A;o€o [h:fo] = _A;ofo
[hoeq] =2e [hofol =—2fp-
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Now

NI'—'

[hoej]

Xl:c,[ e;]= ( ch U)e = Agje;

i=1
and similarly [hofj] =—Ay,f;- Also

[hieo] = [hi 1@ Fyl =1 @ (=0 (b)) Fy) = =0 (h;) ¢

= (_Zl:ajaj (hz)) €= < ZAU 1) ¢ = Aieo-

Similarly we have [k, f;] = — A}, f,- We also have
[hoeo] =[— (1@ Hy) +c, 1@ Fy] = —1 @ [HyFy)
= 2[® Fa = 260

and similarly [A,f,] = —2f,. Finally we have

[ce;]=a;(c)e;=0 i=0,1,...,1
[cfil==aic)fi=0 i=0,1,....1
[de;]=a;(d)e;=0 i=1,...,1

[df;]=—a;(d)f;=0 i=1,...,1
[deg] =ay(d)ey=e,
[dfo]l =—ay(d) fo=—

Since H"=(1® (H®)")®Cc®Cd we have verified all relations necessary
for the application of Proposition 14.15.

We next show that the elements ey, e, ... , e, fy, fi, .., f; together with
H" generate ¢ (L°)". By Theorem 9.19 ey, ..., e, fi,... , f; generate (L°)°.

Since € (L%) =Y 1er (@ (L)) ® Xyez, (P @ (L)) ®CedCd it is
sufficient to show that the subspaces

(*® (L)) for k0 and ('@ (L) )
lie in the subalgebra M generated by ey, e;, ..., e, fo, fis--.» i, H
Now ¢,=1®F, lies in M and F, € (L°)_. If xe (L°)”, ye(L°)_, then

[1®x,tQy]|=1®[xy]er®(L°)_,.

Thus the elements y € (L°) | for which t®ye M form an (L°)”-submodule
of (LO)_I. This submodule contains F, so is non-zero. Since (LO)_l is an
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irreducible (L°)”-module by Proposition 18.13 this submodule is the whole
of (L°)_,. Thus r®(L°)_, lies in M.

Now we can find elements x, y € (L°)_, with [xy] #0. (For example, x=
Fo—Fo  y=E4.q,,) Thus [1®@x, 1®y]= ?®[xy] is a non-zero element

of M. However, the set of z € (LO)U for which > ® z € M is an ideal of (LO)U
since

[FRz 19w]=r®[zw]  forwe(L")’.

Since [xy] € (LO)U this is a non-zero ideal of (LO)U and since (LO)U is a simple
Lie algebra it is the whole of (L°)”. Thus 2® (L°)” lies in M.
Now the relations

[t2®x, t2k®y] =22 Qxy], xye (LO)U
[t2 Qx, 12+ ®y] =g [xy], xe (LO

g

NAS (LO)—I

can be used to show by induction on k that r*® (L°)” C M and
#HQ(LY)_,cM  when k>0.

Starting with f;, instead of e, will similarly show this for k <0. Thus
M =2 (L%)" as required.

Finally we must show that £ (L°)" has no non-zero ideal J with JNH"™ = O.
To see this we decompose Q (LO)T into weight spaces with respect to H”.
Any non-zero ideal J with /N H™ = O must have non-zero intersection with
one of these weight spaces, by Lemma 14.12. Let x be a non-zero element in
such an intersection. Then there exists y in the weight space corresponding
to the negative of this weight such that [xy] 0, by Corollary 16.5. But then
[xy]e JNH™ and so JNH™ # O, a contradiction. Hence J = 0.

We have now verified all the hypotheses of the recognition theorem Propo-
sition 14.15 and so can conclude that € (L) is isomorphic to L (C;).

We now consider the case /= 1. This time the graphs are

) ==

o
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The elements ey, ¢, f, f,, 1o, hy of £ (L°)" are
e =1®2(E\+E), fi=1®2(F\+F), h=1®2(H +H,)
e=18F, fi=1""®FE), hy=—(1Q®H)+c

where 0 =« + «, is the highest root of A,. We have

H:{ho,h]} Hz{ao’al}

where ay=—60+8 and «, € (H?)" is the restriction of a; € H*. The integers
ay, a,, ¢y, ¢; for A| are

We have
ayoy+a, o, =906
cohy+c hy=2c.

We can then check that (H7, I1, IT") is a realisation of A’. We also check the
relations

[hoe] =2ey, [hoei]=—e;,  [hieg] =—4ep, [hie]]=2e,
[hofo]z_zfo, [hofl]:flv [h1f0]=4fo’ [h1f1]=_2f1~

The facts that H7, e, e,, fy, f, generate 53(L0)T and that S:E(LO)T has no
non-zero ideal J with JNH™= O are proved just as before. Thus applying
Proposition 14.15 shows that £ (L°)" is isomorphic to L (A}). O

We shall describe explicitly the weight space decomposition of Q (LO)T
with respect to H”. We recall from Proposition 9.18 that there is a bijective
correspondence between roots of (LO)U =L (B)) and equivalence classes of
roots of L= L (A,,). Each equivalence class has 2 or 3 elements. Equivalence
classes with 2 elements have form («, 8) where o(a) =8, o(B) =@ and ¢+ 8
is not a root. Equivalence classes with 3 elements have form («, 8, @+ )
where o(a)=8, 0(B) =« and o(a+B)=a+ L. Equivalence classes with
2 elements correspond to long roots of B, and equivalence classes with 3
elements correspond to short roots of B,. For each 2-element equivalence
class we can choose root vectors E,, Eg with o (E,) = E4. For each 3-element
equivalence class we choose root vectors E,, Eg, E, 5 with o (E,) = Eg and
[ELEg)|=E,.p- Then

0 (Eaip) =0 [ELEp| =[EpEs] = —Eoip
thus E, g€ (L%)_,.
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The Lie algebra € (L°)" is the direct sum of H™ and the following weight
spaces.

#®(H’)”  with weight 2k&
@ (H)_ with weight(2k + 1)

*QC (E,+Ep) with weight « +2k6 for each 2 element equivalence
class(a, B)

P QC(E,—Ep) with weight a + (2k+1)8 for each 2 element
equivalence class(e, 8)

1

*®C (Ea +Eﬁ) with weight a4 2k0 for each 3 element equivalence
class(a, B, a+B)

A eC (Eoz — EB) with weight &+ (2k+1)6 for each 3 element
equivalence class(a, B, a+f3)

*""'®CE, B with weight 2a+ (2k+1)6 for each 3 element equivalence
class(a, B, a+B).

The weights listed above correspond to the roots of L (C‘Z’) as described in
Proposition 18.12.
In the case /=1 the weight spaces of L (AZ)T are

*®C (H,+H,) with weight 2k8

"' ®C (H, — H,) with weight(2k+1)6
*®C(E,+E,) with weight o, +2k§

M QC(E, - E,) with weight a; + (2k+1)6

"' ®CE with weight 2a, 4+ (2k+1)6

ajta
**Q@C (F,+F,) with weight — a; +2k6

AT QC(F,—F,)  with weight—a, + (2k+1)8
' ®CF, .,  with weight—2a, +(2k+1)8.

Corollary 18.15 (i) The multiplicities of the imaginary roots kd of 6‘1’ are
equal to l.
(if) The multiplicities of the imaginary roots ké of A| are equal to 1.

Proof. (i) The multiplicity of 2k6 is dim (HO)U, which is equal to /. The
multiplicity of (2k+1)6 is dim (Ho)fl, which is also equal to /.
(ii) The same applies to ;\/1 when [=1. O
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We note that the isomorphism between L (A’) and € (A,;)" does not map
the standard invariant form (,)’ on L(A’) to the restriction of the standard
invariant form (, ) on € (A,,). For h, € L (A’) corresponds to 1®2 (H,+ H_)
in ¢ (A,). We have

<hl’ h1>/ =2ﬂ =4
¢

(1®2(H,+H,,,), 1®2(H/+H,))=4(H+H,,,H+H_,)=8.

Thus the form is not preserved by the isomorphism.

Also the canonical central element ¢ € £ (A,;)" does not map to the canoni-
cal central element ¢’ € L (A’). Since we showed that 3"\_; ¢;h, =2c it follows
that 2¢ corresponds to ¢’ under our isomorphism.

Comments on notation

An alternative notation is sometimes given to the affine Kac—-Moody algebras
of twisted type, based on the results of this chapter. The twisted affine
algebra can be specified by the type of the untwisted affine algebra from
which it is obtained, together with the order of the automorphism of which
it is the fixed point subalgebra. This is the notation used by Kac in his book
Infinite Dimensional Lie Algebras. The alternative notation in each case is
shown below.

B Ay [=3
Ct D, 1>2
Fy  CE
Gy D,
C, A, 1>2
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Some representations of symmetrisable
Kac—Moody algebras

19.1 The category O of L(A)-modules

We now turn to the representation theory of Kac—Moody algebras. We shall
not consider arbitrary representations, but restrict attention to those in the
category O introduced by Bernstein, Gelfand and Gelfand. Let

L(A)=N"@H®N

be a Kac—-Moody algebra and V be an L(A)-module. We say that V is an
object in the category O if the following conditions are satisfied:

(i) V=&, .V, where V,={veV ; xv=A(x)v for all xe H}
(i1) dimV, is finite for each A € H*
(iii) there exists a finite set A,,..., A,€ H* such that each A with V,#0
satisfies A < A; for some i€ {l,...,s}.

The morphisms in category O are the homomorphisms of L(A)-modules.

Thus each module in O is a direct sum of its weight spaces and these
weight spaces are finite dimensional. Moreover all the weights are bounded
above by finitely many elements of H*.

We now give some examples of modules in category ¢. For each A € H*
we may define the Verma module M(A) with highest weight A. This is
defined in a manner analogous to that in which we defined Verma modules for
finite dimensional Lie algebras in Section 10.1. Let 11(L(A)) be the universal
enveloping algebra of L(A) and K, be the left ideal of 11(L(A)) generated
by N and x— A(x) for all x€ H. Thus

Ky, =W(L(A)N+ Y W(L(A))(x—A(x)).
xeH
Then M(A)=1(L(A))/K, is an L(A)-module called the Verma module with
highest weight A. Let m, € M(A) be defined by m, =1+ K,. Then, just as in
Theorem 10.6, we see that each element of M(A) is uniquely expressible in

452
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the form um, for some u € l1(N~). Also, as in Theorem 10.7, we have

M) = P M(2),

uneH*
M(A),#0 if and only if u <A
dim M(A), =B(A—p).

This shows that M(A) € O. The finite set of weights giving an upper bound
for all weights can be taken in this case to have just one element A.

Lemma 19.1 (i) If V € O and U is a submodule of V then U € O and V/U € 0.
(i) IfV,,V,€0 then Vi,®V,€0 and V,QV, € 0.

Proof. (i) We have V=@D, . V). The argument of Theorem 10.9 shows
that Uy =UNV, and U=, . U,. It follows that U € O. Moreover we have
(V/U),=V, /Uy and V/U =D, - (V/U),. It follows that V/U € 0.
(i) We have (Vi@ V,),=(V}),®(V,), and Vi@V, =D, 4. (Vi®V,),. It
follows that V, @V, € 0.
Now consider V, ® V,. We have

Vi= @ (V1),\1’ V,= @ (V2)A2

A eH* AeH*
thus
VieV,= @ ((VI)AI ® (Vz))\z) :

AL Ay
Now (Vl)/\l ® (VZ)AZ chi® V2)A1+A2' Hence V@V, =D, - (Vi ® V1),
where

% ®Vz))\ = Z ((Vl),\] ®(V2)A2) :
AL A

AFA=A
Now there exist §;€ H*,i=1,...,s,, such that A, < ¢, for some i. Also
there exist n; € H*, j=1, ..., s, such that A, <n; for some j. Thus A=

A+ A, <& +m; for some pair (i, j). We have

(fi"‘”’)j)_/\Z(fz‘_/\l)‘i‘("l/‘_)‘z)~

The expressions (f,- +n j) — A, & — A, m; — A, are all non-negative integral
combinations of the fundamental roots. Thus for given i, j the (f,- +7n j) —A
has only finitely many such decompositions. It follows that for each
A with (V,®V,), # O there exist only finitely many pairs A;, A, with
A+ A=A, (V) # O, (V2),, # O. It follows from this that V, ® V, € 0.
U
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Now each L(A)-module V €@ admits a character ch V. We recall from
Section 12.1 that ch V is the function from H* to Z defined by

(chV)(A)=dim V,.

We also recall from Section 12.1 the definition of the ring 91 of functions
from H* to Z. A function f : H*— Z lies in 9 if there exists a finite set
Ay, ..., A € H* such that

Supp f CS(A)U--- US(A)

where S(A)=Supp(ch M(A)). It follows from the definition of category O
that chV e for all VeO.

In Proposition 12.4 we obtained a formula for the character of a Verma
module for a finite dimensional semisimple Lie algebra. We now generalise
this result to Verma modules for Kac—-Moody algebras. We recall that the
function ¢, : H* — Z was defined by ¢,(A)=1 and e, () =0 if A# . The
characteristic functions e, lie in 9 and any function f € R can be written in
the form

f= Z f(Ne,
AeH*

where the sum may be infinite.

Proposition 19.2 Let M(A) be a Verma module for the Kac—Moody algebra
L(A). Then
€\

H (1 - e—a)ma

acdt

ch M(A) =

where m,, is the multiplicity of a.

Proof. We use the fact that the map u — um, is a bijection between 11 (N™)
and M(A). This bijection maps the weight space 11(N~)_, to the weight
space M(A),_,,.-

For each « € ®* we have dim(N~)_,=m,. Let e_,;, 1 <i<m,, be a
basis of (N~)_,. We choose an order on these basis elements for all «, i. We
then obtain a PBW-basis of 11 (N™) consisting of all products

Mg
1_[ H e ’1‘2;',1-

a =1
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with n,; €Z and n, ;> 0. Thus the weight space 11 (N~)_, has a basis con-
sisting of the above elements which satisfy

> (% na‘l) a=pu.

acdt \i=l
This shows that the character of 1l (N7) is
chilt(N7) =[] (I+e+e +--)"
aedt

since the number of times e_, appears on the right-hand side is the number
of sets (n,;) of non-negative integers such that

acdt \i=Il

(oo
Hence the character of M(A) is

chM(N)=¢, [] (I+e_+e +---)".
aedt
Now the element 1+e_,+¢e*, +--- €N has inverse 1 —e_, € R. Thus we
have
2

l_[ (1 - efa)ma

aedt

chM(\) = O

Of course in the special case when L(A) is finite dimensional this formula
reduces to that obtained in Proposition 12.4. In the general case there are two
differences — the roots need not have multiplicity 1 and the product over the
positive roots can be an infinite product.

Now the Verma module M(A) for L(A) has a unique maximal submodule
J(A), just as in the proof of Theorem 10.9. We define

L(A)=M(A)/J(A).
Then L(A) is an irreducible L(A)-module in the category O.

Proposition 19.3 The modules L(\) for A€ H* are the only irreducible
modules in category O.

Proof. Let V be an irreducible L(A)-module with V € @. The definition of O
shows that V has a maximal weight A under the partial ordering <. Let v, € V
be a weight vector with weight A. Then xv, =0 for xe N and xv, = A(x)v,
forxe H.
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We may define a map from the Verma module M(A) into V as follows.
Each element of M(A) has a unique expression of form um, for uell (N7).
Let 6 : M(A)— V be defined by 0 (um,) =uv, for ue L1 (N™). It may then
be shown, just as in the proof of Proposition 10.13, that 6 is a homomorphism
of I(L(A))-modules. The image of 6 is a submodule of V containing v,,
so is the whole of V since V is irreducible. Thus the kernel of 6 is a
maximal submodule of M(A), so must be J(A). Thus V is isomorphic to
M(A)/J(A)=L(\). O

Now in Theorem 12.16 we showed that each Verma module M()) for a
finite dimensional semisimple Lie algebra L has a finite composition series.
The proof of this result made extensive use of the fact that L is finite dimen-
sional, and the result does not carry over to Verma modules for Kac—Moody
algebras L(A). For example it can be shown that the Verma module M(0)
has no irreducible submodule when L(A) is infinite dimensional.

We would nevertheless like to define the multiplicity [V : L(A)] of the
irreducible module L(A) in the module V € 0. If V had a finite composition
series [V : L(A)] would be the number of composition factors isomorphic
to L(A) in a given composition series, and this would be independent of
the choice of composition series by the Jordan—Holder theorem. However, V
does not in general have a finite composition series. Even so, Kac found a
way of defining the multiplicity [V : L(A)]. This makes use of the following
lemma.

Lemma 194 Let V€O and A€ H*. Then V has a filtration
V=V,DV,D>---DV,=0

of finite length by means of a sequence of submodules such that each factor
V._,/V; either is isomorphic to L(l) for some > A or has the property that
(Viei/ Vi), =0 forall p> A

Proof. The definition of O shows that V has only finitely many weights
with u > A. Thus

a(V,\)=) dimV,
A
is finite. We shall prove the lemma by induction on a(V, A). If a(V, A)=0
then V=V, DV, =0 is the required filtration. So suppose a(V, A) > 0. Then
V has a weight w with w> A. We may choose a maximal weight u with
>~ A. Let v, € V be a weight vector with weight u. Then xv, =0 for xe N
and xv, =u(x)v, for xe H. Let U=1(L(A))v, be the submodule of V
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generated by v,. We then have a map 6 : M(p)— U defined by 6 (um,) =
uv,, for u € 11 (N~), and 6 is a homomorphism of 11(L(A))-modules as before,
as shown in the proof of Proposition 10.13. Moreover 0 is surjective. Thus
U is isomorphic to a factor module of the Verma module M(w), and so has
a unique maximal submodule U. We also have

U/U=M(w) /(1) = L(w).
Now consider the filtration
VOUDUDO.

We have a(U, A) <a(V, A) and a(V/U, A) < a(V, X), since the weight u > A
appears in U/U. Thus by induction we obtain filtrations for the modules
U e and V/U €0 of the required kind, and these may be combined to give
the required filtration of V. 0

Lemma 19.5 Let V€O and A € H*. Consider filtrations of the type given in
Lemma 19.4 with respect to A. Let u € H* satisfy > A. Then the number of
factors L(w) in such a filtration is independent of the choice of filtration and
also of the choice of A.

Proof. We first observe that a filtration with respect to A is also a filtration
with respect to u when u > A. Also the multiplicity of L(w) in such a filtration
is the same whether it is regarded as a filtration with respect to A or w. Thus
to prove the lemma it will be sufficient to take two filtrations with respect to
w0 and show that L(w) has the same multiplicity in each.

The following variant of the proof of the Jordan—Holder theorem achieves
this. Let

V=V,D>V,D>---DV, =0 (19.1)
V=V;DV|D>---DV/=0 (19.2)

be two such filtrations of lengths /,, [,. We shall use induction on min (/,, 1,).
Suppose first that min (/;, ;) = 1. Then either V is irreducible and the two
filtrations are identical, or w is not a weight of V and L(u) does not appear
in either filtration.
Thus suppose min (/;, [,) > 1. We suppose first that V, =V|. We then con-
sider the two filtrations

V|D"'Dvll:0
VI/DDVI;ZO
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of V,. By induction they give the same multiplicity for L(u), and the filtrations
for V are obtained by adding the additional factor V/V, which is the same
for both.

We may therefore suppose that V| # V/|. Suppose first that one contains the
other, say V, C V|. Then V/V, is not irreducible and so w is not a weight of
V/V,. Thus neither V/V, nor V/V] is isomorphic to L(w). Let

VDU, D---2U,=0

be a filtration of V, of the required type with respect to w. We then consider
the filtrations

VovioU D>---2U,=0 (19.3)
VoV, oV,DU D---DU,=0. (19.4)

These are filtrations of V of the required type with respect to . L(w) has
the same multiplicity in filtrations (19.1), (19.3) since they have the same
leading term V. Similarly L(w) has the same multiplicity in filtrations (19.2),
(19.4). So L(w) has the same multiplicity in filtrations (19.3), (19.4) since
none of V/V,,V/V|,V]/V, is isomorphic to L(w). Thus L(u) has the same
multiplicity in filtrations (19.1), (19.2) as required.

We may therefore assume that neither of V|, V] is contained in the other.
Let U=V, NV| and choose a filtration of U of the required kind with respect
to u. This has form

UDU,D---DU,=0.

m

We then consider the filtrations
VoV, DUDU, D---DU,=0 (19.5)
VoV, DUDU,D>---DU,=0. (19.6)

These are filtrations of V of the required type with respect to w. This is clear
since

VijUE(vV+Vv) /v, VijJUZV,+V])/V,.

Now L(w) has the same multiplicity in filtrations (19.1), (19.5) and the
same multiplicity in filtrations (19.2), (19.6) since the leading terms are the
same. It is therefore sufficient to show that L(w) has the same multiplicity in
filtrations (19.5), (19.6). These filtrations differ only in the first two factors.
If V,+ V=V then we have

V/V,ZV//U, V/V|=V, /U
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as required. If V; 4+ V| #V then V/V, and V/V] are not irreducible. In this case
M is not a weight of V/V, or V/V/, so is not a weight of V,/U. Thus none of
V/V,, V,/U, V/V], V|/U is isomorphic to L(w). This completes the proof. [

Definition The multiplicity of L(w) in a filtration of V € O of the type con-
sidered in Lemmas 19.4 and 19.5 will be denoted by [V : L(w)].

Of course this agrees with the previous definition of [V : L(w)] in the case
when V has a composition series of finite length.

Proposition 19.6 Ler V €O. Then
chV=>) [V : L(A)]chL(A).

AeH*

Proof. Both sides are functions H*— Z. We have (chV)(u)=dimV, and
the right-hand side evaluated at w is

> [V : L(A)]dim L(A),.

AeH*
We choose a filtration of V with respect to u of the type given in Lemma 19.4.
Each factor either is isomorphic to L(A) for some A > w or does not contain y as
a weight. The multiplicity of L(A) as a factoris [V : L(A)]. Hence we have

dimV, =) [V : L(A)]dim L(A),
A

summed over all A > . We may in fact take the sum over all A € H* since
dim L(A),, =0 unless A > u. UJ

19.2 The generalised Casimir operator

We recall from Section 11.6 that, if L is a finite dimensional semisimple Lie
algebra, the Casimir element of the centre of the enveloping algebra 11(L)

plays an important role in the representation theory of L. If x, ..., x,, are
any basis of L and y,, ..., Yy, are the dual basis with respect to the Killing
form the Casimir element is given by

> xy; e (L).

We showed in Proposition 11.36 that the Casimir element acts on a Verma
module M(A) for L as scalar multiplication by (A+p, A+ p) —(p, p) where
(, ) is the Killing form and p is, as usual, the element of H* given by p (k;) =1
fori=1,...,L
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Now let L(A) be a Kac-Moody algebra where A is symmetrisable. We
cannot define an analogous Casimir element ) x;y; in 11(L(A)) since the sum
will in general be infinite and make no sense. It was shown by Kac, however,
that it is possible to define an operator ¢ : V— V on any L(A)-module V
in category @ which has properties analogous to the action of the Casimir
element for finite dimensional algebras. In order to define Kac’ operator on V
we recall the formula for the Casimir element of a finite dimensional algebra
given in Proposition 11.35. Let k), ... , i} be a basis of H and h{, ..., h] be
the dual basis of H with respect to the Killing form of L. Choose elements
ey €L,, fo€L_, such that [e,f,]=Hh, for each a € ®t. Then the Casimir
element of 11(L) is given by

1
DomhIA YD h 2 Y faen.
i=1

aedt acdt

Since Y.+ @ =2p this element can also be written

I
D oRR 20,42 ) fue,
i=1 acdt

where /), € H satisfies p(x) = (h;), x) forall xe H.

We wish to define an analogous element for the symmetrisable Kac—-Moody
algebra L(A).Therootspace L, of L(A) need notbe 1-dimensional, so we choose
abasisell, e, ... for L,.Instead of using the Killing form we use the standard
invariant bilinear form on L(A). (In the case when L(A) is finite dimensional
this is a scalar multiple of the Killing form.) We recall from Corollary 16.5 that
the pairing L, x L_, — C given by x, y— (x, y) is non-degenerate. Thus we
may choose a corresponding dual basis "), £, ... for L_, such that

(€, f)=8;.

We choose a basis A}, i), ... of H and let h{, ), ... be the dual basis of
H satisfying (hj, h}’): 8;;. Since the fundamental coroots h, ..., h, € H are
linearly independent there exists p € H* such that p (h;)=1 fori=1,...,n.
However, p is not in general uniquely determined by this condition. So we
choose any element p e H* satistying p (h;)=1 for i=1,...,n. We then
have a corresponding element /), € H such that p(x) =<h;, x) for all xe H.
We then consider the expression
Yo Bh 42k +2 30 Y feld
i acdt i

This element does not make sense as an element of 11(L(A)) in general since
the sum over a € ®* may be infinite. However, if V is an L(A)-module in
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O we know that ch V € )t and so there exist only finitely many « € ®* such
that L,V # O. Thus the operator ) : V— V given by

Q=3 mh/+2h,+2 3 > fe)
i aed* i
is well defined. It is straightforward to check that this operator  : V—V
does not depend on the choice of dual bases |, h},... h{,hl,... of H or
on the choice of dual bases e\, ) for L, and L_,. It may, however, depend
upon the choice of p.

Definition The operator Q) : V—V for V€O is called the generalised
Casimir operator on V with respect to p.

In the case of a finite dimensional semisimple Lie algebra the Casimir
element lies in the centre of the universal enveloping algebra. We shall prove
an analogous result in the present situation, i.e. that the generalised Casimir
operator commutes with the action on V € O of any element of 11(L(A)). We
first need some preliminary results.

Lemma 19.7 Let a, B, B— a € ®. Suppose e, £ are dual bases of L, L_,
and eg), fél) are dual bases of Lg, L_g. Let x € Lg_,. Then in the vector space

L(A)®L(A) we have

S 1P [x ] =L [£5 x| e

i

Proof. We note that both sides lie in the subspace L_,® Lg. We define a
bilinear form on L(A) ® L(A), uniquely determined by

(X1 ® Y1, X3 ®¥p) = (X1, %) (V15 Y2) -

Since the standard invariant form is non-degenerate on L(A) this bilinear
form will be non-degenerate on L(A)® L(A).

Leta®be L,® L;. Then the scalar products of both sides of the required
equation with a ® b are zero unless y =« and 6 = —f3. We therefore suppose
v=a and 6 =—f3 and consider the scalar products

<zm®h#h@§

<Z [f([),x]@)eg), a®b>.

1
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We have

<zm®u@h@§=zwwmwmﬂ
— Ul o)
= —(a, [xD])

since e, £\ are dual bases of L,, L_,. Similarly

(S[Joep-ao) =3 ([1t.].o)(-o
- e

= ([xa]. b)
= —{a, [xb]).

Thus the two sides of our equation have the same scalar product with each a ®
beL,®L_g. Since the form is non-degenerate on L(A)® L(A) this shows
the two sides are equal. 0

Corollary 19.8 In the enveloping algebra N(L(A)) we have

Y10 [ )= [£5 ¥ eff

i

Proof. We apply the natural homomorphism from the tensor algebra T(L(A))
to 11(L(A)). The result then follows from Lemma 19.7. U

Theorem 19.9 Let ucN1(L(A)) and V € O. Then the maps Q) : V—V and
u : V-V commute.

Proof. The algebra II(L(A)) is generated by e;, f; for i=1,...,n and the
elements of H. If x € H then x commutes with each term fe() in 1I(L(A))
since this term has weight 0. Thus x : V — V commutes with f{e® : V —V
and hence with ) : V — V. It is therefore sufficient to show that ) : V-V
commutes withe;, : V—Vand f; : V> V.
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We consider the element [Y_; fe{?, ¢;] of 11(L(A)). We have

j
_Z[fm Je9 =3 £ [e,, 9]

J

=S [0.e]el = X [£ih ] e
J

J

[Zﬁwul=zmm4&+zﬁwwd
] ‘

by Corollary 19.8. If a4 a; & ® the second term is interpreted as 0.
We show that

Z(Zﬁ%ﬁrvév
acdt J

aFa;

commutes with ¢; : V— V. We have

) G j j Z Z () )]
§ : <§ :fc(yj)eg)> € | = 2 : |:§ :fszj)’ei:| eij) |:f J+a ’ i:| Otj+Oéi
aedt \ J aedt | Jj aedt J

aFa; aFa; aFa;

on V. If a —a; ¢ P then [Z £, e] 0. Thus we may assume o =S+ «; in
the first term with 8€ ®* and get

Z () ()] Z Z ) )]
|: Bj-o—a ’ i:| Bj+a [f j+a s i] aj+a,- :O
Bedt [ J acdt Jj

B ate;

Since Q=3 Wih/+2h, 423 cqr >, fV€ on V it is now sufficient to
show that }_; h/ h” +2h/ +2 fie; commutes with ¢; on V. In fact these elements
commute in H(L(A)) For we have

S| = Sl S e
_ Za ( )e h”—i—Zai (h;./) h;e
=¢ (Z a; () h + 3 a; (K) h) + (Z a; () e (h ;)) ¢

(S Sl (S0 )

J
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Since K, h,, ... and kY, b}, ... are dual bases of H we have

e W) ;=D (G, 1) = I,

J J

and

2 (s ) (e 1) = (B i) = et ).

j
Hence
J
Secondly we have
[Zh;), e]=2q, (h;) e =2<h;i, h;)ei =2p (h;,) e;=(a; a;)e

@;
/

(h, ., h

a;’ ai>

since h; = and p (h;) =1, hence

/ )_(h;i’h:l,)_ <ai’ ai>
2 2

p(h,
Thirdly we have
[2fiei. e]=2[f;, e;]e;=—2]e;, fi]e;.

We recall that e;, f; were chosen so that {e;, f;) =1. By Corollary 16.5 this
implies [e;f;] = h;, . Hence

[2fie: e;] = —2h;iei = —Zel-h;i —2q; (h;) e;
= —2e¢;h, —2(a;, a;)e;.

Thus we have shown:
|:Z W.h, e,«:| =2¢;h, +(a;, ;) ¢
J
[Zh;ﬁ ei] ={a;, ;) ¢

[2fiei ei] = _2eih£1,- —2(a;, ;) ;.

1

Hence

[Z Wih! 421, +2f e, el.:| =0.
J
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Thus we have shown that ) : V— V commutes with ¢; : V— V. The
proof that ) : V— V commutes with f; : V— V is similar. Using the fact
that

|:Zf(1) ) f] Z[f(/) f] (J)+Zf(/)[ (/) ]

—2f”> [fov el | =212 111 2]

we deduce as before that

aedt
aFa;

> (Zf;f)eﬁf')) LVoV
J
commutes with f;, : V— V. We also obtain

|:Z h;h;/’ i| = _2fih;, +{a;, @) f;
[Zh/ ] <al’ a; >f
[2fiei fi] =2fih,.
Hence
|:Zh/h”+2h/ +2fe;, f~j| 0.
Thus Q : V— V commutes with f; : V — V and the proof is complete. [

We next describe the action of the generalised Casimir operator {) on a
Verma module.

Proposition 19.10 Q acts on the Verma module M()\) as scalar multiplica-
tion by (A+p, A+p) —{p, p).

Proof. Let m, be a highest weight vector of M(A). Then

Qm, = <Zh W +2h+2 " ngﬁeg)) m

acdt j

= <Z A () A (H])+2A (h;,)) m
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Now > A () A (R}) = (A, A) and A (k) = (A, p). Hence

Qmy =({A+p, A+p)—{p, p))m,.

Now each element of M(A) has form um, for some u €11 (N™). Thus
Q (umy) =u(Qm,)=((A+p, A+p)—(p, p))um,,

by Theorem 19.9. Hence () acts on M()) as scalar multiplication by
(Atp, A+p)—{p,p)- U

Corollary 19.11 Q acts on the irreducible L(A)-module L(A) as scalar
multiplication by (A+p, A+p) —{p, p) O

Note Proposition 19.10 is the analogue of Proposition 11.36 for finite dimen-
sional semisimple Lie algebras. In Proposition 11.36 the invariant form which
appeared was the Killing form whereas in Proposition 19.10 and Corol-
lary 19.11 it is the standard invariant form. The difference is explained by the
fact that the Casimir element in the enveloping algebra of a finite dimensional
semisimple Lie algebra was defined in terms of the Killing form, whereas the
generalised Casimir operator was defined in terms of the standard invariant
form.

19.3 Kac’ character formula

Let X be the set of integral weights A € H*, that is the set of all A such that
A(h,)eZfori=1,...,n. Let X* be the subset of dominant integral weights,
that is the set of weights A € X such that A (/;) >0 for all i. In this section
we shall prove a formula due to Kac for the character of the irreducible
L(A)-module L(A) when A € X*. The reason for the restriction to weights in
X lies in the fact that the modules L(A) for A € X* are integrable.

Definition An L(A)-module V is called integrable if

V=V,

AeH*
and ife; : V—V and f;, : V—V are locally nilpotent for all i=1, ... , n.

Proposition 19.12 The adjoint module L(A) is integrable.

Proof. The proof of Proposition 7.17 carries over to the present situation.
U
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Proposition 19.13 Let V be an integrable L(A)-module. Then dimV, =
dim V,,, for each A € H* and each we W.

Proof. Since the Weyl group W of L(A) is generated by the elements s, it is
sufficient to show that dim V) =dim V(.

We may regard V as a module for the 3-dimensional simple subalgebra
{(e;, h;, f;) of L(A). Let ve V, and consider the (e, h;, f;)-submodule gener-
ated by v. The vectors

v, e, el.zv, e, €7

lie in this submodule, where r is the smallest positive integer with e/v=0.
The vectors f?efv also lie in this submodule, and there are only finitely many
(a, b) for which such a vector is non-zero. Each such vector is a weight vector
in V. However, the relation

ef! = fleq+nf!™ (hy—(n=1)

obtained in the proof of Theorem 10.20 shows that the subspace spanned by
all vectors f?evis an {e;, h;, f;)-submodule. Hence every weight vector ve V
lies in a finite dimensional (e;, 4;, f;)-submodule which is also an H-module,
i.e. it is an (e;, H, f;)-submodule.

Now let U be the subspace of V given by

U= Z V)H—kai'
kel

U is clearly an {e;, H, f;)-submodule of V. The (e;, H, f;)-submodule gen-
erated by each weight vector is finite dimensional, thus U is a sum of finite
dimensional (e;, H, f;)-submodules. Now (e;, h;, f;) is a 3-dimensional sim-
ple Lie algebra of type A,. Thus every finite dimensional (e;, k;, f;)-module
is a direct sum of finite dimensional irreducible (e;, &;, f;)-modules, by the
complete reducibility theorem, Theorem 12.20. The weight spaces involved
in such a decomposition of an H-invariant {e;, h;, f;)-module can be chosen
as weight spaces for H, as in the proof of Theorem 10.20, thus every finite
dimensional H-invariant (e;, h;, f;)-module is a direct sum of finite dimen-
sional H-invariant irreducible (e;, h;, f;)-modules. Thus U is a sum of finite
dimensional H-invariant irreducible (e;, h;, f;)-submodules, so is a direct
sum of certain of these submodules. However, for each of these irreducible
submodules M we have

dim MA == dimMg[()‘)
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by Proposition 10.22. It follows that
dlm V/\ - dlm ‘/Si(/\)

and the required result follows. |

Proposition 19.14 Let L(A) be a symmetrisable Kac—-Moody algebra and
L(A) be an irreducible L(A)-module in the category O. Then L()) is inte-
grable if and only if A is dominant and integral.

Proof. Suppose first that L(A) is integrable. Let v, be a highest weight vector
in L(A). Then f/v, =0 for some r. Consider the vectors

Ve fin e fTo

Since e,f"' = fl'e;+nfI""' (h;— (n—1)) for each n we see that these vectors
span an {e;, h;, f;)-submodule of L(A). The highest weight of this finite
dimensional (e;, h;, f;)-module is A. But the highest weight of any finite
dimensional module for a finite dimensional simple Lie algebra is dominant
and integral. Thus A (h;) €Z and A (h;)>0. Since this holds for all i, A is
dominant and integral.

Now suppose conversely that A (h;) € Z and A (h;) > 0 for each i. Then we
have

M) +1
/i v, =0

as in the proof of Theorem 10.20. Now each element of L(A) has form uv,
for some u € L(A). We have

=3 (1) (6o n) (240,

Now (ad f;)* u=0 for k sufficiently large since L(A) is integrable, by Propo-
sition 19.12. Also fN~*v, =0 for N —k sufficiently large, as shown above.
Thus /7 (uv,) =0 for N sufficiently large, and so f; : L(A) — L(A) is locally
nilpotent. The fact that e¢; : L(A)— L(A) is locally nilpotent follows from
the fact that L(A) lies in category @. Thus L(A) is integrable. Ul

As before we write

Xt={AeH*; A(h)€Z,A(h)>0 foreach i}.
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We now turn to Kac’ character formula for ch L(A) when A € X*. We recall
from Proposition 19.2 that the character of the corresponding Verma module
M()) is given by

ch M(\) = %

where A =[], e+ (1—e_,)"* and m, is the multiplicity of a.
We begin with a lemma.

Lemma 19.15 Let X**={Ae X ; A(h;) >0 forall i}. Suppose E€ X, ne
Xt satisfy n< & and (m, n) = (&, &). Then n=¢.
Proof. Since n< ¢ we have § —m=) ", k;&; with k; € Z and k; > 0. Thus

i=1 "™

(&6 —Mmm=_(E+n.E—m)
= Sk(ern a) =Xk B e (n).

Now (a;, ;) >0 and (£ +m) (h;) > 0. Hence (¢, §) — (n, n) =0 implies that
k; =0 for each i. Thus £ =. U

Theorem 19.16 (Kac’ character formula). Let L(A) be a symmetrisable
Kac—Moody algebra and L()\) be an irreducible L(A)-module with A € X™.
Then

Z 8(11)) ew()t+p)—p
weW

H (1 - efa)mu .

aedt

chL(\)=

(This is an equality in the ring R.)

Proof. By Proposition 19.6 we have

ch M) = 3 M) © L(w)]chL(p).
neH*
Now all u for which [M(A) : L(u)]#0 satisfy w < A. For L(w) appears as
a factor in some filtration of M(A), so u is a weight of M(A).

We consider the action of the generalised Casimir operator () on M(A). By
Proposition 19.10 € acts on M(A) as scalar multiplication by (A+p, A+ p) —
(p, p). Similarly by Corollary 19.11 Q acts on L(u) as scalar multiplication
by {u+p, u+p)—{p, p). Thus if [M(A) : L(x)]#0 we must have

(A+p, A+p)—(p,p)={n+p,n+p)—{(p.p)
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that is (A+p, A+p)=(u+p, u+p). Thus
chM(A)=) _[M(A) : L(u)]chL(u)

summed over all u < A with {u+p, w+p) = (A+p, A+ p). If we take a total
ordering on the weights u satisfying w < A and {u+p, u+p) ={A+p, A+p)
which is compatible with the partial ordering < these equations can be
written

chM(\)=) a,,chL(u)

where (a,,) is an infinite matrix with non-negative integer entries such that
ay,=1 and a,, =0 for all entries below the diagonal. Such a matrix (a,,)
can be inverted to give a matrix (b,,) with b,, € Z, b,,=1 and b,, =0 for
entries below the diagonal. Thus we have

chL(A) =) b, chM(n)

e
= Zb/\uf'

m

Thus AchL(A) =3}, b,,e, and e,AchL(A)=3_, b,,e, -
We consider the action of the Weyl group on the functions which appear
here. Since s; transforms «; to —a; and ®* —{a;} into itself we have

5 (ep8) =5 (epo—e_a,) I <1—e_a>'"a)
aedt—{a;}
=e, ,(1—¢,) [[ (Q—e )™

aedt —{a;)
=—e,A
since s;(p) = p — «;. Hence
w(epA)zs(w) e,A forall we W.
Also by Proposition 19.13 we have
w(ch L(A))=chL(}) for all we W,

since L(A) is integrable. It follows that

w (Z b)\uew—p) =&(w) Z bAueu+p'
I ©
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This implies that
bA/.L = g(w) b/\v

where w(u+p)=v+p.

Suppose w is a weight for which b,, # 0. Consider the set of all weights v
for which w(u+ p) =v+ p for some we W. All such weights satisfy b,, #0
and we have v < A. Among all such weights ¥ we can choose one for which
the height of A — v is minimal. Then v+ p must lie in X*. For if there existed
an i for which (v+p) (h;) <0 we would have

sw(p+p)=s,(v+p)=v+p—(v+p)(h;)a;
contradicting the minimality of ht (A — ). Hence v+ p € X*. We also have
(v+p,v+p)={(u+p, u+p)=(A+p,A+p).
Thus we have
ApeXt, v+peX, v+p<A+p

and (v+p,v+p)=(A+p,A+p). By Lemma 19.15 this implies v=A.
Hence every weight u for which b,, # 0 satisfies u+p=w(A+ p) for some
w e W. But then

by, =&e(w)by, = e(w).
Hence

e,AchL(A)= )" e(w)e,,)-

weW

If follows that

> e(w) Cu(\p)—p
wew
A

chL(A)=
(We note that %:e,A ch M(A) lies in R.)

Corollary 19.17 (Kac’ denominator formula). For a symmetrisable Kac—
Moody algebra we have

e, [1 (1—e_ )" =3 e(w)e,,.

aedt weWw
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Proof. L(0) is the 1-dimensional trivial module with ch L(0) =¢,. Hence

A=Aey= ) e(w)e,,),

weW

and so e,A=3", y e(w)e, -

Corollary 19.18 (Alternative form of Kac’ character formula). Let
L(A), A€ X", be an irreducible module for a symmetrisable Kac—Moody
algebra. Then

Z & (w)ew(/\er)

chL(\) =" — .
> 8(w)€w(p)
weW
Proof. This follows from Theorem 19.16 and Corollary 19.17. |

Note Kac’ character formula and denominator formula appear very similar to
Weyl’s character and denominator formulae for finite dimensional semisimple
Lie algebras. However, the nature of Kac’ formulae is in fact rather different,
since they involve in general infinite sums over the elements of W and infinite
products over the positive roots.

Theorem 19.19 Let L(A) be a symmetrisable Kac—-Moody algebra and
AeXT. Then L(A)=M(A)/J(N) where J(N) is the submodule of M(A) gen-

erated by elements f-)‘(hi)‘leA fori=1,...,n.

1

Proof. Let K(A) be the submodule of M(A) generated by the elements
£ We know that L(A) = M(A)/J(A) where J(A) is the unique max-

1

imal submodule of M(A), and wish to show that K(A) =J(A). Now we have

fg\(hi)+1 v, =0 where v, =J(A) +m,

1

as in the proof of Proposition 19.14 (the detailed argument is given in Theo-
rem 10.20). Thus f"*'m, € J(A) and so K(X) C J(A).

Let V(A) = M(A)/K(A). Then V(A) is an L(A)-module in the category @, so
ch V()= Y [V(A) : L(w)]chL(w)

H<A

by Proposition 19.6. We also have

chL(u)=)_b,,chM(v).

V<
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Hence
chV(A)=)" ¢, chM(u)
<A

for certain c,, € Z. By considering the action of the generalised Casimir
operator ) on M(u) and on V(A) and using Proposition 19.10 we have

ch V(1) = > CpuCh M(p).

<A
(utp,putp)=(A+p,A+p)

Now let v} = K(A) +m, be the highest weight vector of V(). Then we have
f‘)‘(hi)+l v, = 0.

It follows, as in the proof of Proposition 19.14, that f; : V(A) — V(A) is
locally nilpotent. Since V(A) €O, e; : V(A)— V(A) is locally nilpotent.

Hence V(A) is an integrable L(A)-module. Thus
w(ch V(1)) =ch V(A) for all we W
by Proposition 19.13. We then have
e,AchV(A)= > Crnl

H<A
(wtp.putp)=(A+p,A+p)

utp

by Proposition 19.2. It then follows exactly as in the proof of Theorem 19.16
that every weight u for which c,, #0 satisfies u+p=w(A+p) for some
we W, and that then c,, = &(w). Hence
e,AchV(A)= > s(w)e, i)
weW

and so ch V(1) =ch L(A) by Theorem 19.16. Since L(A) is a factor module of
V(A) this can only happen if V(A) = L(A). Thus K(A) =J(A) as required. []

We now recall that for finite dimensional semisimple Lie algebras the
partition function ¥ was defined as follows. If & € H* 3(£) is the number of
ways of writing £ as a sum of positive roots, i.e. as the number of sets of
non-negative integers r,, a € ®*, such that § ="+ 1 .

For Kac—-Moody algebras we define the generalised partition function &
as follows. If £ € H* (§) is the number of ways of writing & as a sum of
positive roots, each such root o being taken m, times, i.e. as the number of
sets of non-negative integers r, ; for « € ®* and 1 <i<m, such that

&= Z Zara,ia'

aedt i=I
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We then have an analogue for symmetrisable Kac—-Moody algebras of
Kostant’s multiplicity formula Theorem 12.18.

Proposition 19.20 Let L(A) be a symmetrisable Kac—Moody algebra and let
A€ x*t. Then for each weight u of L(\) we have
dimL(A), =} e(w)S(w(A+p) = (u+p)).

weW

Proof. By Proposition 19.2 we have
chM(N)=e, [] (I+e_t+e st )"
aedt
By definition of & we have

1_[ (1+ea+62a+"')ma= Z ‘Q(B)eﬁ'

acdt BeOt

Thus ch M(A) = e, 3 pco+ (B)e_g. It follows that
chL(A) = > e(w)ch M(w(A+p)—p)

weW

=2 2 e(Wewnip-, N (B)ep

weW BeQ+t

= Z Z S(w)ew(/\ﬁ»p)fpfﬁﬁ(ﬁ)

weW BeQ+t

=Y > e()Kw+p)—(u+p)e,.

n weW

Hence the multiplicity of u as a weight of L(A) is
> s(w)S(w(A+p) — (u+p)). 0

weW

19.4 Generators and relations for symmetrisable algebras

We recall that the Kac—-Moody algebra L(A) was not defined in terms of
generators and relations. The larger algebra L(A) was defined by generators
and relations and its quotient L(A) is given as L(A)/I where I is the largest
ideal of L(A) satisfying I N H = O. It is natural to ask what additional relations
are required to pass from L(A) to L(A). We shall answer this in the case
when the GCM A is symmetrisable.

We first require some preliminary results on enveloping algebras and mod-
ules in category O.
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Proposition 19.21 Let 0 : L— L' be a surjective homomorphism of Lie
algebras with kernel K. Let ¢ : WW(L) — U (L") be the corresponding homo-
morphism between enveloping algebras. Then the kernel of ¢ is KU(L).

Proof. Since K is an ideal of L, K11(L) is a 2-sided ideal of 11(L). For [kx] €
K for ke K, x€ L and so kx=xk+[kx] in U(L). Thus K1I(L) =U(L)K and
KU(L) is a 2-sided ideal of 1(L). Thus K1I(L) C ker ¢.

Conversely we have a homomorphism
a : W(L)/KU(L)— U (L)

induced by ¢. We consider the Lie algebra [11(L)/KU(L)]. We shall define
amap L' — [U(L)/KU(L)] as follows. Given x’ € L' we choose x, € L with
0 (x,)=x'. Then x, € U(L) gives rise to x, € [U(L)/KU(L)]. We show that
the map x'— X, is well defined. Suppose x, € L also satisfies 6 (x,)=x".
Then X, € [U(L)/KU(L)]. Now 0 (x;)=0(x,) so x,—x,€K. Hence X, =
X, — X, +Xx, =X,. Thus our map is well defined and is clearly a Lie algebra
homomorphism. By the universal property of enveloping algebras there is a
homomorphism

B : U(L)—Uu(L)/KUu(L)
compatible with our homomorphism of Lie algebras
L' — [(L)/Ku(L)].

It is readily checked that «, 8 are inverse homomorphisms, and thus isomor-
phisms. Hence the homomorphism ¢ : (L) — 11 (L") has kernel K11(L).
U

The 2-sided ideal L11(L) of 11(L) will be denoted by 11(L)*. We have

W(L)=Cl®1(L)*.
Proposition 19.22 LN (11(L)*)*=[LL].
Proof. Since L (L)* and, for x, ye L, [xy] =xy— yx we see that

[LL]c LN (1(L)").

Conversely let L =L/[LL]. We have a natural homomorphism 11(L) — 11(L)
under which LN (1(L)*)* maps to iﬂ(ll(i)+)2. Now L is an abelian Lie
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algebra so 1I(L) is a polynomial algebra. In such a polynomial algebra it is
evident that

Lo(u@)*) =o.
It follows that LN (11(L)")* lies in the kernel of L — L and so

Ln(uL)*)’ c[LL). O

Proposition 19.23 Let K be a subalgebra of the Lie algebra L. Then
KNK1(L)* =[KK].

Proof. Since K CII(K)* we have [KK]C KU(K)™", using [xy]=xy— yx.
Hence [KK]C KNKU(L)*. To prove the converse we use the PBW basis
theorem. Let {k;} be a basis of K, and extend it to a basis {ki, u_/-} of L. Then all
finite products of the form [Tk;"u; with m, >0, n; >0 form a basis of 11(L)
and the subset [Tk/" with m, >0 is a basis for 1{(K). The monomials [Tk;"u}’
with 3°m;+3 n;>1 form a basis of 1I(L)" and those with > m;+> n;>2
and )" m; > 1 form a basis of K1I(L)*. Now

KNKU(L)" cUW(K)nKU(L)*.

A linear combination of monomials []k;" u;f lies in U(K) if and only if all
such monomials have n; =0. Thus each element of KNK(L)" is a linear
combination of such monomials with all n; =0 and }_m, >?2. Hence

KNKW(L)" c (W(K)*)’ NK
and so KNKU(L)* C[KK] by Proposition 19.22. ([

We next need some further properties of Verma modules. We recall that
for A € H* the Verma module M(A) for L(A) is given by

M) =U(L(A)/K,

where K, = (L(A))N + Y.y W(L(A))(x— A(x)). The Verma module M(\)
can also be described as a tensor product. Let B be the subalgebra of L(A)
given by B=N+H.

Lemma 19.24 M(A) is isomorphic to the 1(L)-module (L) ®yg Cuv,,
where Cv, is the 1-dimensional B-module with N in the kernel and H acting
by the weight A.
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Proof. There is a bijection
(L) By Cvy — U(N7) ®c Cu,
given as follows. Since L=N~@& B we have a bijection
(L) — U (N")Qc U(B).
Thus we have bijections
(L) ®y (s Cvp = (W(NT) ®c 11(B)) @y Cvy,
— I(N7)®¢ (U(B) Q5 Cv)) = U (N7) Q¢ Cu,.

The 1(L)-action on U (N~)®cCu, is given as follows. Let ' € I(L) and
uell(N™). Then

wWu=Yy ab;,  where a,e 1(N"),b,el(B).
Wehave v/ (u®v,) =(>_; A(b;) a;) ®v,. On the other hand we know that each

element of M(A) is expressible uniquely as um, for u €1l (N~). Moreover
for u’ € I(L) we have

u' (umy) = <Z/\ (b;) ai) m.
Thus there is a 11(L)-module isomorphism between 11(L) ® 5 Cv, and M(A).
O
We may also define a module M () for the larger Lie algebra L(A) by
M(\)=11(L) ®ui Cvy
where A€ H* and B=N+H.

Lemma 19.25 For A € H* there is an isomorphism of U(L)-modules
lI(L) ®11(L) M()‘) = M()‘)

Proof. We have a sequence of bijections
(L) ® u(Z)M()\) =U(L) ®u) (H(i) ®ue Cv,)
— (W(L) @y i) W(L)) @y Cvp = U(L) ®yz) Cuy.

Now we have a natural homomorphism 11(B) — 11(B) with kernel K which
acts trivially on 11(L) and on Cuv,. Thus we have a bijection

(L) ®y () Cvp— W(L) @z Cvy =M(A).

The above bijections are isomorphisms of 11(L)-modules. |
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We next require further information about modules in the category @. The
following definition turns out to be very useful.

Definition Let V be an L(A)-module with V€. A vector veV is called
primitive if

(1) v is a weight vector

(ii) there exists a submodule U CV such that v€ U but NvC U.

Lemma 19.26 A module V € O is generated as an L(A)-module by its prim-
itive vectors.

Proof. Let V' be the submodule generated by the primitive vectors in V.
Suppose V' V. Consider the factor module V/V’. This factor module lies
in O so contains a weight vector v# 0 of maximal weight with respect to <.
Thus Nv=0. Let v be a weight vector in V such that v— v. Then v¢ V' and
NvC V'. Thus v is a primitive vector not in V', a contradiction. |

In fact the following stronger result is true.

Proposition 19.27 A module V € O is generated as a W(N~)-module by its
primitive vectors.

Proof. We first show that if ve V is a weight vector which is not primitive
then ve U(N™) U(N)*v. For consider the 11(L)-submodule of V generated
by Nv. We have

W(L)Nv = (N U(H)U(N)Nv
=U(N")U(N)Nv since v is a weight vector
= (N")U(N) " v.

Now let U be the 11 (N~)-submodule generated by the primitive vectors in
V. We wish to show U =V. We shall assume U # V and obtain a contradic-
tion. For each weight vector v e V we have

W(L)v = (N HUH)U(N)v=11(N")I(N)v
= U(N")(CI+U(N) )
= W(N")v+1I(N)U(N) .

We can deduce from this that V is generated as 11(L)-module by U and
the 11 (N~)-submodule generated by 11(N)*v for all primitive ve V. Since
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U #V there exists a primitive v such that II(N)*v¢Z U. Let v have weight
A. Then there exists a weight vector u, € LL(N)™ with u;v€ U. So u,v is not
primitive in V. Thus we have

u el (N7)UW(N)Tu,v.

Hence U(N)*u,vZ U. So there exists a weight vector u, € lI(N)* with
uwuv¢U.

Continuing in this way we obtain a sequence of weight vectors
Uy, Uy, Uy, ... in W(N)* such that u, ...u,v¢ U for each k. Let the weight of
u; be w;. Then the weight of u; ...uvis A+u,+---+u,. We have

A<A+p <A+p+py <

But V €0 and so such a sequence of weights must terminate after finitely
many steps. This gives the required contradiction. |

We now consider the module @@;_,M(—«;) in 0.

Proposition 19.28 Every primitive vector in the module ;_,M(—«;) has
weight —a where (a, a) =2(p, a).

Proof. Let v be a primitive vector in @) M(—e;) of weight —a. Then
there is a submodule U of @, M(—e;) such that v¢ U and NvC U. Write
v=v,+---+v, where v; € M(—q;) and let v— v where ve (P M(—«;,))/U.
We consider the action of the generalised Casimir operator ) on the module
@ M(—e;). By Proposition 19.10

Qv = ((—a;+p, —a;+p) —(p, P)) V;
= ((a;, a;) =2 (p, ;) v;.

2.

Now p (h;)=1s0 <p, < % >>= 1. Hence {a;, a;) =2 {p, a;) and so Qv, =0.
a;,

Thus Q acts as 0 on P M (—¢;). Hence Q acts as 0 on (P M(—«;))/U and

Qv=0. But v has weight —«a and so
Qv =((—a+p,—a+p)—{p,p))v
= (<a’ a> _2<p’ a>)l_)
Thus (@, a) =2{p, @) as required. |

We shall now start to see the relevance of the preliminary results which
we have obtained. We concentrate on the kernel I of the natural homo-
morphism L(A) — L(A). We recall that I=I1"@®I* where /- CN~ and
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ITCN. We have I" =@, I; by Lemma 14.12. Since dim L(A)_ o=
dim L(A)_,,=1 we have I", =0. Thus I~ = @%Q I,. Hence each

,aFE—a; At
element of I~ has form )\, u;f; where u; € lI(]V ’) . It is in fact uniquely
expressible in this form since N~ is the free Lie algebra on fire-os fn bY
Proposition 14.8 and so U (N’) is the free associative algebra on f|, ..., f,
by Proposition 9.10.

Proposition 19.29 Ler 6 : L(A) — L(A) be the natural homomorphism with
kernel I =1~ @1I". Then there is a homomorphism of L-modules

I">@PM-wo)
i=1
given by YL u;f;— 3, 0 (u;)m_,. The kernel of this homomorphism
is [I717].
Proof. We begin with the L-module
MA)=1(L) ® Cv,  for Ae H*.

1(B)

The module M(A) has highest weight vector /i, =1 ®wv, and, just as for the
Verma module M()), each element of M()) is uniquely expressible in the
form um, for ue 11( A ‘) We take the special case A=0. Then u — um, is a
bijection between 11( ) and M(0).

Now 11( ) is freely generated by fi, ..., f, so

UW(N")=Clell(N") fi®--dU(N") f,.

Thus ;1 (N‘)fl- isa ll(]V‘)- submodule of codimension 1 in H(N‘). It
corresponds to the subspace @, Il (]V ‘) fiiny of codimension 1 in M(0). Let
J(0)= @u( 7) firmy.

Then J(0) is a 11(L)-submodule of M(0). For it is clearly invariant under

U(N-) and 1 (H), but also
e fimy = fie;mg+ h;my =0
e;fimg = fie;ing=0 if j#i.
Thus 11(N)* f.7i, =0 and so W(N) f,in, = Cf,m,. Hence
(L) fiing = W(N") W(H)U(N) fing
= W(N") W(H) fifng=1(N") fiin,.
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Thus J(0) = @, (L) f,y, which is a 1(L)-submodule of M(0). Now f;7,
has weight —c; and the map

lI(]V’) fig— M (—a,)

U fifig = w;m_,,
is an isomorphism of 11(L)-modules. Thus J(0) is isomorphic to D, M (—a,)
as 11(L)-modules. It then follows from Lemma 19.25 that

n

(L) ®y ) J(0) =EPM (—a;)

i=1

as 11(L)-modules, or as 11(L)-modules.
We now consider the map

¢ I"—1U(L) %7(0)

given by x— 1 ®uxin,. We note that x7, lies in J(0) since I~ C N~. We
show that ¢ is a homomorphism of L-modules. To see this let ye L. Then

[y, x] = 1®[y, x]m,
= 1® (yx—xy)m
= 1®y(xmy) —1®x (yimy) .
Now we have x7it, € J(0) and yin, € J(0). Thus
[y, x] = 6(5) @ (xiity) — 6(x) & (viy)
= 0(y) ® (xmy) since 6(x) =0,
= y(1®xmy).

This shows that ¢ is a homomorphism of L-modules. Moreover [I-17] lies
in the kernel of ¢. For if x, ye I~ we have [y, x] — 0 as above, since 0(x) =
6(y) =0. Thus we have a homomorphism of L-modules

¢ I >PM(—w)
=1
with Y0 u,f;— >0 0 (u;) m_, where u; € w(h-)".

We determine the kernel K of ¢. We know that [I~/~] C K and prove the
reverse inclusion. Let Y u, f, € K where u, € 11(N~)". Then Y_ 6 (1,) m_, =0.
This implies 6 (;) m_, =0 for each i and then that 6 (u;)=0 for each i.
Now the homomorphism of Lie algebras § : N~ — N~ gives rise to a homo-

morphism of enveloping algebras 1 (]V ‘) — U(N~) with kernel 11 (]V ‘)
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by Proposition 19.21. Thus u;€I"11(N~) and so Y uf;el 1l (]V’)Jr.
Hence KCI NI 1 (N‘)+. However, I- NI~ 1 (ZV‘)+=[I‘I‘] by Propo-
sition 19.23. Hence K C [I~1~]. Thus the kernel of our homomorphism is
[I7I7]. U

We now come to our description of L(A) by generators and relations.

Theorem 19.30 Let L(A) be a symmetrisable Kac—Moody algebra. Then
L(A)= Z,(A)/J where J is the ideal of L(A) generated by the elements
(ade;)'™ "e and (ad f;)' ™" f; for all i# j. Thus we obtain a system of
generators and relations for L(A) by taking generators and relations for
L(A) and adding the further relations

(ade,)' M e;=0, (adf)' ™" f;=0
for all i #j.

Proof. Let J be the ideal of L(A) generated by the elements (ade;)' %/ e ;
and (ad f;,)' ™" f;- We have L(A) =L(A)/I and J C I by Proposition 16.10.
We wish to show that I =J.

We shall suppose if possible that /#J and obtain a contradiction. Let
I=1/J. Then 1#0 and I=I1" @I~ where

— DI, T=DI,
acQt acQ~

since the analogous property holds for 7. The automorphism & of L(A) given
in Proposition 14.5 satisfies @(/)=1 and @(J)=J so induces an automor-
phism on I =1/J. This automorphism satisfies @ (I*)=1". Hence I* =0 if
and only if I~ =0. Since I=1"® I~ and I #0 we must have I~ #0.

We know from Section 16.2 that the Weyl group W acts on the weights
of L(A)/I and that weights in the same W-orbit have the same multiplicity.
The same argument can be applied to L(A)/J to give a similar result. Since

dim (L(A)/J) ,=dim (L(A)/I) +dim (1/J),

we see that W acts on the weights of I and that weights in the same W-orbit
have the same multiplicity. In fact W acts on the weights of I~ since if x € O~
is a weight of I~ then s;(a) € Q™ also, since —a; is not a weight of I.

We choose a weight a=>""_, k;a; € Q" such that Tja #0 and « has mini-

mal possible height 3" k,. Since I~ (@ 70 we have ht s;(a) = hta. Since

(@;, @)

s(a)=a— 2(a,,a>
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we have (a@;,a)<0. Since a=) k,a; with each k;>0 we deduce that
{a, @) <0. On the other hand we have

2(p, a)= Zki (p,2a;) :Zki (@;, a;) > 0.

Thus (a, @) <0 and 2{p, @) >0. In particular {(«, @) #2{p, a). Thus the
weights —a for I~ for which o has minimal height satisfy (@, &) #2(p, a).

We now recall from Proposition 19.29 that /= /[I~, I"] is isomorphic as
L-module to a submodule of ;M (—«;). By Proposition 19.28 all primi-
tive vectors in @;_, M (—«;) have a weight —a satisfying (e, a) =2(p, a).
Thus all primitive vectors of I=/[I~1~] have weight —« satisfying (@, @) =
2{p, a). Now I~ /[I~I7] is generated as an N~ -module by its primitive vec-
tors, by Proposition 19.27. Thus I~/ [I-17] is generated as an N~ -module by
its weight vectors with weight —a satisfying (@, @) =2(p, ). (Recall that
N=/I"=N")

We claim the same is true of /. Let K be the N~ -submodule of
I~ generated by all weight vectors with weight —« satisfying («, o) =
2{p,a). Then ([I"I"]+K)/[I"I"] has the same property in I~/[I"1"],
thus [I"17]+ K =1". Suppose if possible that K#I~. Then I~ /K is an
N~ -module whose weights are non-zero elements of Q~. Consider the
submodule [I=/K, I~ /K] of I"/K. This is an N--module whose weights
have form B+ vy where 3, vy are weights of /- /K. Thus if « is a weight of
I~ /K for which |ht «| is minimal then & cannot be a weight of [I~/K, I~ /K].
Thus

[I7/K,I" /K] # 1 K

and this gives K+[I~,17]#1", a contradiction. Thus /- is generated as
N~-module by its weight vectors with weight —a satisfying (@, a) =2(p, a).
The same must therefore be true of 1~. However, we have seen above that
the weights —a of I~ for which hta is minimal do not satisfy (a, a)=
2({p, a). This implies that the set of weight vectors with weight —a satisfying
(a, @) =2(p, a) cannot generate I~ as N~ -module. This gives the required
contradiction. U
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Representations of affine
Kac—Moody algebras

20.1 Macdonald’s identities

We now consider Kac’ denominator formula

1_[ (I1—e_)" = Z S(w)ew(p)fp

acdt weW

in the special case when L is an affine Kac—Moody algebra.

We assume first that L is an untwisted affine algebra. Then L={ (L°)
where L° is a finite dimensional simple Lie algebra with root system &®°
and Weyl group W°. We recall from Theorems 17.18 and 16.27, and Corol-
lary 18.6 that

CI>={a+n8 ; aE<D0,neZ}U{n6 ; n€Z,n#0}
and that v+ nd has multiplicity 1 and nd has multiplicity /. Also
P ={a+nd; ac®, n>0}u(P°) UnS; n>0}.

Thus the left-hand side of the denominator formula can be expressed as

[T A—e)[1{—es) I1 (l—e_a_na)}

O,E(q)o)Jr n>0 aed?

We also recall from Remark 17.34 that W=1¢(M*) W° where M* is the
lattice given by

! o e e~ -
> Za; for types A,, D,, E¢, E;, Eg

M*= 1 i=l1 o
Y Za;+ Y pZa; for B, C,, F,, G,
a; long a; short

484
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and t (M*) is the set of 7, : H*— H* for « € M* given by
t,(A) =A+A(c)a—((A, a)+ 3 (a, a)A(c))d.

In calculating the right-hand side of the denominator formula we recall that

H=H®(Cc+Cd)
H*=(H")"®(Cy+C§)

where (H°)" is embedded in H* by assuming A(c) =0, A(d) =0 for A (H°)".
Lemma 20.1 Let Ac H*. Then

A=2"+A(c)y+a;'A(d)d
where A’ € (H°)".

Proof. Let A=\"+ry+s8 where A°e (H)". Then A(c)=A(c)+ry(c)+
s6(c). But we have a;(c)=0 for i=1,...,I hence A°(c) =0. Also §(c) =0
and y(c)=1. Hence r=A(c). Also A(d) =A’(d)+ ry(d) +s8(d). We know
a(d)=0fori=1,...,1thus A°(d)=0. Also y(d) =0 and 6(d) = a,.. Hence
Md) =ays and s=a;'A(d). O

Of course in the untwisted case we have g, =1.
We recall that p € H* satisfies p (h;)=1 for i=0,1,...,/ and p(d)=0.
In particular we have p(¢)=c,+c¢,+---+¢;.

Definition The number h=ay,+a,+---+a, is called the Coxeter number
of L. The number h’ =cy+c,+---+c, is called the dual Coxeter number
of L.

We note that if L= (LO) is of untwisted type then the Coxeter number
of L is equal to the Coxeter number of L°.
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The values of & and i are given in the following table.

Type of L h h
A, I+1 I+1
B, 21 211
C, 21 I+1
D, 212 212
E, 12 12
E, 18 18
Eq 30 30
E, 12 9
G, 6 4
B! 20—1 21
C! I+1 21
F! 9 12
G 4 6
A 3 3
C, 20+1 20+1

Lemma 20.2 p=p’+h'y where p°e(H®)" satisfies p®(h)=1 for i=
1,...,L

Proof. This follows from Lemma 20.1 since p(c¢) =h" and p(d)=0. Ul

We now consider the right-hand side of the denominator formula. Let
w € W have form w=w"t, where w’ € W° and @ € M*. Then

w(p)—p =w't,(p)—p
=u’ <p+hva— <(p, a)+%(a, a}h") 8) -p
=)=+ 10 (@~ () 5 ()i )
=u’ (p°) —p°+ 1w’ (a) - ((po, al+ %<a» a>hv) 8
since w’(y) =y and(y, a) =0 for all « € M*

({e"+h*a, p+ha) = (", p°))
2hY

0.

=u’ (hva—f—po) —p’—
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For convenience we shall write, for A € (HO)*,
(V) =(A+p°, A+p°)=(p°, ).

We recall from Corollary 19.11 that when A is dominant and integral the
generalised Casimir operator acts on the irreducible module with highest
weight A as scalar multiplication by c¢(A).

We also write, for A € (HO)*,

> e(w) € (A p0)—p?

0 weWo
X ()= :
Z E(w)ew(po)fpo

weWw?

We recall from Theorem 12.17 that when A is dominant and integral x°(A)
is the character of the irreducible L°-module L(X). However, c¢(A) and x°(X)
are now defined for all A e (HO)*. Then we have, writing e(A) instead of e,
for convenience:

> e(w)e(w(p) —p)

weW

> g(wO)e(wO(hva+p°)—p°)e(Ma>

v
aeM* y0ewo 2h

= T o (@)e(w () -5) ¥ e (o)

= 1 (e ¥ e ()
ae(¢0)+ aeM*

by Weyl’s denominator formula.
We now put g=e_z and equate the left- and right-hand sides of Kac’
denominator formula. We obtain the following result.

Theorem 20.3 (Macdonald’s identity for untwisted affine Kac—Moody alge-
bras).

H {(1 _qn)] l_[ (1 —q”e_a)} = Z XO (h'a) qf(h”a)/Zh"

n>0 aedO aeM*
where
Zzl‘:l Zai fO}" types Al, D[, EG, E7, Eg
Y Za;+ Y. pZa, for B, C,F,,G,.

a; long a; short

M=
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We next wish to state Macdonald’s identities for the twisted affine Kac—
Moody algebras. The left-hand side of the identity is obtained from a knowl-
edge of the real and imaginary roots together with the multiplicities of the
imaginary roots. The real roots are given in Theorem 17.8 and the multiplic-
ities of the imaginary roots in Corollaries 18.10 and 18.15. The right-hand
side of the identity looks the same as before — the only change being that
the appropriate lattice M* must be taken in each case. The appropriate lattice
was described in Remark 17.34.

Theorem 20.4 (Macdonald’s identity for twisted affine Kac—Moody algebras).
(a) The left-hand side of the identity is given as follows.

B OT130-a") (=) TT U—q"e) [T (1—g"c,)

n>0 aed? acd)

& T 0-a) (1-) [T (-ge.) TT (1-g"c.,)

n>0 aed? ae‘D?

Ee o T3 (=) ' (=" ] (1—q"e_) [T (1—g*e_,)

n>0 ae®? ae‘l’?

Gtz H !(1 _q3n)2 (1 _q3n71) (1 _q3n72)

n>0

[T0—-q") [T (1—¢"e.)

acd? acd)

¢ 11 {(1—q")l [T (0=q"e)

n>0 aed?

l_[ (1 _ anz—l e%la) (1 _ q2ne_a)

acd)

A/1 H !(] -q") l_[ (1 _CIMEI e—l/2a) (1 _qzne_a)} :

n>0 aed?

(b) The right-hand side of the identity is

> X () g

aeM*
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where
! - o~~~
; Za, for types B}, C}, F,, G},
M =\ ¥ 1Zai+ ¥ Za; fortype C|
a; long a; short
%Zal for type A.

We now give some examples to illustrate Macdonald’s identity. Suppose
first that L has type A,. Then L° has type A,, ®°={a,, —a,}, h*=2 and
M*=Za,. Moreover (@, ;) =2t =2 and p"= ja;. Let z=e_,,. The left-
hand side of Macdonald’s identity is

o

[T-g")(A—-q"2) (1—¢"z"").

n>0
e —e —n __ n+l
—(n+1 Z <
Now x° (na,)= "a'l oty 0 . We also have
—e_ -z

@)

c(2nay) = <(2n+ %)oz1 , 2n+ %)al> —(%al, %al)
=4n(2n+1).
Thus the right-hand side of Macdonald’s identity is
—2n __ 2n+1

3 z z s

nez 1_Z

This can be written in the convenient form

1 1
1 — (Z—ann(Zn-H) _Z2n+lqn(2n+l)) — 1 — Z (_1)mzmqm(m—l)/2.

nez meZz

Multiplying both sides of the identity by 1 —z we obtain:

Proposition 20.5 (Macdonald’s identity for type ;\1 ).

l_[ (1 _qn) (1 —6]"712) (1 _qnzfl) — Z(_l)mzmqm(mfl)ﬂ.

n>0 meZ

This is a classical identity known as Jacobi’s triple product identity.
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As a second example we suppose L has type :4/1. Then L° has type A, and
®° = {a,, —a,} as before, but we now have h*=3 and M* =} Za,. We have
ay=2,a,=1,c,=1, c, =2, thus

2
<a1,a1>=£=4 and 6=2a,+a,.
a

We write e_, =z. Then e_, =z"2qg. The left-hand side of Macdonald’s

identity is

l_[ (1 _qn) (l _qnzfl) (1 _q’171Z) (1 _q2ﬂ+1Z72) (l _q2n7122) .

n>0

We have

o

e (2ne) = 3+ 2n) (. ) =90 +6.
Also

(29 "~ ()"
1—77%¢g '

R
Thus the right-hand side of the identity is

B TN
((Zizq) ? _(Z 2q)2 H) n(3n+2)
2

> q
— -2
nez 1 z°q
1 nG3n-1) 3 2 (n+1)(1n+7)
ek pupyl DIEA AR DR
—z°q nez nez
_ 1 Z u(%u 1) Z 73n+l n(zn 1)
T 1—724 -
1 zq nez nez
1

n(3n—1)
2

Z (Z3n _ Z—3ﬂ+l) q

N 1— 272q nez
We multiply both sides of the identity by 1 —z~2g and obtain

Proposition 20.6 (Macdonald’s identity for type ;\/1 ).
H (1 _qn) (] _qnzfl) (] _C]n71Z) (] _q2n71Z72) (1 _anleZ)

n>0
— Z (Z3n _Z—3n+1) q

nez

n(3n—1)
2

This is also a classical identity known as the quintuple product identity.
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20.2 Specialisations of Macdonald’s identities

We can obtain some striking identities, simpler than the original Macdonald
identities, by specialising the latter identities in various ways. One way of
specialising is simply to replace e, by 1 for all @ € ®°. When this is done the
expression °(A) is replaced by d°(A) where

[ac@oy- (A+p", @)

d°(\) = .
@ Hae(q>0)+ (P @)

This is shown in Theorem 12.19. The identities obtained by specialisation in
this way involve Euler’s ¢-function

¢(@)=(1-q)(1-¢") (1-¢)...
If we specialise the identity of Theorem 20.3 we obtain the following.
Theorem 20.7 (Macdonald’s ¢-function identity).

d)(q)dim Lo — Z dO (hva) qc'(hZ)/2h" )

aeM*

Proof. The left-hand side of the specialised identity is

¢(q)l+\d)°\ _ ¢(q)dimL°_
On the right-hand side x° (h'«a) specialises to d° (h'a). a

We give some examples of this ¢-function identity.

Type ;\1
¢(Q)3= Z (4n1+ l)qn1(2n|+l).
n €z
Type Az
¢(€7)8 = Z % (6n,—3n,+1) (=3n, +6n,+1) (3n, +3n,+2)
(ny,ny)€Z?
Xq3n%—3nln2+3n%+n|+n2‘

Type 6‘2
d’(Q)lO = Z (12n, —6n,+1) (=6n; +6n,+1) (2n, +1) 3n,; + 1)
(ny,ny)eZ?

6n% —6n1nz+3n%+n] +ny

xXq
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Type G,
d(@)*= Y £ Bn—12n,41)(=12n,+24n,+1) 3n, —3n,+1)
(ny,my)eZ?

x (12n,+5) (=2n,+6n,+1) (4n,+3)

411%— 12n n2+12n%+n1 +ny

xq
We next specialise the identities of Theorem 20.4 for twisted affine

Kac—Moody algebras.

Theorem 20.8 (Macdonald’s twisted ¢-function identities).

(a) The left-hand side of the identity is given as follows.

B $@* ()"
G p@ ()
B a@ ()"
Gy @)
& o(a}) s@" e (a)”
- N2

Al ¢>(q7) $(9)"' (4%

[

(b) The right-hand side of the identity is

Z dO (hva) qc(h"a)/Zh"

aeM*
where M* is as in Theorem 20.4 (b). |
We give some examples of twisted ¢-function identities.
Type A/l

6 (4) 6oy O (@) = X Cny 1) gt

n €z

Type C}

d(@°d (P = X L (8n—dny+1)(=8n, +8n,+1)
(ny.ny)€Z?
x (8n,4+3) (2n,+1)

% q8nf —8n n2+4n%+2n 1+ny .
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Type é;
N\ 4
6(a}) @ (@) = X £00m=5m+1) (=5n,+5n,+1)
(ny,ny)eZ?

x (5n,43) (5n,4+2)

Snf —5n; n2+%n%+n 1+ny

xXq
Type G,
7
o(q) ¢ (q3) = Z % (12n, —18n,+1) (—6n, +12n,+1)
(ny,ny)eZ?
x (=3n,+9n,+2) (6n,+5) 3n,—3n,+1)
x (2n2+ 1) q6n%—18n|)12+18n%+n|+3n2.

Another possibility to obtain specialised identities in one variable from
Macdonald’s identity is to apply a homomorphism

0:C[[e_ay- € as---+€_a]]— Cllal]

between rings of formal power series, given by

o (efozo) = qso’ 0 (e—al) = 615' ,...,0 (e*az) = q’gl

where s, 5y, ..., s, are non-negative integers. Of course under such a spe-

cialisation e_z; would be mapped to g%+ +t%%  so that ¢ would have to be

replaced by this power of g in our earlier description of Macdonald’s identity.
For example in type A, we obtain the following.

Proposition 20.9 (Macdonald’s 1-variable identity for A -

l_[ (l _q(50+51)n) (l _qso(n—1)+sln) (1 _q50n+s1(n—1))

n>0

_ Z( l)m o™ 1)+S m(m+l). 0

meZ

We mention some explicit examples of this identity. If (s, s;) = (1, 1) we
obtain

)
o)

that is

(191" (1-¢") (1=¢") (1=¢") (1=¢')" (1-4") -

=1-2g+2¢*—2¢°+24¢"° -
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This is a classical formula of Gauss.
Next consider the example given by (sy, s;) =(2, 1). Then we obtain

$lg)= Y (~1)"g" 5

meZ

that is

1= (1-4")(1-¢)(1-¢") (1-4") (1-¢°) -+
:1—q—q2+q5+q7—qlz—q15+q22+q26—--- '
This is a well known formula of Euler.

Many additional formulae can be obtained by taking different values of
(59, 5,) or different affine Kac—-Moody algebras.

20.3 Irreducible modules for affine algebras

We next consider the weights of the irreducible modules L(A), A€ X, for
the affine Kac—-Moody algebra L(A). We recall that X is the set of Ae H*
with A(h;)€Z for i=0,1,...,/ and X% is the set of Ae X with A (h,)>0
fori=0,1,...,1.

It is convenient to introduce the fundamental weights w,, w,, ..., ;. o,
is the element of X* defined by

w; (h;)=8 w,(d)=0.

ij
Since the imaginary root & satisfies
a(h,):o o(d)=1

we see that wy, ®,, ..., ®,, 6 form a basis of H*.
If A € H* satisfies

A=y +§ o+ + &+ §0

then A lies in X if and only if §;€Z for i=0, 1, ..., [. £ can be any element
of C. Also Ae X" if and only if §,€Z and &;>0 for i=0,1,...,1[

Now every weight u of L(A) has form u=A—myay—m,a; —---—m,q,
for certain m; € Z with m;>0. Since «,(c)=0 for i=0,1,...,] we have

p(c)=A(c). Thus all the weights u of L(A) have the same value of u(c).
Since c=cyhg+c hy+---+ch; we have A(c)=),_oc;A(h;) and so, for
Ae X, A(c) is a non-negative integer. The integer A(c) is called the level of
the module L(\).
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Proposition 20.10 [f L(A) has level O then A=£8 for some £€C and
dim L(A) = 1.

Proof. If A(c)=0then A (h;)=0for i=0,1,...,1. Writing A=&w,+---+
&w,+ &6 we see that ;=0 for i=0,1, ...,/ hence A=§&8. Kac’ character
formula then shows that ch L(§0) = e;5. Thus dim L(£6) = 1. O

Since the modules L(A) of level O are trivial 1-dimensional modules we
shall subsequently concentrate on modules L(A), A€ X™, of level greater
than 0.

If v is a weight of L(A) then so is w(u) for any w € W, by Proposition 19.13.
We take a we W for which the height of A —w(u) is minimal and put
v=w(w). Since s;,(v) =v—v (h;) ; the minimality of the height shows that
v (h;) > 0. Thus for any weight w of L(A) there exists w € W with w(u) € X*.
We now show that the converse is true also.

Theorem 20.11 Let A € Xt have A(c) > 0. Then € X is a weight of L(\) if
and only if there exists w e W such that w(w) € X and w(u) < A.

Proof. Tt will be sufficient to show that if we X" with w <A then u is a
weight of L()A). The proof of this is non-trivial and reminiscent of that of
Proposition 16.23.

Let u=A—a where a=) k;a; and each k;>0. We may assume k; >0
for some i. supp « is the set of i for which k; > 0. We first show that every
connected component of suppa contains an i with A (%;) >0. Suppose if
possible there exists a connected component S of supp a with A (k;) =0 for
all ieS. We have

L(V), CU(N7)_,v,

where v, is a highest weight vector of L(A) and, by the PBW basis theorem,
U (N~)_, is spanned by elements of the form
[1 eiﬁﬁ
Bedt

where kB >0, ZkBB =a, and each 8 involves fundamental roots which all
lie in the same connected component of supp @. (We recall from Proposi-
tion 16.21 that supp 3 is connected.) Now the e_g with fundamental roots
in different connected components of supp @ commute with one another, so
we may bring the e_g with fundamental roots in S to the right of the above
product. But for such 8 we have e_gv, =0.
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For f;v, =0 for each i €S by Theorem 19.19, since A (k;) =0. It follows
that

UN")_,v,=0

and so L(A), = O, a contradiction. Hence there exists i € S with A (%;) > 0.
Now let W be defined by

V={yeQ"; y<a,A—yisaweight of L(A)}.

The set ¥ is finite. Let 8 € ¥ be an element of maximal height. Then S8 < a.
We aim to show that 8=« and hence that A — « is a weight of L(A). Let
B=> m,a; with each m; >0. We have a =) k;«; with m, <k, for each i.

Let I={0,1,...,1} and J be the subset of I givenby J={iel ; k;=m,}.
We aim to show that J=1 and so that S=a«. Suppose if possible that
J #1. Consider the non-empty subset of I given by supp @ — (suppanJ).
This set splits into connected components. Let M be a connected component
of suppa— (suppanJ). Let ie M. Then A—pf is a weight of L(A) but
A—B—a; is not. Thus (A—p) (h;) <0. Also u (h;) >0 since € X* and so
(A—a) (h;) =0. Thus we have

a(h)<A(h)<B(h;).

Let y= )" (kj—mj) a;. We have k; —m; >0 for all je M. We also have

jeM

y(h) =3 (kj—m;) Ay
JjeEM
However, vy (h;)=(a—B) (h;) since supp(a—B)=suppa—J and M is a
connected component of supp a —J. Thus y (h;) <0 for each i e M.

Let A,, be the principal minor (A,;) for i, j € M. Let u be the column vector
with entries k; —m; for i€ M. Then we have u>0 and Ay u <0. If M has
finite type A,,;(—u) >0 would imply —u > 0 or —u =0. Thus M does not have
finite type. Since M is a subset of I which has affine type we must have M =1
by Lemma 15.13. Thus supp @ =1 and J = ¢. But then, forallie I, A— B is a
weight of L(A) but A — 8 — a; is not. Thus (A — ) (h;) <0 for all i € I. Hence
a(h;)<A(h;)<B(h;) for all ieI. We now have u >0 and Au <0. Since A
is affine we can deduce Au=0. This shows that a (h;) = (h;) for all i 1.
Hence a (h;)= A (h;) for all i €1, that is u (h;) =0 for each i. But then we
have u(c) =0, and so A(c) =0, a contradiction. Ul

Corollary 20.12 If w is a weight of L(A) then u— 8 is also a weight.
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Proof. Since u is a weight there exists we W such that w(uw)e X™.
Then w(uw—8)=w(n)—5€ X™. Since w(u)—06 < A it follows from Theo-
rem 20.11 that w(u)— 6 is a weight of L(A). Hence w— & is also a weight.

O

It follows from this corollary that uw—id is a weight for all positive
integers i. On the other hand there exist only finitely many positive integers
i such that u+id < A.

Definition A weight p of L(A) is called a maximal weight if w4+ 68 is not a
weight.

Corollary 20.13 For each weight p of L(A) there are a unique maximal
weight v and a unique non-negative integer i such that yp=v —ié.

Proof. Consider the sequence w, u+8, u+28, ... There exists i such that
m+i6 is a weight of L(A) but w+ (i+1)8 is not a weight. Let v=pu+ié.
Then v is a maximal weight of L(A) and u=v—ié.

If w=v'—i'6 where v’ is a maximal weight and i’ a non-negative integer we
show v=1" and i =7'. Otherwise we may assume i <i'. Then v/ =v+ (i’ —i) 6
is a weight. By Corollary 20.12 v+ § is also a weight. Thus » is not a maximal
weight and we have a contradiction. |

A string of weights of L(A) is a set
v,v—90,v—20,...

where v is a maximal weight. Each weight lies in a unique string of weights.
Thus it is natural to consider the set of maximal weights of L(A).

Proposition 20.14 The set of maximal weights of L(A), A € X, is invariant
under the Weyl group.

Proof. Let we W. Then u is a weight if and only if w(u) is a weight. Thus
if w is a maximal weight w(w) is a weight but w(u)+86=w(w+ J) is not a
weight. Thus w(u) is a maximal weight. O

Corollary 20.15 Each maximal weight of L(A), A € X, has form w(u) where
we W and p is a dominant maximal weight.

We shall therefore consider the set of dominant maximal weights of L(A).
We shall show that L(A) has only finitely many dominant maximal weights.
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We recall from Section 17.3 that the fundamental alcove A* C (H2)" was
defined by

x 1
A*:{)\G(H]?{) s A(h)>0 fori=1,...,1; /\(h9)<—}
4
={re(Hy) ; (A a)>0 fori=1,....1; (A 0)<l}.
Its closure A* is a fundamental region for the action of W on (HH%)*.
We also recall that

H*=(H’)"®(Cy+Cd)
where (H°)" is embedded in H* by assuming A(c) =0, A(d) =0 for A€ (H°)".
By Lemma 20.1 we have, for A€ H*,
A=2"+A(c)y+a; ' A(d)d

where A\’ (H°)". Let Q°C (H®)" be the set of A given by A in the root
lattice Q C H*.

Proposition 20.16 Let A € X+ have level A(c) =k > 0. Then the map pu— u°
gives a bijection between the set of dominant maximal weights of L(A) and
(A°+ Q%) NkA*.

Proof. Let w be a dominant maximal weight of L(A). Then u=A—
moay—---—m, for certain m;€Z with m;>0. Hence u’=A"—
(myaty+---+ma;)” and so u® e \°+ Q°.

Now p=pu’+ky+ay'u(d)s. Since we X+ we have p (h;) >0 for i=0,
I,...,1. Now y(h;)=8(h)=0 for i=1,...,I and so u®(h,)>0 for i=
1,...,1. We also have

(. 0)=(u, 0) = (1, 6 — agarg) = p(c) — p (hg) =k — pu (hy) -

Since u (hy) >0 we have (u°, 6) <k. Thus u° € kA*.

Hence p— p” maps dominant maximal weights of L(A) into (A°+ Q%) N
kA*. We wish to show this map is bijective. We first show it is surjective.
Letve (/\°+Q°)ﬂm. Then, since a?:ai fori=1,...,/ and

oy = (—a510+a515)0 =—a,'0
we have

v=MA+kia,+-- +ka,—kya;'0
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for certain kg, ky, ..., k; €Z. Since 6 =a,a,+---+a,a; we have
V:/\O+(m—k0agl)0—(ma1 —k)a,—---—(ma,—k)) a,.
We choose m € Z with m>k;/a; for i=0,1,...,l. Then
v=A"+m, (agl('?)—mlozI - —ma
where m; =ma; —k; for i=0, 1, ..., . Thus the m, are non-negative integers
fori=0,1,...,[ Let u=A—myay—---—m;a,. Then
w=A"4m, (aglﬂ)—mlal — - —ma;=v.

We show that € X*. We have w (h,)=u’(h)=v(h,)>0fori=1,...,1L
Also p (hy) =k—(u°, 0)=k—(v,0) >=0. Hence pwe X* and w~<A. Thus u
is a dominant weight of L(A) by Theorem 20.11. Hence we have shown that
v=u? for some dominant weight w of L(X). By replacing u by the maximal
weight in the chain of weights containing u we may assume that w is a
dominant maximal weight. Thus our map is surjective.

To show the map is injective let w, u’ be dominant maximal weights of
L(A) with u®= (u)°. We have

p=u"+ky+a;' n(d)d

w=w) +ky+ay' w'(d)d
hence p—p' =a;" (u(d)—p'(d)) 6. Now A—pueQ and A—pu' € Q hence
pw—p' €Qanday’ (u(d)—p'(d)) e Q. This shows that ay ' (u(d) —u'(d)) €

Z. Thus w=pu' +r6 for some r € Z. Since u, u' are both maximal weights
we must have r=0. Thus u' = pu. |

Corollary 20.17 The set of dominant maximal weights of L(A), A€ X™, is
finite.

Proof. Q" is a lattice in (HO)*, that is a free abelian subgroup whose rank is
the dimension of (HO)*. A%+ is a coset of this lattice. On the other hand
the set kA* is bounded. Hence the intersection (A°+ Q°) NkA* must be finite.
Thus the set of dominant maximal weights is also finite, by Proposition 20.16.

U

We now have a procedure for describing all weights of L(A), A € X First
determine the finite set ()\0 + QO) NkA* where k= A(c). For each element v
in this finite set there is a unique dominant maximal weight u of L(A) with
u’=v. This gives the set of all dominant maximal weights. By applying
elements of the Weyl group to these we obtain all maximal weights. Finally
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by subtracting positive integral multiples of 6 from the maximal weights we
obtain all weights of L(A).
We next consider the weights in a string

mpp—86, u—26,...

We wish to show that the multiplicities of these weights form an increasing
function as we move down the string, i.e. that m,_ ;)5 >m,_; for all i>0.
In order to do this we consider L(A) as a T-module where T is the subalgebra
of L(A) given by

T=---®L ;L ;OHDL;®LysP---.

Thus T is spanned by H and the root spaces for the imaginary roots. The
algebra T has a triangular decomposition

T=T ®H®T"

where T~ =), oL_;5, Tt =Y",.0L;s- One can define the category O of T-
modules in a manner analogous to that in Section 19.1. One can also define
Verma modules for 7. If A € H* we define
M) =0(D)/WD)T*+ 3 (D) (x—A(x)).
xeH

This is the Verma module for 7" with highest weight A. There is a bijection
U(T~)— M(A) given by u — um, where m, € M(A) is the image of 1 € U(T).

We shall investigate properties of Verma modules for 7 by considering the
expression

Q=23 3" e(f?aef-é)
i>0 j

where eg) is a basis for L;5 and e(f?s is the dual basis for L_;s. Thus

G k)
(eiﬁ > e—i6> = 8jk
o k)

and [eis , eﬂ.s] =4 ic by Corollary 16.5.

Although the expression for () is an infinite sum the action of ), on any
T-module in category O is well defined, since all but a finite number of the
terms will act as zero.

Lemma 20.18 Let A € H* and M(A) be the associated Verma module for T.
Let u e W(T),,s where m € Z and m#0. Then Qyu— ul), acts on M(A) in the
same way as —2A(c)mu.
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Proof. u is a linear combination of products of elements, each in 7,5 for some
r with r #0.

First suppose u € T,5. We assume that u is one of the basis elements u = e(g)
Then u commutes with all e”3 , e( ) 5 except for Y +s- Thus

Qou—uldy=2 ( (’?56%)65’) e(])e(—])rae%))
= —2rce££ =—2ruc=—-2rA(c)u

on M(A). The same will then apply to any u € T,
Next suppose u=u,u, where

Qou; —u,; Qy = =2A(c)ru,
Qou, —u, Qg = —2A(c)ryu, on M(A)
Then
Qou—uldy = Qo uy —uuy
= u,; Qou, —2A(c)riu—u,; Qou, —2A(c)ryu
==2A(c)(r,+nr)u on M(\).
The required result then follows for arbitrary u € 11(7),,s by taking linear

combinations of such repeated products. |

Proposition 20.19 Let A € H* satisfy A(c) > 0. Then the Verma module M(A)
for T is irreducible.

Proof. Suppose if possible that M(A) has a proper submodule K. Let v be a
highest weight vector of K. Then ve M(A),_,,s for some m € Z with m > 0.
Thus v=um, for some ue 1 (T~)_, 5. We consider the actions

Qq @ M(A) —> M(A) u: M(A)— M(N).
By Lemma 20.18 we have
(Qou—uQy) my =2A(c)mum,.

Thus Qyv—u (Qym,) =2A(c)mv. Now Qum, =0 and Q,v=0 since m, and
v are highest weight vectors in M(A) and K respectively. Thus 2A(c)mv=0.
But v#£0,m>0,A(c)>0 and so we have a contradiction. Thus M(A) is
irreducible. U

We now consider the structure of L(A) as a T-module.
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Proposition 20.20 Suppose A € X with A(c) > 0. Then the T-module L(A)
is completely reducible. Its irreducible components are Verma modules
forT.

Proof. Let U be the subspace of L(A) given by
U={veL(A); T'v=0}.

Let B be a basis of U. We may choose B to be a basis of weight vectors
of U, i.e. so that each element of B lies in a weight space L(A),. Suppose
ve B has weight . Then Ttv=0 and xv=pu(x)v for x€ H, hence Tv=
T-v. Let M(u) be the Verma module for T with highest weight w. Then
we have a homomorphism of T-modules M(u)— Tv given by um, — uv
for ue T—. Now u=A—1ié for some i >0 hence u(c)=A(c)>0. Thus the
Verma module M(u) for T is irreducible by Proposition 20.19. Hence the
homomorphism M(w) — Tv is an isomorphism and so Tv is a Verma module
for T. Let V=3, s Tv. We claim that this sum of 7T-modules is a direct sum.
For consider

Tvn ) TV.
vVeB
v'#v
Since the Verma module 7v is irreducible we have TvNU =Cv. We also
have

YT |NnU=)_ Cv.

v'eB v'#v

Vv
Since v}, ., Cv' we see that Tv is not contained in }_,, Tv". Again, since
Tv is irreducible we have TvN} ., Tv'=0. Hence V=P, _,Tv. Thus V is
a direct sum of Verma modules for 7.

We wish to show that V=L(A). We suppose if possible that V £ L(A).
We consider the 7-module L(A)/V. Since L(A) =¢P,L(A), and V=DV,
we have L(A)/V = @M(L()\)/V)M. As L(A)/V is assumed to be non-zero we
can find a weight w of L(A)/V such that p+i8 is not a weight for any i > 0.
Then T*(L(A)/V), =0, thatis T*L(A),CV.

We now consider the map €, : L(A)— L(X). Since the action of
preserves weight spaces we have € : L(A),— L(A),. The weight space

veB
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L(A), is finite dimensional, so decomposes into a direct sum of generalised
eigenspaces of (), given by

L(/\)P- = @ (L(A)M)g

{eC

where (Q,—{1)*=0 on (L()\)M)g for some k. Since L(A), does not lie
in V there exists {€C such that (L(/\)“)g does not lie in V. We choose
ve (L()\)M)g with v¢ V. Then

(Q—¢1) v=0

and Qe V, since T*L(X), C V. If {30 the polynomials (1 —{)* and ¢ are
coprime so we could deduce v € V, a contradiction. Hence { =0 and Q(’jv =0.
Now T*v=0 since v¢V. So there exist m>0 and uell(T+),; with
uv#0 and T*(uv)=0. Let v =uv. Then v/ #0 and Qyv' =0.
Now all the weights v of L(A) satisfy v(¢) = A(c). Thus we may apply the
argument of Lemma 20.18 to L(A) and obtain

Qou—uQy=-2A(c)mu on L(A).
Then
Qouv—uQyv=—-2A(c)muv
that is
(Qy+2A(c)m) v =uQyv.
It follows that
(Qo+2A(c)m)* V' = (Qy+2A(c)m) (uQv) = u (Q}v)
and continuing thus we obtain
(Qy+21(c)m)* v =u (Qgv) =0.

But A(c) > 0 and m > 0, thus the polynomials (¢ +2A(c)m)* and ¢ are coprime.
Thus (Q,42A(c)m)* v/ =0 and Q,v' =0 imply v =0, a contradiction.

Thus we have obtained our required contradiction and can deduce that
V=L(A) and L(A) is the direct sum of the irreducible T-modules Tv for
v € B, each of which is isomorphic to a Verma module for 7. O

Proposition 20.21 Let w be a weight of L(A) where A€ X* and A(c) > 0.
Then the multiplicities of the weights ., i — 0 satisfy m,_s>m,,.
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Proof. This follows from Proposition 20.20. We choose a non-zero element
x€L(A)_s. Consider the action of x on the 7-module L(A). This T-module
is a direct sum of Verma modules for 7. Since x € T, x acts on each Verma
module for T injectively. Thus x acts on L(A) injectively. We have a map

L(A),—L(A), 5
v—> XV
which is injective, and so
dim L(A),_5>dim L(A),
that is m,,_s > m,, as required. |

Thus the multiplicities form an increasing sequence as we move down a
string of weights for L(A).

20.4 The fundamental modules for L (Al)

We now give an example of the situation described in Section 20.3. We
consider the affine Kac—-Moody algebra of type ;11. This has diagram

=1

a=(2 7).

We consider the irreducible modules L (w,), L (w,) where w,, w, are the
fundamental weights. By symmetry we need only determine the character of
one of these. We shall consider the module L (w,).

In type A, we have 8=a,+a, and ¢ =h,+h,, that is

and Cartan matrix

We recall that
H*=(H°)" ®(Cy+C9)
and that
A=2"+A(c)y+a;'A(d)d by Lemma 20.1.
The root lattice Q is given by

0=7Zoy+Za,
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and we have aj=—a;, a=a,. We have (H°)"=Ca, and the lattice
Q°C(H")" is given by 0" =7Za,. We have §=a, and hy= 1 (c—hy) =h,.
The closure of the fundamental alcove is given by

A ={re(HR)" 5 A(h)=0,A(hy) <1}
={Ae(HY) ; 0<A(h)<1}.
We have w, ="y and y°=0. Thus
(Y +Q°)NA* ={ma, ; meZ,0<2m<1}
= {0}.

Thus by Proposition 20.16 the module L(vy) has only one dominant maximal
weight, which must be the highest weight y. The other maximal weights are
the transforms of vy under the affine Weyl group W = (s,, s,). We have

5o (@) = —ag so (@) =2a+a,
51 (@) = ap+2a, si (o)) =—a.
The action of s, s, on the basis vy, a,, 6 of H* is given by
so(Y)=v+a;—0 so () =—a, +28 50(6) =26
si(y)=vy s () =—a, 51(8) =9.

The affine Weyl group W is an infinite dihedral group and has a semidirect
product decomposition

W=1(Q°) W'=w°(Q°)
where Q° = M* =Za, and W° = {1, s, }. The translation , for u € Q° is given
by
1
W) =A@ () 5 (A )
which in the present case gives
tmal (y) = y+ma1 - m28
tmal (al) = —2mé
Ly, (8) =0

for m € Z. The stabiliser of y in W is W° and the maximal weights in L(7y)
have the form y+ma, —m?*8 for m € Z. The set of all weights of L(y) is
v+ma, —m*8—k8 for meZ,k€Z and k >0. The weights y+ma, —m*5
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. v
y—a;—0 Y+an—=6

=201 -46 Y+20n-46

’)/—3(11—96 ’y+30¢1—9é

Figure 20.1 Maximal weights in L(7y)

have multiplicity 1, and y -+ ma, — m>8 — k& has multiplicity depending only
on k (i.e. independent of m). The weights are shown in Figure 20.1.

We shall determine the multiplicities of these weights. We use Kac’ char-
acter formula

Zwew S(U)) ew()“rp)*p

naE(D+ (1 - e—a)ma .

chL(y)=

Now

Z 8(w)ew(y+p)—p = Z Z & (wo) e"—’ofﬂ(Y‘FP)—P

weW wleWw0 ueZa,
— 0)
= Z € (u) Z Cult,g, (v+p)—p*
woewo nez

>@;. Thus ;0:2y+%a1 and

Now p=p°+2y by Lemma 20.2 where p’=
y+p=3y+ 3a,. Hence

1
tml(7+p)=3v+<3n+§) a,—(3n"+n)d
SO tlm](’y—l_p) _p:7+3na1 - (3n2+n) 6. Also
! 2
Sltnal(Y+p)=3y_(3n+§)a1_(3n —|—n)8
S0 $11,,, (Y+p)—p=v—(@Bn+1)a, — (3n*+n) 8. Thus

Z g(w)ew(7+p)—p = ey Z (6311011 - e—(3n+l)a1) e—(3n2+n)5'
weW nez
=z and e_s=q'/%. Then our expression is
—3n __ 3n+1\ n(3n+1)/2
e, 2 (" =2"")q :

nez

We write e_

@)
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Now we may factorise this expression by using Macdonald’s identity for type
A}. By Proposition 20.6 it is equal to

e, [T=q") (1=q"z) (1—q"'2) (1—g* 'z 72) (1 - "' 2?)

n>0

—e 1= [T(=a) (1=g'=) (1=q'2) (1= 127) (142

n>0

=e,(1=9) [T (-4 (1-¢"<") (I —q%z’l) (1-g"2) (1-¢""2)
x (1+q2"2;|z’1) (1+qz"T"Z)
—e,(1-2)[J(1=g"z") (1—¢"*2) [T (1 -

k>0 n>0

X (1+qm%z’]) <1+qh%z).

We now make use of Macdonald’s identity for type ;\l. By Proposition 20.5
this asserts that

[T—g")(1=g""'2)(1—g"2) =Y (=1)" (" =2~ ) "7

n>0 n>0

Putting 7' = —z"'g? we obtain

l_[ (1—q" (1 _{_q%z—l) (1 +q%z> Z (Z—nqn /2+Zn—lq(n—l)2/2)

n>0 n>0
— szn n®
nez
Hence
chL(y) = > wew a(w)ew(yﬂ))—p
(1=2) [0 (1 = ¢*227") (1 = ¢*22) (1 = ¢*72)
o gy ZneZ Z_”qn 2 ZneZ e’y+na1 —n2d
[Tezo (1 —4*2) l_[k>0 (1—e_s5)
Now

1
. 1
Mool—ey ~ QUtewteant )

= Zp(k)e—ka
k>0
where p(k) is the number of partitions of k. Thus

Ch L(Y) = Z Z p(k)ey+na]—n2§—k5'

neZ k=0
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Hence we have proved

Proposition 20.22 The weights of the fundamental module L(y) for L (A,)
are y+na,—n’8—k8 for n€Z and k>0. This weight has multipli-

city p(k). Ul

We note in particular that all the maximal weights y+na; —n*d have
multiplicity 1 and that the multiplicity of the weight w — k& in the string with
maximal weight u depends only upon k and not on p.

20.5 The basic representation

The module L (w,) for an affine Kac-Moody algebra L(A) gives the so-called
basic representation of L(A). Since w, =y we have described the character
of the basic representation of L(A ) We shall state without proof some
generalisations of this character formula to other types of affine Kac—Moody
algebras. For simplicity we shall concentrate on those of types A ;» D, and E,.

Theorem 20.23 The basic representation L(7y) for the Kac—Moody algebra
L(A) of types A, D,, E,, E,, Eq has the following properties:

(a) vy is the unique dominant maximal weight of L(y).
(b) The set of all maximal weights is

{y+u—35u, n)é for peQ’}.
(c) The set of all weights is
ly+u—2(u, n)d—k6 forpeQ’, keZ, k=0}.
(d) The character of the basic representation is

2 Cytu—1 (u.p)o
€
chL(y)="

N
(ma-a)
k>0
where g=e~

(e) The multiplicity of the weight y+ u — %<M’ )6 —ko is p,(k), the number
of partitions of k into | colours. We have

R )
(TTeso (1—g")' _gpl(k)q . 0

8
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The proof of this theorem can be found in the book of Kac, Infinite-
Dimensional Lie Algebras, third edition, Chapter 12.

We shall also describe without proof how to obtain a realisation of the basic
representation L(7y) of L(A) in types A,, D,, E,. We first make some comments
on differential operators. Let R=C[x,, x,, x5, ... ] be the polynomial ring
over C in countably many variables and R=C [[x,, x,, x5, ...]] be the ring
of formal power series in these variables. We shall consider differential
operators on R with values in R. An example is the partial derivative 9/ dx; or,
more generally, the divided power m%!(é’/ dx;)™. We also have finite products
L #(6/8}@»)’"' where m = (m,, m,, ms, ...) satisfies the conditions that m; €

Z,m; >0, and m; > 0 for only finitely many i. We define D,,: R — R by
1 .
Dm:H m—l‘(é/ax,) ‘.
We also allow such operators combined with multiplication by elements of
R. Thus
> P,D,, : R>R
is a differential operator, where P, € R and the sum over m will in general

be infinite. ), P,,D,, is a linear map from R to R. In fact each linear map
from R to R has this form, as we now show.

Proposition 20.24 Each linear map from R to R can be written as > PuDp
for a unique set of elements P, € R.

Proof. Let M,, € R be the monomial M,, =[], x;". The monomials M,, form
a basis for R. We have D,, (M;) =0 unless k; > m, for each i. We write this
condition as k >m. We write k >m if k>m and k#m. We also have

k
D, (M,)= (m) M., ifk>m

where (”;) =TI (”;) and (8) =1.
Let A: R — R be the linear map given by A (M,,) = Q,, € R. We show A is
uniquely expressible in the form ) P, D,,. We have

; P,D, (M)=>_P, (":l) M, ,,

m<k

k
=P+ P, <m> My _,,-

m<k
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The condition we require on the P,, is that

k
P+> P, <m> M, ,,=Q,  forallk.

m<k

In particular Py= Q,. Assuming inductively that P,, is uniquely determined
for all m <k we conclude that

k
PkZQk_ZPm<m>Mk—m

m<k

is uniquely determined. 0

Thus the set of differential operators from R to R is the set of all linear
maps from R to R.

We shall now consider certain special kinds of differential operators. Let
A= (A, Ay, Ag, ...) where A, € C. Here there may be infinitely many non-zero
A;. Define T) : R — R by

Tf (), x5, %5, ... )=F (X, + A, 0+ Ay, x5+ As,.00).

T, is clearly a linear map from R to R. 1t may be written as a differential
operator by using the Taylor expansion. We have
F+A,n+A, x5+A;,..0)

A A

oyl my!ms!

(9/9x,)™ (9/9x,)™ (8/9x3)™ ... f (X, x5, X5, .. )

:Z(H/\f”’) D, f (X1, Xy, X3, ...).

Thus 7) =", (I1;A{") D,,. The operator T, may also be written in the fol-
lowing convenient form. We have

FOF+ALx A, x4+ A,,.00)
Ay

= (Z % (a/axl)’”‘) <Z o (a/axz)mz) e Xy, X, X3, 000)

ny my

=exp(A,9/0x,) exp (A,0/0x,) ... f (xy, X5, X5, ...)
=exp (A,0/0x,+A,0/0x,+...) f (x1, Xy, X3, ...).

Thus T, =exp (3_; A, (3/dx;)).
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Lemma 20.25 Suppose D : R— R is a linear map which satisfies [x;, D] =
A.D for all i, that is

x;Df =D (x,f)=\NDf  forall feR.

Then
D=D(1) >oA i
= €X — .
p o,

Proof. We shall show Df=D(1)exp(—>_; A, (3/dx;)) f for all monomials
f € R, using induction on the degree of f. If f has degree O then f=ceC
and we have

D(1)exp (— ZA,%) c=D(1)c=D(c).

Assuming the result for a monomial f we prove it for x;f. We have

D (x,) = (x,— A) Df = (x;= ) D(1) exp (—Dfa%)f'

i

On the other hand

D(1)exp (— > A%) (/) = DINT, (1) =D(1) (1~ A) T, f

d
=D(1) (x;—A;) exp (‘ Z Aia_> /.
i Xi
Thus the lemma is proved. 0

Lemma 20.26 Suppose D: R — R is a linear map which satisfies [0/9x;, D] =
w;D for all i, that is

(9/0x)(Df) =D (3f/dx) =, Df  for all f R,

Then

D(1)=cexp <Z p,ixi> for some ceC.
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Proof. Consider the element exp (3, —u,x;) Df € R. We have

8ixi <exp (Z _Mixi> Df)

=—M;€Xp (Z _/"Lixi> Df +exp (Z _Mixi) %(Df)

i

=cexp (Z _Mixi> (0/0x;— p;) Df.

Thus by the assumption of the lemma we have

(exp (Z _Mixi> D) df/dx; = exp (Z _,Uﬁxi) (0/0x;— ;) Df

= Gixl (exp (Z _/“Lixi) Df) .

Write A=exp (>_; —u,;x;) D. Then we have Adf/dx;=(d/dx;)(Af) for each
i and f. In particular we may put f =1 and obtain (d/dx;)(A(1))=0. Thus
A(1)=c for some c € C. Hence

0)=exp (S5 a0 = (S

as required. Ul

Proposition 20.27 The set of all differential operators D : R— R satisfy-
ing the conditions [x;, D|=\;D and [3/dx;, D] = ;D for A;, u; € C forms a
I-dimensional vector space with basis

exp (3 %) exp (- 3 A%) .

Proof. This follows from Lemmas 20.25 and 20.26. |

Definition Differential operators D : R — R of the form

9
exp () mx;) exp <— > /\iﬂ_x)
for A;, w; € C are called vertex operators.

Now let L=2 (LO) be an affine Kac—-Moody algebra of type A,, D, or E,.
Let

T7=®Lj5.

Jj<0
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Then T~ has a basis #/ ® h, for i=1, ...l and j <0. Consider the symmetric
algebra S (7T~). This is isomorphic to the polynomial ring over C in the
variables t/ ® h;.

Let Q° be the subgroup of H° generated by 4, ..., h,. We shall write Q°

m

multiplicatively, so that its elements have form A" ... A" with m,,... ,m, €
Z. Let C[Q"] be the group algebra of Q° over C. Elements of C[Q°] have
form

Yo A BB

my,...,m €L

C [QO] is isomorphic to the algebra of Laurent polynomials over C in the
variables h, ..., h,.
We now form the tensor product

V=S(T")®C[Q°].
V is isomorphic to the algebra
Clhys... b’ okt YRR

fori=1,...,land j<O.

We define certain maps h,(n):V — V out of which vertex operators will
be constructed. For n € Z with n>0, h,(n) is the derivation of V uniquely
determined by the conditions

t7"®@h;— n{h;, h,)
Y®h,—0  for j#—n
h;— 0.

For ne€Z with n <0, h,(n):V — V is multiplication by ("®h,)® 1.
We now consider the expression

o0 (Z WAU Z) exp (Z WEU Zn)

where z is an indeterminate. We first observe that exp (Zn>0 — h”—i”)z‘”) maps

V into C [z"] ® V. To see this we observe that each element ve V is a finite
linear combination of monomials

M,=[1(#®n)" T]h"
ij i
j<0

where m = (mij, mi) with m; € Z, m;; € Z, m;; > 0.
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Let d,(m) =73, ;m;;. Then the derivation 4, (n), n > 0, transforms M,, into
a linear combmatlon of monomials in which d,(m) is decreased by 1 and
[1; 4" remains unchanged. Thus a succession of d,(m)+ 1 derivations h,(n)
for various n >0 annihilates M,,. Also, for a given monomial M,,, i, (n)
annihilates M,, for all but finitely many 7 > 0. Thus in the expression

exp (Z —h“T(n)z_”> v vevV

.. ha(n) — ..
only finitely many terms —===z"" act on v and only a finite set of products

of such terms can act on v to give a non-zero element. Thus we have

exp (Z —h“T(n)z"> V>Clz ']V

n>0

We shall modify this operator in the following way. Let
£: 0" x Q- {£1}
be the function defined by
e(h;, h)=—1
g(hi,h)=1 if A;=0
& (h;, h,)is given by [EaiEa ] & (hyo 1)) By, if Ayj=—1
eh+n,h")y=¢e(h,h")e (K, K")
e(h,W+h")y=¢e(h,W)e(h, h").
Given a € ®° we define a map * €End V by
e ' PQh—PQe(h,, h)h
where P S(T7), he Q°. We also define ¢* € End V by
e PQh— PQhyh
and z*€End (C[z,z7']®V) by
22 (PR — (PR h)z et
We now define, for o € ®°, the operator Y, (z) on V by

Y, (z) =exp (Z_h a(1) —n> exp (Z_hain) f”) Ry

n<0 n>0
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We claim that Y,(z) can be written in the form

Y ()= ()

JEL

where I',(j) €End V. In order to see this we consider the effect of Y,(z) on
a monomial M,, in V. We have

e M, €7 QV
where n, =3, m; (h,, h;). Thus
h K
exp( > —sz” 2" M, € RV
n>0 n k=0

for some K >0, and

exp (Z B hargn) z‘") exp (Z B hain) Z_n> M,

n<0 n>0

K
c Z Z Zna—k+k’ V.
K'=0 k=0
Thus to obtain z7/~' on the right-hand side of Y,(z)M, we must have
n,—k+k'=—j—1. For each value of k there is at most one k>0 sat-
isfying this. Since only finitely many k arise, only finitely many k' can
arise for given j. This shows that only finitely many terms —ta) i

n

exp (Z,KO —h‘*—(”)z*"> are involved in I', () and only finitely many products

n

of such terms are involved. Thus we have
r,Ggy: v-v
and
Y, (2) =) T.(pz""
JEZ
with I, (j) €End V.

Now the vector space V can be regarded as an L-module giving the basic
representation of L. In order to describe the L-action on V we introduce some
further notation. We have defined /,(n) € End V for n >0 and n <0. We now
define 72(0) € End V for any h € H°. In contrast to the h,(n) for n#0, which
act non-trivially on S(7~) and trivially on C[Q°], h(0) acts trivially on
S(T~) and non-trivially on C[Q°]. We define, for he H’, h(0) : V— V by

h(0):PQh,— PR<{h,, h)h,
for PeS(T7),acQ’.
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Let K, ..., h) be a basis for H® and h/, ... , h] be the dual basis satisfying
(n;, n7)=8,;. We define D, €End V by

Dy = Z i, i(0)R7(0)+ Z hi(=n)h; (n).

since, for ve V, h7 (n)v=0 for all but finitely many n > 0. D, lies in End V
and is readily seen to be independent of the choice of basis of H°.

We now have the definitions necessary to describe the action of L on V
which gives the basic representation.

Theorem 20.28 The vector space V=35 (T )®C [Qo] is a module for the
Kac-Moody algebra L(A) of type Al, D, or El giving the basic representation
under the following action L(A) — End V:

"®H,— H,(n) foraed® ne’Z
"®E,—~T,(n) foraecd® neZ
c—>1y,

d— —D,.

The proof of this result can be found in the book of Kac, Infinite-Dimensional
Lie Algebras, third edition, Chapter 14.

The highest weight vector of V is the element 1 ® 1. The first 1 is the
unit element of the symmetric algebra S (7~) and the second 1 is the unit
element of the lattice Q° written multiplicatively, which is the unit element of
the group algebra C [QO]. This vector 1®1 is annihilated by the generators
e;,i=0,1,...,1 of L(A). To see this we recall that

e=1QF, i=1,...,1 e, =1QE,
with E, € L° ;. We have
e(1®1)=TI,(0)(1®1) i=1,...,1
which is the coefficient of z~! in Y, (2)(1®1). Also
(18D =T_,()(1®1)
which is the coefficient of z72 in Y_,(z)(1® 1). Recalling that

() —exp (z LU) oxp (z L())

n<0 n>0 n
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we first note that ¢*z¢*(1®1)=1®h,. Now negative powers of z in
Y, (z)(1®1) can only arise from derivations h,(n) with n>0. However,
h,(n)(1®h,)=0 for all n>0 since any derivation annihilates the unit ele-
ment 1 €S (7). Thus we have

I, 0)(1®1)=0 fori=1,...,1
I y(1H(1®1) =0.

Hence ¢,(1®1)=0 for all i=0,1,..., 1L
We now check how the elements hy, hy, ..., h;€ H acton 1® 1. We have
h;=1®H, fori=1,...,[. Thus

h(1®1)=H, (0)(1®1)=1®(0, h,) 1=0.

(We note that in the scalar product {, ) the elements of Q° are written addi-
tively so that the unit element will be 0.) We also have

c=hy+cihy+---+ch,.
Thus
h(1®1)=c(1®1)=1&1.
Hence we have
h(1el)=y(h)(1®1) fori=0,1,...,!

since y(h;)=0 for i=1,...,[ and y(hy)=1. The highest weight vector
v, =1®1 is often called the vacuum vector of the basic representation.

The realisation of the basic representation given by the module S(77)®
C [QO] is called the homogeneous realisation. It is one of a number of descrip-
tions of the basic representation.

The basic representation is of great importance in a number of applications
of the theory of affine Kac—Moody algebras in mathematics and physics. For
example applications to the theory of differential equations are described in
Kac’ book, Chapter 14. There are also particularly interesting applications in
the area of mathematical physics. Vertex operators arose in the context of
dual resonance models, which subsequently developed into string theory, and
the representation theory of affine Kac—-Moody algebras plays a key role in
string theory. This involves the calculus of vertex operators. The theory of
modular forms also plays a key role.

Readers wishing to learn more about the relations between Kac—-Moody
algebras and string theory may wish to study the 30-page introduction to the
book of Frenkel, Lepowsky and Meurman, Vertex Operator Algebras and the
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Monster which also explains the connections with modular forms and sporadic
simple groups such as the Monster. The book by Kac on Vertex Algebras for
Beginners is a useful introduction to the calculus of vertex operators. This
whole area relating mathematics and physics is of great current interest and
seems certain to continue its rapid development.



21
Borcherds Lie algebras

21.1 Definition and examples of Borcherds algebras

A theory of generalised Kac—Moody algebras was introduced by R. Borcherds
in 1988. The purpose for which these algebras were introduced was as part
of Borcherds’ proof of the Conway—Norton conjectures on the representa-
tion theory of the Monster simple group, for which Borcherds was awarded
a Fields Medal in 1998. These generalised Kac—-Moody algebras are now
frequently called Borcherds algebras. A detailed discussion of Borcherds
algebras, including proofs of all the assertions, is beyond the scope of this
volume. However, we shall include the definition of Borcherds algebras and
the statements of the main results about their structure and representation
theory, but without detailed proofs. In fact many of the results are quite sim-
ilar to those we have already obtained about Kac—Moody algebras. However,
the theory of Borcherds algebras includes examples which are quite different
from Kac-Moody algebras. The best known such example is the Monster Lie
algebra, which we shall describe in Section 21.3.

We begin with the definition of a Borcherds algebra. A Lie algebra L over
R is called a Borcherds algebra if it satisfies the following four axioms:

(i) L has a Z-grading

L=@PL,

i€Z
such that dim L, is finite for all i #£0, and L is diagonalisable with respect
to L. (Note that dim L, need not be finite.)
(ii) There exists an automorphism @ : L — L such that

w'=1
w(L)=L_, for all ieZ
w=-1 on Ly/L,NZ(L).

519
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(iii) There is an invariant bilinear form
(,) : LxL—->R
such that
(x, y)=0 if xeL;, yeL;and i+ j#0
(wx, wy)={(x,y) for all x, yeL
—{x, wx)>0 for xe L; with i£0, x#0.
(iv) LyC[LL].

We observe some consequences of these axioms. In the first place it can be
shown that [L,L,] =0, that is L, is abelian.
To describe a further consequence we define, for x, yeL,

(X, ¥)o=—(x, wy).

The scalar product (, ), : L x L— R is called the contravariant bilinear form.
We now restrict the contravariant form to one of the graded components L;
with i#£0 and have (, ), : L, xL;— R. Let x€ L,. Then

(x, x)g=—{(x, wx)>0 if x#0.

Thus the contravariant form is positive definite on each graded component L;
for i #0 (though not necessarily on L).

We now give some examples of Borcherds algebras. We begin with a
symmetric matrix 2 over R which is either finite or countable. Thus

A= (a;) i, jel

with a;; € R and [ either finite or countable. We shall assume that the matrix
 satisfies the conditions

a;<0 if ij

1

if a; >0 then 2q;,/a;, € Z for all j.

Proposition 21.1 There is a Borcherds algebra L associated to a symmetric
matrix A satisfying the above conditions which is defined as follows by
generators and relations.

L is generated by elements e;, f;, h; i, jel
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subject to relations

ij%i

[
[
[h ek] 0,4, e,
[hijfk]:_ ijaikfk

(ade)"e;=0, (adf)"f,=0 if a;>0, i#jand n=1-2q;/a,;
[e,-ej]:O, [f,-fj]zo if a; <0, ajjSOanda,-jzo.

The Borcherds algebra L defined by generators and relations in this way
is called the universal Borcherds algebra associated with the symmetric
matrix 2[. Its structure as a Borcherds algebra can be described as follows. Its
involutary automorphism w is given by

w(e)=—f, o(f)=—¢, (hij) = _hji'
Its invariant bilinear form is uniquely determined by the condition
(e;, fy=1 for all iel

In particular, if we write h; = h;;, then [e,f;]=h; and

i

(his hy)=([e:fi]. hy)=(e:. [fij]) = e aiifi) = ayy.
Thus

(hi,hj)=a; forall i, j€l.

There are many ways of defining an appropriate grading on this Borcherds
algebra. For each i € Z let n; € Z satisty n;, > 0. Then there is a Z-grading on
L uniquely determined by the conditions

e; € Ln,» fielL_,

Further examples of Borcherds algebras can be obtained from a universal
Borcherds algebra as follows. The axiom [hijhkl] =0 shows that the subal-
gebra generated by all elements h;;, i, j€l, is abelian. If i j then h;; lies
in the centre of L since [h;j, e,]=0 and [h;;, f,]=0 for all ke I. Thus the
subalgebra generated by the h;; for i# j lies in the centre. It can be shown
that the centre Z of L satisfies

(hys ijeli#j)czc(h,: i jel).
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In fact the Jacobi identity

[[eaf:] n]+ [[ 1] €] + [[hiei] £;]=0

shows that

[ [eifi]] = (ani—ai) [enf;]
It can be shown that, as a consequence of this, ;=0 unless a;; = a,; for all
ke, i.e. unless the ith and jth columns of 2[ are identical.

Proposition 21.2 Let L be a universal Borcherds algebra and I be an ideal
of L contained in the centre Z of L. Then L/I retains the structure of a
Borcherds algebra. |

The Z-grading, involutary automorphism and invariant bilinear form on
L/I are readily obtained from those on L. Ul

We now obtain still further Borcherds algebras. Starting from a universal
Borcherds algebra L we factor out an ideal I of L contained in the centre Z
of L. Then L/I is still a Borcherds algebra. We write L=L/I.

An inner derivation of L is one of form x— [xy] for some ye L, and
an outer derivation is a derivation which either is zero or is not an inner
derivation Let

L*=Hom(L, R)

and A C L* be an abelian Lie algebra of outer derivations of L. We suppose
also that

[e;x] € Re;, []_‘,x] e RJ_‘,-

for all x € A where ¢;, f; are images of ¢;, f; under the natural homomorphism
L—L.

Proposition 21.3 Let L be a universal Borcherds algebra and I be an ideal
of L contained in the centre Z of L. Let L=L/I. Let A be an abelian Lie
algebra of outer derivations of L and let L+ A be the semidirect product of
L by A whose elements have form x+a with x€ L, a € A where
[x+a,y+b]=[xy]+a(y) — b(x).
Suppose that
[ex]eRe, [fix]eRf,

for all xe A. Then L+ A retains the structure of a Borcherds algebra in
which A C (L+ A),. O
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The Z-grading, involutary automorphism and invariant bilinear form on
L+ A are easily obtained from those of L. U

We have now constructed a family of Borcherds algebras which includes
all universal Borcherds algebras, all quotients of such by ideals contained in
the centre, and all semidirect products of such quotients by an abelian Lie
algebra of outer derivations with suitable properties.

This turns out to give all possible Borcherds algebras, as is shown by the
next theorem.

Theorem 21.4 Let L be a Borcherds algebra. Then there is a unique universal
Borcherds algebra L, and a homomorphism

f:L,—L

(not necessarily unique) such that ker f is an ideal in the centre of L,,im f
is an ideal of L, and L is the semidirect product of im f with an abelian
Lie algebra of outer derivations lying in the 0-graded component of L and
preserving all subspaces Re; and R]_”I-.

The homomorphism f preserves the grading, involutary automorphism,
and bilinear form. |

Now that we have obtained the complete set of Borcherds algebras in this
way, we explore their relationship with symmetrisable Kac—-Moody algebras.
It turns out that every symmetrisable Kac—Moody algebra over R gives rise
to a universal Borcherds algebra, which is the subalgebra of the Kac—Moody
algebra obtained by generators and relations prior to the extension of the
Cartan subalgebra by an abelian Lie algebra of outer derivations.

Theorem 21.5 Let L be a symmetrisable Kac—-Moody algebra with GCM

A= (A,-j). Thus there exists a diagonal matrix D=diag(d,,...,d,) with
each d;€7,d, >0 such that DA is symmetric. Let A = (aij) be given by
d;A;;
a;=— L.

Then we have a;;=a; and a;=d,. Thus a;; <0 if i# j and a; is a positive
integer. Moreover 2a;;/a; = A;; € L.

Then the symmetric matrix (aij) satisfies the conditions needed to construct
a Borcherds algebra, and the universal Borcherds algebra with symmetric
matrix 2 coincides with the subalgebra of the Kac—Moody algebra L obtained
by generators and relations prior to the adjunction of the abelian Lie algebra
of outer derivations. |
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In this way every symmetrisable Kac—Moody algebra determines a cer-
tain subalgebra which is a universal Borcherds algebra. In fact the main
points of difference between symmetrisable Kac—Moody algebras and univer-
sal Borcherds algebras are that, in a Borcherds algebra:

I may be countably infinite rather than finite
a;; may not be positive and need not lie in Z

2a;;/a;; is only assumed to lie in Z when a; > 0.

21.2 Representations of Borcherds algebras

We now introduce the root system and Weyl group of a Borcherds algebra.
We suppose first that L is a universal Borcherds algebra. The root lattice
Q of L is the free abelian group with basis «; for i € I. We have a symmetric
bilinear form
Ox0—R

given by (ai, aj) — (ai, aj)za,-j.
The basis elements «; of Q are called the fundamental roots. The set of
fundamental roots is denoted by II. We have a grading
L=PL,
aeQ

determined by the conditions
e€l,, fi€eL_,.

An element € Q is called a root of L if a0 and L,# O. « is called a
positive root if « is a sum of fundamental roots. For any root « either « or
—a is positive. We have

O=pTUP

where @ is the set of roots and ®*, ®~ are the subsets of positive and negative
roots respectively. We say that @ € ® is a real root if (¢, @) >0 and a € ®
is an imaginary root if (a, a) <0.

We next introduce the Weyl group W of the universal Borcherds algebra L.
W is the group of isometries of the root lattice Q generated by the reflections
s; corresponding to the real fundamental roots. We have

@, @)

< aij
S; (aj):aj_2<a.,a.>ai:aj_2a_.j.a

123

i

We recall that 2a,;/a; € Z since a; > 0.
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Let H be the abelian subalgebra of L generated by the elements #;; for all
i, jel. We have a map

O—H

under which «; maps to h;, which is a homomorphism of abelian groups
and preserves the scalar product. However, this map need not necessarily be
injective.

So for we have assumed that L is a universal Borcherds algebra. How-
ever, if L is an arbitrary Borcherds algebra there is an associated universal
Borcherds algebra L, given by Theorem 21.4. Then the root system of L is
defined to be the root system of L, and the Weyl group of L is defined to be
the Weyl group of L,.

This theory of Borcherds algebras is thus very similar to the theory of
Kac—Moody algebras. The main difference is that for Borcherds algebras there
can exist imaginary fundamental roots, and that the Weyl group is generated
by the reflections with respect to the real fundamental roots only.

We now turn to the representation theory of Borcherds algebras. We define
the set X of integral weights by

{ A, a;) }
X=11cQ0®R;2—=€Z forall o;ell, .
(@,
Here I, is the set of real fundamental roots. We recall that {(«;, ;) > 0 when
a; €Il.. We define the subset X™ C X of dominant integral weights by

Xt={reX; (A, q;)>0 forall o;€ll}.

In a manner very similar to that we have described for Kac—Moody algebras
in Chapter 19 it is possible to define an irreducible module L(A) for the
Borcherds algebra L associated to any dominant integral weight A. L(A) is
called the irreducible L-module with highest weight A.

Now Borcherds proved a character formula for L()) analogous to Kac’
character formula Theorem 19.16 for Kac—-Moody algebras.

Theorem 21.6 (Borcherds’ character formula). Let L be a Borcherds alge-
bra, A a dominant integral weight and L(A) the corresponding irreducible
L-module with highest weight A. Then the character of L(A) is given by

GZW e(w)w (%(—l)q’e()\ +p—> \If))
NG T o)
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where m,=dimL,, ¥V runs over all finite subsets of mutually orthogonal
imaginary fundamental roots, and p is any element of Q@R such that

(p,a;)= % (a;, a;)
for all real fundamental roots «;.

As usual this character is interpreted as

chL(A)=)"(dimL(A),) e(u)

”

where u— e(u) is an isomorphism between the additive group of weights
and the corresponding multiplicative group.

(In fact there may not exist a vector p € Q ® R such that {p, ;) = % (a;, ;)
for all real fundamental roots «; of a general Borcherds algebra. But if there
is no such pe O®R, p may still be defined as the homomorphism from Q
to R taking «; to %(ai, «a;) for all i€, and the character formula can be
interpreted accordingly.) Ul

In the special case A=0, L(A) is the trivial 1-dimensional L-module. Then
Borcherds’ character formula reduces to the following identity.

Theorem 21.7 (Borcherds’ denominator formula).

e(p) [ (1—e(=a))™ =3 e(w)w (e(p)Z(—l)'“'e(—Z‘l’))- i
v

acdt weW

By substituting Borcherds’ denominator formula into Theorem 21.6 we obtain
a second form of Borcherds’ character formula.

Theorem 21.8 (Borcherds’ character formula, second form). With the nota-
tion of Theorem 21.6 we have

> s(w)w<2(—l)"'e()\+p—2‘lf)>

weW v

chL(A)= .
5 e(w (e(p) z<—1>'q’e<—2%>
weW v

Comments on the proof of Borcherds’ character formula
We shall not give the proof of Borcherds’ character formula in detail, since
the ideas are quite similar to those which arise in the proof of Kac’ character
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formula for Kac—Moody algebras. However we shall say enough to explain
where the additional term

Y (=D)Me(=3"W)
v

comes from, where W runs over all finite sets of mutually orthogonal imag-
inary fundamental roots. Of course in Kac—-Moody algebras there are no
imaginary fundamental roots so the only possible subset ¥ is the empty set.
The additional term then becomes e(0), the identity element of e(Q), and
disappears from the formula.

For a Borcherds algebra L we have

IM=1II; VI,

where I, is the set of real fundamental roots and II,,, is the set of imaginary
fundamental roots. We also define

CDRe =W (HRe) ’ q)lm =0 cDRe

to be the sets of real and imaginary roots respectively. We recall from Theo-
rem 16.24 that, in a Kac—Moody algebra,

o, = U w(k)

weW

where K={ae€ Q" ; a#0, suppa is connected, —aeC} and
C={AeQ ®R ; (A, ;) >0forall a; eIl }.

There is an analogous result for Borcherds algebras given as follows.

Theorem 21.9 The set of positive imaginary roots of a Borcherds algebra is
given by

o, = U w(K)

weW
where K is given by
K= {ae Q0" a#0, —aeC, suppais connected}
—{ja; s jEZ, j=2, o;ell,}.

Proof. Omitted. The idea is generally similar to that of Theorem 16.24. It is
clearly necessary to exclude positive multiples jo; of imaginary fundamental
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roots with j > 2 since these vectors satisfy the conditions required for belong-
ing to K, but cannot be roots since there is no possible root vector giving rise
to such a root. U

Following closely the proof of Kac’ character formula we obtain

e(p) T (1—e(~a)"ch L) =Y c,e(u+p)

acdt N

summed over all weights @ such that w<A and (u+p,u+p)=
(A+p, A+p), where ¢, € Z and both sides are skew-symmetric under the
action of the Weyl group W. (See the proof of Theorem 19.16.)

We now define a certain partial sum S of terms on the right-hand side.

Let S=3, c,e(u+p), summed over all weights u satisfying u <A,
(m+p,utp)=(A+p,A+p) and (u+p, a;) >0 for all a; € Ilg,.

Since w < A we have

pw=A—=Y ko,  forsome k;€Z,k;>0,a; eIl
Since (u+p, u+p) ={(A+p, A+p) we have
((A+p) = (u+p), A+p)+(n+p)) =0
that is (3" k;a;, A+u+2p) =0. This implies
> ki, MY+ > ki (a;, m+2p)=0.

We can deduce several consequences from this equation. We note first that
(a;, A) >0 since A is dominant. Also for a; € Iz, we have

(@, p+2p) = (e, p+p) +{a;, p) = (e, M+P>+% (o, ;) > (a;, p+p).

Now (a;, u+p) >0 by definition of S, so {a;,, u+2p)>0. On the other
hand, for «; € II;,, we have

(@, p+2p) = (e, p+ o) =(a;, /\—Zk}aj) for some &/, > 0.

Thus (a;, p+2p) >0 since (e, A) >0, (a;, aj> <0if i#}j, and {o;, ;) <O0.
We now collect these results together and put them into the equation

D ki (e M)+ ki (e, w+2p) =0.

The conclusion is that {(a;, A) =0 and {(a;, w+2p) =0 for all «; in the sum
> k;a;. This in turn implies that each such «; €I1;,. But then

(e, 1+2p) = (e, 1) = 1K (e, ) == 3K e ).
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Since k>0 and (o, a;) <0 this implies that («;, a;)=0. In fact k;=k; if
j#iand ki=k;—1. So if i # j we have (a;, a;)=0 for all o, @; in the sum
> k;a; with i # j. In other words,

A—u=> ka;

is a linear combination of mutually orthogonal imaginary fundamental roots
all of which are orthogonal to A.
Now we have

(. o;)=(, aj>_;ki (e a;)=0

for all a; € I, since (/\, aj) >0, k;>0and <ai, aj) <Osince a; €1l
s0 i#j. Thus e C. It follows that w4+ p € C since

a; ellg,

Im>

(utp, a)=(. )+ 3 {a;, a;)> (u. )

Ny (M—I— p,a j> > 0. Thus 4 p lies in the fundamental chamber C. Since our
sum

> cue(+p)

<A
(utp,utp)=(A+p,A+p)

is skew-symmetric under the action of W, this sum must be equal to

> e(w)w(s)

weW
since § is the partial sum including all summands c, e(i+ p) for which u+p
lies in C.

We shall now determine S. Let the module L(A) have highest weight
vector v,. If A (h;) =0 then f;u, =0 by the analogue in Borcherds algebras of
the proof of Theorem 10.20. If all «; in the sum )_ k;«; satisfied A (k;) =0 then
we would have f;v, =0 for all such i and this would imply that A — " k;«;
could not be a weight of L()A). So if A—) k,«; is a weight not equal to A
we must have A (h;) #0 for some i in this sum. Thus (A, @;) #0 for some i
in this sum. On the other hand we know that u=A—3" k;«; where all ¢; in
the sum satisfy (A, @;) =0. This implies that the weight

ptp=A+p) =3 ka

can only arise from the term e(A) in ch L(A) in the formula

e(p) TT (1—e(~a))™ ch L) =Y e, e(u+p).

aedt o
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So all terms on the right of this formula which lie in § arise from

e(A+p) [ d—e(—a)™
acdt
on the left.
We consider which roots & € ®* in the formula
e(A+p) [] (A—e(=a))™
aedt
can contribute to give w+p=(A+p)—Y k;a;. All such roots @ € ®* must
be linear combinations of the fundamental roots «; arising in the sum )_ k; ;.
But such «; are mutually orthogonal imaginary fundamental roots. So sums
of two or more such a; do not have connected support, so cannot be roots
by Theorem 21.9. Also each «; € I1 has m, =1 since the corresponding root
space is spanned by e;. Thus a weight u 4 p giving a term on the right which
lies in § must arise from
e +p) ] (I—e(=a))=e(A+p) 3 (~=D"e(=3"¥)
a;€lly v
summed over all finite sets ‘¥ of mutually orthogonal imaginary fundamental
roots. Thus we have

S=(-D)Me(A+p— Y W)
A2

and so

e(p) T1 (1—e(—a)"chL()= Y e(ww <Z<—1>”"e<A+p—Z\P)>
acdt weW W
as required.
This argument therefore explains the difference between Kac’ charac-
ter formula and Borcherds’ character formula, and where the extra term in
Borcherds’ character formula comes from.

21.3 The Monster Lie algebra

In this final section we shall show that, although Borcherds algebras have
many properties which seem quite similar to those of Kac-Moody algebras,
they include examples which behave in a very different way from Kac—Moody
algebras. The example we have in mind is the Monster Lie algebra. The
definition and properties of the Monster Lie algebra are closely related to the
properties of a certain modular function j, so we shall begin by describing
the definition and significance of this function.



21.3 The Monster Lie algebra 531

We first recall the action of the group SL,(R) on the upper half plane H.
Let

SLz(R):{(jz>;ad—bc=l, a,b,c,deR}

H={reC ;Im7>0}.
The group SL,(R) acts on H by
ab at+b
T=—
cd ct+d

at+b
cT+d

-1 0 T=T
0 —-1)
we see that PSL,(Z)=SL,(Z)/(xl,) acts on H. PSL,(Z) is called the

modular group.

We denote by H/SL,(Z) the set of orbits. Since (é i) €SL,(Z) the

since if Im 7> 0 we have Im(
acts on H. Since

)> 0. In particular the subgroup SL,(7Z)

elements 7 and 7+ 1 of H lie in the same orbit. Thus each orbit intersects

{TEH;—%SRCTf%}.

. 01
Again we have <_1 0

same orbit. Thus each orbit intersects

) € SL,(Z) and so the elements 7, —1/7 € H lie in the

{reH;|r|=1}.

In fact we can obtain a fundamental region for the action of SL,(Z) on H by
taking the region

{reH;—]<Rer< || >1}

1
3
and identifying the points 7, 7+ 1 for Re 7= —% and the points o, —1/0 for
|o| =1. The fundamental region is illustrated in Figure 21.1.

Having made the above identifications we obtain a set intersecting each
orbit in just one point. The set H/SL,(Z) of orbits has the structure of a
compact Riemann surface with one point removed. This is a Riemann surface
of genus 0, i.e. a Riemann sphere. When we remove one point from it we
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obtain a subset which can be identified with C. Thus we have an isomorphism

of Riemann surfaces
H/SL,(Z)— C.
This can be extended to an isomorphism of compact Riemann surfaces by
adding the point ico on the left and oo on the right. Thus we have an isomor-
phism
(H/SL,(7Z)) U {icc} — §* =CU {00}

under which ico maps to co. Such an isomorphism of Riemann surfaces is
not uniquely determined. However, if j is any such isomorphism any other
must have the form a(j+ b) where a, b are constants and a #0. Such a map

determines a map from H to C constant on orbits. This map will also be
denoted by j. j is a modular function, i.e. a function invariant under the action

of the modular group.
Since 7,741 lie in the same orbit we have j(7)=j(t+1), thus j is
periodic. This implies that j has a Fourier expansion of form

](’T) — Z CnCZﬂ'iVlT.

neZ
We write g=e>™". Then we have
i(n=>cq"
nez

We shall now describe such a function j. In order to do so we first introduce
some modular forms. A function f: H— C is called a modular form of

weight k if

at+b ‘
(450 =+t
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for all (j z> € SL,(Z). We give two examples of modular forms. The first

is an example of a so-called Eisenstein series. For each positive integer n let

0'3(”)=Zd3

dln

summed over all divisors of 7, and let

E,(1)=14240)_ o3(n)q".

n>1

Thus
E,(7)=1+240¢+2160g"+- - .

This function is known to be a modular form of weight 4.
Secondly define A by

A =q [T —-g"*.

n>1

Then
A(T)=q—24¢"+252¢° —--- .

This is called Dedekind’s A-function and is known to be a modular form of
weight 12.
We now define j : H— C by

i0="5"

This is a modular form of weight 0, i.e. a modular function, and so is constant
on orbits of SL,(Z) on H. We have

J(T)=q '+ 744+ 196 8849421493 7604% + - - -

and j has a simple pole at T=ic0, i.e. g=0.
J gives an isomorphism of Riemann surfaces

Jj:H/SL,(Z)—C
which extends to an isomorphism of compact Riemann surfaces
j i (H/SLy(Z))U{ico} - S?=CU{oc}.

Any other such isomorphism has the form a(j+ b) where a, b are constants
and a##0. In particular there is just one such isomorphism with leading
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coefficient 1 and constant term 0. We shall call this the canonical isomor-
phism. This is the function

(1) =T44=q""+3 c,q"
n>1
where ¢, =196 884, ¢, =21493760, etc. All the c, are positive integers.

We are now ready to introduce the Monster Lie algebra. We first define a
countable symmetric matrix 2. 2 is defined as a block matrix, with blocks of
rows and columns parametrised by the natural numbers N={0, 1,2, 3,...}.
Let B;; be the (i, j)-block of 2. The number of rows in B;; is 1 if i=0 and ¢;
if i#0 where ¢; is the coefficient of ¢' in the modular function j. Similarly
the number of columns in B;; is 1 if j=0 and c; if j7#0. All the matrix
entries in a given block B;; are equal to one another. These entries are given
as follows.

The single entry in block By, is 2.
All entries in block B, for n#£0 are —(n—1).
All entries in block B,,, for m#0,n#0 are — (m+n).

These conditions determine the matrix 2. We have

<« 196884 — «21493760 —

N 210 - -- 0l=1--.=1=2...
196884 _;2 _;2 _:3' - _;4;

l ()_'2..._'2_'3..._3_'41...

A= 4 —1l=3 . .3 =4 .. 4l -5 . ..
21493760 : | o o
. I S Y /| I SR
=4 . .. 4 -5 ... —5—6 ...

Let L(2() be the universal Borcherds algebra determined by the countable
matrix 2 as in Proposition 21.1. Let Z be the centre of L(2() and H be the
subalgebra of L(2() generated by all elements h;; = [ei fj]. We know from
Section 21.1 that

(ny:ij)cZcH.

It is also clear that h; — h; € Z where h;=h;;, h;=h; and i, j are in the same

ii> '

block, since columns i, j of 2 are then identical. Z is in fact generated by the
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elements h;; for i j and h;—h; where i, j are in the same block. Moreover
Z is an ideal of L().

Let M=L(A)/Z. M is called the Monster Lie algebra. We shall now
determine some properties of .

Let the blocks of rows of 2 be By, B, B,, ... with |By|=1,|B,|=c, for
n>1. We choose one i € I out of each block, such that i lies in the block B;.
We then consider the elements h; for such elements i€ /. Thus we have
elements hy, h,, h,,...€ H. Then the elements

2h, + hy—3h,
2hy + 2hy —4h,
2h, + 3hy—5h,

all lie in Z, since the corresponding linear combinations of the rows of 2 are
all zero vectors.
Let h; — h; under the natural homomorphism L(2() — 2. Then we have

2h, =3h, —h,
2hy =4h, —2h,
2h, =5h,—3h,

Let M, =H/Z. I, is the Cartan subalgebra of ¢, being the image of H
under the natural homomorphism. We see from the above relations that ¢,
is spanned by h, and h,. Moreover h, and h, are linearly independent since
this is true of the first two rows of . Thus h, i, form a basis of 9¢, and
we have

dim ¢, =2.
In fact we find it more convenient to choose the basis b, b, of 2, given by
_hoth b —hy+h,
o2 Tt
Thus MV, =Rb,+ Rb,. The scalar product on ¢, is given by

by



536 Borcherds Lie algebras

It follows that
(bOa bo> =0, <b1’ b1> =0, <bo’ b1> =-1
Hence
(mby+nb,,m'by+n'b,) =— (mn' +nm').

We now regard the Monster Lie algebra 2t as a module over its Cartan
subalgebra M. Let m, n € Z and define ¢, ,) by

Wy ={x €WV ; [box]=mby, [bjx]=nb;}.
Then one can show that ¢, o =M, and
M=,  for(m n)eZxL.
Moreover we have
dim M, ) =cC,, it m#£0,n#£0
dim ¢ o) =2
dim ¢, o) =dim M, ,, =0 if m#0,n#0.

(These results follow from the ‘no-ghost’ theorem of Goddard and Thorn in
string theory! A statement and proof of this theorem in an algebraic context
can be found in E. Jurisich, Journal of Pure and Applied Algebra 126 (1998),
233-266).

Thus the graded components ¢, ,, of the Monster Lie algebra 2 are as
shown in Table 21.1. In this table V, is a vector space of dimension c,, if

N

n>1and V_, is a vector space of dimension 1.

Table 21.1 Graded components I, ,, of the Monster Lie Algebra.

Vl 2 V16

o o0 o0 0 o0 Vv, V
o o0 o0 0 0 V, Vi Vo, Vp
o 0 o0 0 0 V, V, Vo, V
o o0 o0 VvV, 0 VvV, V, Vi V,
o o0 o O R 0O 0 0 O
v, 'V, V, V, O V, O O O
Vo Vo, V, V, O O O O O
Vo Vo V., Vv, O O 0 O O
Vo, Vs V, O O O 0 O



21.3 The Monster Lie algebra 537

We now consider the roots of the Monster Lie algebra 2¢. Since =
L(A)/Z we recall from Section 21.2 that the root lattice of I is defined to
be the root lattice of L((). The fundamental roots of ¢ are the «; for i€ 1.
We have a homomorphism Q — H under which «; maps to h;. We pointed
out in Section 21.2 that this homomorphism is not in general injective. In the
Monster Lie algebra it is far from injective, as «;, a; have the same image if
and only if i, j lie in the same block of 1.

We have

(g, ap) =2

(a;, ;) =—2m if i20 andi€B,,.

Thus IT,, = {a,} and I1,,, = {«; ; i # 0}. Hence the Monster Lie algebra ¢ has
just one real fundamental root and countably many imaginary fundamental
roots.

The Weyl group W of ¥t is generated by the fundamental reflections
corresponding to the real fundamental roots. Thus W =(s;), and so W has
order 2. Thus I has an infinite number of fundamental roots while at the
same time having a very small Weyl group isomorphic to the cyclic group of
order 2.

Finally we shall consider Borcherds’ denominator formula for the Monster
Lie algebra M¢. This formula plays an important role in Borcherds’ proof of the
Conway—Norton conjectures. We recall from Theorem 21.7 that Borcherds’
denominator formula is given by

e(p) [T (1—e(=a))™ =3 s(w)w (e(p) S (=DMe(=37 ‘I’)>
acdt weW v
where p e Q®R is any vector satisfying
(p,ai)zé(ai,ai) forall iel.

Now we have

ho— (""‘1)}_11_(”_ l)ilo
" 2

=by+nb,.

Thus we can identify a fundamental root «; in the block B, with its image
by+nb, in the Cartan subalgebra )¢, of ¢ provided we remember that
there will be ¢, different such fundamental roots «; with a given image
by+nb,.
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(—ay—ay)

We may take p= 5

, since if a; € B, we have

—hy—h
(. a;) :<#7 b0+”b1>=<_bo’ by+nb,)=n

whereas
<ai’ ai> = <b0+nb1» b0+nb1> =-2n.

Thus (p, a;) = % (o, a;).
Hence we shall use this vector p in Borcherds’ denominator formula. Using
the natural homomorphisms

OQ—-H—->My=H/Z
ai—>hi—>h_i

we may interpret Borcherds’ denominator formula in the integral group ring
of e (M) rather than the integral group ring of e(Q). Bearing this in mind
we define

p=e’, q= e,
Then e” = p~! and so the left-hand side of the denominator identity is

p [T A=pmg")
ne

since the positive roots a € ®* are the elements of Ot which map to elements
of M, of the form mb, +nb, with m >0 and n € Z, and the number of a € O
mapping to mb,+nb, is dim M, ,) =c,,,.

We now consider the right-hand side of the denominator identity. We recall
that, for a € Q, e(a) = (—1)* where « is the sum of k orthogonal imaginary
fundamental roots and e(a) =0 otherwise. In the case of the Monster Lie
algebra ¢ no two imaginary fundamental roots are orthogonal since

(by+mb,, by+nb,) =—(m+n).

Thus the elements a € Q contributing to Y () e® are « =0 with e(a) =1 and
the imaginary simple roots in Q. These map to elements of form b,+nb, €
N, There are ¢, such roots a € Q mapping to b,+nb, and they all give
e(a)=—1. Thus

Y e(a)e*=1-)"c,pq".

aeQ n>0
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Now the Weyl group W has order 2 and consists of the elements 1 and s,.
We have s,(p) = g and s,(g) = p. Thus the right-hand side of the denominator

identity is
p! (1 - C,,pq”) —q” (1 - C,.qp”>
n>0 n>0

= (p1 +2 cm”) - (ql +2 cnq”)
n>0 n>0

=j(p) —j(q).

Thus we have obtained the following result.

Theorem 21.10 Borcherds’ denominator identity for the Monster Lie algebra
M asserts that:

p T (A=p"g") " =j(p) — j(q)

nez

where c, is the coefficient of q" in the modular function j. |

In fact this identity was proved by Borcherds from first principles and used
subsequently to prove that the fundamental roots of ¢ map to the elements

by— by, by+by, by+2b,, by+3b,, ...

of I¢,.

Further information about results stated without proof in this chapter can
be found in the papers of R. Borcherds ‘Generalised Kac—-Moody algebras’,
Journal of Algebra 115 (1988), 501-512, and ‘Monstrous moonshine and
monstrous Lie superalgebras’, Inventiones Mathematiae 109 (1992), 405-444.
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Summary pages — explanation

There follow a number of summary pages, one for each Lie algebra of finite
or affine type, giving basic properties of the Lie algebra in question. The
information given differs to some extent between the Lie algebras of finite
type and those of affine type.

In the case of the algebras of finite type we give the name of the algebra,
the Dynkin diagram with the labelling we have chosen for its vertices, the
Cartan matrix, the dimension of the Lie algebra, its Coxeter number, the
order of its Weyl group W and the degrees of the basic polynomial invariants
of W. We also give information about its root system. The roots are most
conveniently described in terms of a basis 3, ... , 8,, of mutually orthogonal
basis vectors all of the same length. In several cases it is convenient to choose
m greater than the rank / of the Lie algebra, so that the root system lies in
a proper subspace of the vector space spanned by S, ..., (,,. In the cases
when there are roots of two different lengths the long roots and short roots
are both described. The extended Dynkin diagram is given and the root lattice
described in terms of the above orthogonal basis. The fundamental weights
are given, as is the index of the root lattice in the weight lattice. Finally the
standard invariant forms on Hp and Hj are described, and the constant is
given which converts the standard invariant form on Hy, into the Killing form.

The labelling given here for the vertices of the Dynkin diagrams of types
E¢ and E, differs from that used in Chapter 8, where it was convenient to
describe the root systems of type E,, E, or Eg together in Section 8.7.

In the case of the Lie algebras of affine type we have given two names for
each algebra which we have called the Dynkin name and the Kac name. The
Dynkin name describes the Dynkin diagram of the algebra whereas the Kac
name, introduced at the end of Chapter 18, indicates whether the Lie algebra is

540
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of untwisted or twisted type, and in the case of those of twisted type indicates
the type of the untwisted affine algebra from which it is obtained, together
with the order of the automorphism of which it is the fixed point subalgebra.
This Kac notation is entirely consistent with the notation normally used to
describe the twisted Chevalley groups.

The Dynkin diagram with chosen labelling is given, together with the gen-
eralised Cartan matrix and the integers ay, a,, ..., a; and ¢y, ¢y, ..., ¢;. The
central element c, the basic imaginary root 8, and the elements 6 € (HD%)* and
hy € HY which play an important role in the theory of affine algebras are writ-
ten down explicitly. The Coxeter number and dual Coxeter number are given.

The type of the finite dimensional Lie algebra L° obtained by removing
vertex 0 from the Dynkin diagram is given. The root system ® is described
in terms of the root system @®° of L°. The real and imaginary roots are given
separately and the multiplicities of the imaginary roots are given. (The real
roots all have multiplicity 1.) In order to clarify the action of the affine Weyl
group we describe the lattices M C Hy and M* C (HD%)* which give rise to
the translations in the affine Weyl group. We also describe the fundamental
alcoves AC Hp and A*C (Hﬂ%)* whose closures give fundamental regions
for the action of the affine Weyl group. Then we describe the fundamental
weights in terms of the fundamental weights of L°, and the standard invariant
forms on H and on H*.

For the affine algebras of types C),1>2, and A/l we have given two
different descriptions, corresponding to two choices of the vertex of the
Dynkin diagram labelled by 0. (The algebra A’l behaves just like 6‘1’ when
[=1.) Both descriptions are useful, as is shown in Section 18.4. The first
description is the conventional description in which the associated finite
dimensional algebra has type C,, and which is discussed in Chapter 17. The
second description is the one used to obtain the realisation of 6‘,’ as 2A,, in
Section 18.4. Here the associated finite dimensional algebra has type B,. A
word of caution is necessary in deriving the results appearing in the second
description. In these cases we have ¢, =2. Thus we cannot apply results from
Chapter 17 uncritically to these cases, since ¢, =1 is assumed in Chapter 17.
Instead we have the following situation.

1
0=086—a,ay=)  a,e,

i=1

satisfies (6, 8) =2a,c,. We also have

1 1
hy= — (c—cohy) = — > ch,.

apCy 0€0 =1
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Under the natural bijection H <> H* we have h; <> a;c;'a;, hy<>ay'cy'6,
d <> aycy'y. In addition we have

(hy, d) =aoca', (@, y) =a6'co-

The lattices M, M* are given as follows in these cases. M is the lattice gener-
ated by w (h,) for all we W?, and M* is the lattice generated by w (a,'c;'6)
for all we WO. The alcove A is bounded by the affine hyperplane 0(h) =1
and the alcove A* is bounded by the affine hyperplane A (/) = - lc .

In fact in this second description 6 turns out to be 26, where 0, is the
highest short root, and #k, is %h05~




NAME A,

NAME A,
Dynkin diagram with labelling.
(e, O O O O O O O
1 2 3 -1 I
Cartan matrix
1 2 3 -1 1
1 2 -1
2 —1 2 -1
3 —1 2
-1 2 -1
l -1 2

Dimension. dim L=1(1+2).

Coxeter number. h=I[+1.

Order of the Weyl group. [W|=(+1)!

Degrees of the basic polynomial invariants of W.

{dy,dy, ... d}={2.3,....1+1}.

Number of roots. |®|=1(l+1).

The fundamental roots in terms of an orthogonal basis.

a=B,—B a,=p,—B;,

The root system.

®={B,—B,: ij=1,...

The highest root. 0=0,—B,-

o =B= B

NES N E IS
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The extended Dynkin diagram, for /> 2.

O O O O O O
O O O O O O

The root lattice 0=> Za,.
I+1
0= {Zfzﬁz ; €L, Z§i=0}~
i=1

The fundamental weights.

0= g (1 =D (Bt +B) =i (B +Bu)) =1l

The index of the root lattice in the weight lattice. |X:0|=1+1. X/0
is cyclic.
The standard invariant form on Hp.

(hish;)= A,

[ARA
The standard invariant form on Hy.
(@, )= A,

The Killing form on Hp.

1
(5,3 = 5 (5

where b=2(1+1).
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NAME B,
Dynkin diagram with labelling.
o o o o o o a—>0
1 2 3 -1 l
Cartan matrix
1 2 3 -2 I-1 l
1 2 -1
2 -1 2 -1
3 —1 2
[-2 2 -1
-1 -1 2 -1
l -2 2

Dimension. dimL=I(21+1).

Coxeter number. h=2l.

Order of the Weyl group. [W|=2"-1!

Degrees of the basic polynomial invariants of W.

{d\,d,,....d}={2,4,...,2]}.
Number of roots. || =2/>.
The fundamental roots in terms of an orthogonal basis.
o =B—By =B,—Bs ..., o =B_,—B, a=p.

The root system. O =P, UD, where
O = {£B,£B;: i, j=1,....1, i#j}
b, ={£B;; i=1,....1}.

The highest root. 0,=pB,+8,.

The highest short root. 0,=p8,.
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The extended Dynkin diagram.

o

The root lattice 0=> Zau,.

(@)
(@)
(@)

1
0= :Xl:fﬁl ; fiez} .
The fundamental weights.
w; =B +--+B, i=1,...,1—-1
w; = %(Bl'l_"'—"_ﬁl)'
The index of the root lattice in the weight lattice. |X:0|=2.
The symmetrising matrix D =diag (d,).
d=1i=1,...,1-1 d,=2.
The standard invariant form on Hy.
(hi> hj)=Ay;d,;.
The standard invariant form on Hj.
(. ) =d; " Ay

The Killing form on Hp.

1
<X, y>K=E<x’ y>
where b=4[-2.



NAME C, 547

NAME (,
Dynkin diagram with labelling.

(@)
@)
@)

(e, O O
1 2 3

Cartan matrix

1 2 3 -2 1-1 1
1 2 -1
2 -1 2 -1
3 -1 2
[=2 2 -1
I—1 -1 2 =2
l -1 2

Dimension. dim L=1(214+1).
Coxeter number. h=2l.
Order of the Weyl group.  |W|=2.1!
Degrees of the basic polynomial invariants of W.
{d\,d,,....d}={2,4,...,2]}.
Number of roots.  |®|=2/>.
The fundamental roots in terms of an orthogonal basis.
a =B =By, =p—Bs ..., a_=B_—B;, o=2B.
The root system. O =P, Ud, where
O ={£2B;; i=1,....1}
O ={£p,xB;; i,j=1,....1 i#j}.
The highest root. 0,=20,.

The highest short root. 0,=B,+8,.
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The extended Dynkin diagram.

(0]
o

[ommwane} O

The root lattice 0=> Za,.

(@)

<0

0= Zgiﬁi; &€z, Zfz even}.

The fundamental weights

=P+ 4B i=1,...

The index of the root lattice in the weight lattice.

The symmetrising matrix D =diag (d,).
d=2 i=1,...,1-1
The standard invariant form on Hp.

(i )= Ayd

-
The standard invariant form on H.

(a,-,aj)zd.’lA

i ij*

The Killing form on Hp.

1
(. ¥ =7 (0 y)
where b=2(1+1).

d=1.
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NAME D,
Dynkin diagram with labelling.

O
19

Q
Q
j/\y

[\
-T

(e, O O
1 2 3

Cartan matrix

1 2 3 -2 I—-1 I
1 2 -1
2 -1 2 -1
3 -1 2
[-2 2 -1 -1
I—1 -1 2
! —1 2

Dimension. dimL=1I(21-1).

Coxeter number. h=2]1-2.

Order of the Weyl group. [W|=211

Degrees of the basic polynomial invariants of W.

{d,d,,....d}={2,4,...,21-2,1}.
Number of roots. |®|=2I(1-1).
The fundamental roots in terms of an orthogonal basis.
a,=B—PBy =B—PB3 .., @ 2=B =B,

a =B —Bi a=B_+B:
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The root system.

O={£B B, 5 i j=1,....1 i#j}.
The highest root. 0=8,+p,.

The extended Dynkin diagram.

:>o<z 1=4
The root lattice Q=) Z«;.

!
QZ{Zfz’Bi; §el, Zfieven}.

i=1

o
v
(9]

The fundamental weights.
w, =B+ +B; i=1,...,1-2
W= % Bi+-+Biat+Bii—B)
w; = % B+ +B2+B1+B).
The index of the root lattice in the weight lattice. |X:0|=4.
X/Q is cyclic if [ is odd and non-cyclic if [ is even.
The standard invariant form on Hp.
(s )= A
The standard invariant form on H.
(o ;) =A,.

The Killing form on Hp.

1
(3 =7 (9)
where b=4(1—1).



NAME E,

NAME E,
Dynkin diagram with labelling.
1 2 3 5 6
O O I O O
4
Cartan matrix
1 2 3 4 5 6
1 2 —1 0 0 0 0
21 -1 2 -1 0 0 0
3 0 -1 2 -1 -1 0
4 0 0 -1 2 0 0
5 0 0 —1 0 2 —1
6 0 0 0 0 -1 2
Dimension. dim L =78.
Coxeter number. h=12.

Order of the Weyl group. |[W|=2"-3*.5

Degrees of the basic polynomial invariants of W.
{d\,d,,....d¢}={2,5,6,8,9,12}.

Number of roots. |®|=72.

The fundamental roots in terms of an orthogonal basis.

Bi: Ba» Bss Bas Bs» Bs» B, Bs orthogonal basis.
a =B, ay=PB,—B;, a;=0;—B4y, a,=B,—Ps,

as =4+ Bs, a6=_% (B1+By+ B3+ Bs~+Bs+Bs+B,+Bs) -

551
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The root system.
@:{iﬁ;iﬁj7 l,J=1,2,3,4,5 l?é_]}
8 8
U %Zsiﬁi; 8i=:|:1,]_[8i:l, Eg=E;=E&g¢.
=l i=1
The highest root.
0=1(B,+B,+Bs+Bs—Bs—Bs—B,—Bs).

The extended Dynkin diagram.
O O O O O

The root lattice Q=) Z«;.

8 8
0= Zgiﬁi ; 2¢,€, fi_fjez, Zfiezzv Lj=1,...,8§=&=&
i=1

i=1
The fundamental weights.
0, =B — % (Bs+B7+Bs)
W, =B +B,— % (Bs+B7+Bs)
w3 =B+ B, +Bs— (Bs+B7+Bs)
Wy = % (Bi+B2+B5+Bs—Bs—Bs—B7—Bs)
ws =3 (Bi+Bo+Bs+By+Bs) = 5 (Bo+Br+By)
0o =—3 (Bs+B7+Bs) -
The index of the root lattice in the weight lattice. |X:0|=3.
The standard invariant form on Hy.
(hish;)= A,
The standard invariant form on Hy.
(o, ;) =4,
The Killing form on Hp.
(= ()
where b=24.
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NAME E,
Dynkin diagram with labelling.
1 2 3 4 6 7
(e, O O I O O
5
Cartan matrix
1 2 3 4 5 6 7
1 2 -1 0 0 0 0 0
21 -1 2 -1 0 0 0 0
3 0 -1 2 -1 0 0 0
41 O 0 -1 2 —1 -1 0
5 0 0 0 -1 2 0 0
61 O 0 0 —1 0 2 -1
7\ 0 0 0 0 0 —1 2
Dimension. dim L =133.
Coxeter number. h=18.

Order of the Weyl group.  |W|=21.34.5.7.
Degrees of the basic polynomial invariants of W.
{d\,d,,....d;}={2,6,8,10,12,14,18}.

Number of roots. |P|=126.

The fundamental roots in terms of an orthogonal basis.

Bi1. B2, B3, By, Bs» Bs» B, By orthogonal basis.
a=B,—By =B,—PB5 a3=B3—PBs, a,=Ps—PBs, as=Ps— P
ag=Bs+Bs a;=—3 (B +B+Bs+Bs+Bs+Bs+Br+Bs).
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The root system.
(D:{iﬁ[iﬁj; i,j=1,2,3,4,5,6 i;ﬁj}
U (87 +Bs)}
8 8
U %ZEiBi; Si:il,nai:l,g7:gs .

i=1 i=1
The highest root. 0=—B,—PBs.
The extended Dynkin diagram

(e, O O

o0—0
(@)
@)
(@)

The root lattice Q=) Za;.

8 8
Q2{2§i3i§ 26, e, gi_fjeza Zfiezz’ Lj=1,...,8 §&=§&

i=1 i=1
The fundamental weights.
®, =B, —3(B;+Bs)
@, =B +B,—(Br+Bs)
oy =B +B+B5— % (B7+Bs)
wy =B+ Br+B3+Bs—2(B;+Bs)
s = % (Bi1+By+B5+Bs+Bs—Bs) — (B;+Bs)
W = % B+ B+ B3+ Bs+Bs+Bs) — % (B7+Bs)
w; =—(B7+Bs)-
The index of the root lattice in the weight lattice. |X:0|=2.
The standard invariant form on Hp.
(. hj) =4
The standard invariant form on Hj.
(o, ;) =4,
The Killing form on Hy.
% V=5 (0)
where b=36.

} |



NAME E,

NAME E,
Dynkin diagram with labelling.

1 2 3 4 5 7 8
O O O O I O O
6
Cartan matrix

1 2 3 4 5 6 7 8
1 2 -1 0 0 0 0 0 0
21 -1 2 -1 0 0 0 0 0
31 O -1 2 -1 0 0 0 0
41 0 0 -1 2 -1 0 0 0
51 0 0 0 -1 2 -1 -1 0
61 O 0 0 0 -1 2 0 0
71 O 0 0 0 -1 0 2 -1
8\ 0 0 0 0 0 0 -1 2

Dimension. dim L =248.
Coxeter number. h=30.
Order of the Weyl group.  |W|=2!4.35.52.7,
Degrees of the basic polynomial invariants of W.
{d\,d,,....ds}={2,8,12,14, 18,20, 24, 30} .
Number of roots. |®| = 240.
The fundamental roots in terms of an orthogonal basis.
=B =By, ay=B,—B;, ay=B;—By, a,=B,—Bs,
as=Bs—Bs, ag=PBs—B;, a;=PBs+B5
oy = _% (Bi+ B2+ B3+ Bs+Bs+Bs+B7+Bs) -

555
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The root system.
®={+B,+B;: i,j=1,2,3,4,5,6,7.8 i#j}

8 8
Ulid eB;; e==1, i]:[lsizl}.

i=1
The highest root. 0=p0,—Bs.
The extended Dynkin diagram

(e, O O

@)
@)

o—0
@)
(@)

The root lattice Q=) Z«;.
8 8
Q=1>"EBis 26 €L, é—§,€Z, Y €2 i j=1,... ,8] .
i=1 i=1
The fundamental weights.
w, =B =By
wy =P+ B, =28
w3 =B +B,+B;—3B;
w,=P1+Br+Bs+Bs—4Bs
ws =B, +B,+Bs+Bs+Bs—5Bs
W = % (Bi+Bo+B3+Bs+Bs+Bs—B7)— %Bs
w7 = % B+ B+ B3+ Bs+Bs+Bs+B7)— %Bs
wy = —24.
The index of the root lattice in the weight lattice. |X:0|=1.
The standard invariant form on Hp.
(his ;)= A,
The standard invariant form on Hy.

<0‘i’ aj) Ajje

The Killing form on Hp.

1
(X, V)= b (x,y)
where b =60.



NAME F,
NAME F,
Dynkin diagram with labelling.
o > 0O o)
1 2 3 4
Cartan matrix
1 2 3 4
1 2 -1 0 0
21 -1 2 -1 0
3 0 -2 2 -1
4 0 0 -1 2
Dimension. dim L =52.
Coxeter number. h=12.

Order of the Weyl group.  |W|=27.32

Degrees of the basic polynomial invariants of W.
{d,,d,,ds,d,} =1{2,6,8, 12}.

Number of roots. |P|=48.

The fundamental roots in terms of an orthogonal basis.

557

a=B,—By a,=p,—PB5, a;=ps, a4=%(—,81—ﬁ2—,83+[34).

The root system. D =P, UD, where

O ={+B,£B;: i,j=1,2,3,4 i#j}
4

O, = {+p, i=1,2,3,4}Ui§Zs,ﬂi; s,-:j:l}.
i=1

The highest root. 0,=B,+8,.
The highest short root. 0,=p,.

The extended Dynkin diagram.
oO—Oo0—O— > 0—=0
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The root lattice Q=) Z«;.
4
Q=1 &P s 26,€Z, é—&€li,j=1,2,3,4¢.
i=1
The fundamental weights.
w; =B+By
w, =B +B,+2B,
w3 = % (Bi+B,+B5+3B4)
w, =By
The index of the root lattice in the weight lattice. |X:0|=1.
The symmetrising matrix D =diag (d,).
d=1, dy=1, dy=2, d,=2.
The standard invariant form on Hy.
(his hj)=Ayd,.
The standard invariant form on Hj.
(a a;)=d;" A,

The Killing form on Hp.

1
<X, y>K= E<x’ y>
where b=18.
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NAME G,
Dynkin diagram with labelling.
=
Cartan matrix
1 2
1 2 —1
2\-3 2
Dimension. dim L =14.
Coxeter number. h=6.

Order of the Weyl group. [W|=12.
Degrees of the basic polynomial invariants of W.
{di, dr}={2,6}.

Number of roots. || =12.

The fundamental roots in terms of an orthogonal basis.
B, B,, B; orthogonal basis.
a;=-2B,+B,+B3, a,=B,—p0,.

The root system. O = UD, where

O = {£(-2B,+B,+B5), £(B1—2B,+B;5), =(Bi+B.—2B3)}
O, ={x(Bi—PB,), £(B—B3), £(Bi—B3)}-
The highest root. 0,=—B,—B,+28;.

The highest short root. 0,=—LB,+B;.
The extended Dynkin diagram.
o RO ——¢

The root lattice Q=" Z«;.

0=|3¢B: &€, &+&+&=0}.

i=1
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The fundamental weights.
w; =—B1—B,+2B;
w, = =P, +Bs.

The index of the root lattice in the weight lattice.

The symmetrising matrix D =diag (d;).

The standard invariant form on Hy.

(i h;)=A,d,.
The standard invariant form on Hy*.
(ai, aj)zdi_lAij.

The Killing form on Hp.

(= ()

where b=2_8.

|X:Q|=1.



DYNKIN NAME A,  KAC NAME A,

DYNKIN NAME Al KAC NAME
Dynkin diagram with labelling.

o m e
0 1
Generalised Cartan matrix.
0 1
o 2 -2
1\-2 2
The integers ay, a,, ... , a,.
1 1
The integers ¢y, ¢y, - .- , C}-
1 1
=D
The central element c.
c=hy+h,.
The basic imaginary root é.
o=ay,+a;.
The element h, € HY.
hy=h,
The element 6 € (HY)".
0=q,
The Coxeter number. h=2.
The dual Coxeter number. h¥=2.

The Lie algebra L°.  L°=A,.
The lattice M C HY.

M=17h,.

g

561



562 Appendix

The lattice M* C (H3)".
M =Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0, a;(h)<1}.
The fundamental alcove A* C (HY)".
A ={re(HY) 5 A(h)>0, A(h)) <1}.
The root system @ in terms of the root system ®° of L.
O, ={a+r8; acd’, rez}
@, ={k6; keZ, k#0}  Multiplicity 1.

The fundamental weights w,€ Hf i=0,1 in terms of the fundamental
weights @;, i=1, of L°.

W)=Y, O =0+

The standard invariant form on H.

(hioh)=A4,; i,j=0,1
(ho,d) =1, (hy,d)=0
(d,d)=0.

The standard invariant form on H*.
(. ) =4, i.j=0,1

(ag,7) =1, (a;,7)=0
(v,7)=0.



DYNKIN NAME A,  KAC NAME A, 563

DYNKIN NAME A, KAC NAME ZA,
(1st description)

Dynkin diagram with labelling.

==
0 1
Generalised Cartan matrix.
0 1
o 2 —1
1\—-4 2
The integers ay, a,, ... , a,.
1 2
==
The integers ¢y, ¢;, ..., C;.
2 1
=
The central element c.
c=2hy+h,
The basic imaginary root 8.
d0=0y+2q
The element h, € HY.
hy= % h,
The element 6 € (H3)"
0=2«,.
The Coxeter number. h=3.
The dual Coxeter number. h¥=3.

The Lie algebra L°.  L°=A,.
The lattice M C HY.

M =1Zh,.
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The lattice M* C (H3)"
M =Za,.
The fundamental alcove A C HY.
A= {heHD% ; o (h)>0, 2a,(h) < 1}.

The fundamental alcove A* C (H2)"

A ={re(HR) 5 A(h)>0, A(h)) <1}.
The root system @ in terms of the root system ®° of L.

Op ={a+rd; acd’, reZ}

Dp. = {20+ (2r+1)5; acd’, reZ}

b, ={ké; keZ, k#£0} Multiplicity 1.

The fundamental weights w; e H; i=0,1,...,[in terms of the fundamental
weights @, i=1,...,[ of L.

wy=2y, w,=0,+Y.

The standard invariant form on H.
(R h))=a;c;'A; i, j=0,1
(hy,dy=1%, (h,,d)=0
(d,d)=0.

The standard invariant form on H*
(ai, aj)za,-_lciAij i,j=0,1
(ag, y)=2, (a;,7)=0
(v.7)=0.



DYNKIN NAME A,

DYNKIN NAME 4

(2nd description)

Dynkin diagram with labelling.

Generalised Cartan matrix.

The integers ay, a,, - .. , a;.

The integers ¢y, ¢y, ... , ¢}

The central element c.

The basic imaginary root 8.

The element h, € HY.

The element 6 € (HY)".

The Coxeter number.
The dual Coxeter number.
The Lie algebra L°.

The lattice M C HY.

KAC NAME A, 565

KAC NAME 24,

c=hy+2h,.

0=2a,+a;.

h=3.
h¥ =3.
LO=A,.

M=17h,.
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The lattice M* C (H3)".
M*=1Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0, a;(h)<1}.
The fundamental alcove A* C (HY)".
Ar={Xxe(HR)" 5 A(h)>0, 2A(h)) <1}.
The root system @ in terms of the root system ®° of L°.
by, = {%(a—}—(Zr— 1)8); acd’, re Z}
Dy = {a+2r8 ; aed, reZ}
&, ={ké ; keZ, k+#0} Multiplicity 1.

The fundamental weights w; e H; i=0,1,...,[in terms of the fundamental
weights @, i=1,...,[ of L.

wy=7y, 0 =0,+2%y.

The standard invariant form on H.
(R h))=a;ci'A; i, j=0,1
(hg, d)=2, (h;,d)=0
(d,d)=0.

The standard invariant form on H*.
(ai, aj)za,-_lciAij i,j=0,1
(e, ’Y>=%a (@, 7)=0
(v.7)=0.
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DYNKIN NAME A, KACNAME A4, [>2

Dynkin diagram with labelling.

1

2 -1

Generalised Cartan matrix.

0 1 2 -1 l
2 -1 ~1
0
—1 2 -1
1
-1 2
2
2 —1
-1
-1 2 -1
l
-1 -1 2
The integers ay, a,, ... , a,.
1 1 1 1 1 1 1 1
1
The integers ¢y, ¢y, - .- , ¢}

1 1 1 1 1 1 1 1
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The central element c.
c=hy+h+---+h_,+h.
The basic imaginary root .
d=ay+a,+ - +ao_ +a,.
The element h, € HY.
ho=h,+hy+---+h_,+h,.
The element 6 € (HY)".
O=a,+a,+---+a,_,+a,.
The Coxeter number. h=I1+1.
The dual Coxeter number. h=I1+4+1.
The Lie algebra L°.  L°=A,.
The lattice M C Hp.
M=7Zh +Zhy+---+Zh,_, +Zh,.
The lattice M* C (HY)".
M =Zoa,+Zo,+---+Za,_; + Za,.
The fundamental alcove A C HY.
A:{heHﬂ% ; a;(h)>0fori=1,...,1
a;(h)+oy(h)+---+a_(h)+a,(h) <1}
The fundamental alcove A* C (HD%)*.
A ={re(H]) ;s A(h)>0fori=1,...,1
ACh)+A(hy)+---+A(h_)+A () <1},
The root system ® in terms of the root system ®° of L°.
Py ={a+r8; acd’, rez}
®,,={ké; keZ, k+#0} Multiplicity /.

The fundamental weights w; e Hy i=0, 1, ..., [in terms of the fundamental
weights @;, i=1,...,lof L.

W=7, O;=0;+Y, 0=0+Y, ..., ©O_ =0, ;+Y, 0,=0,+Y.



DYNKIN NAME A,  KAC NAME A,

The standard invariant form on H.

<h- h-):A

12 J

i,j=0,1,...,1

ij

(hg,dy=1, (h,dy=0 i=1,...

(d,d)=0.
The standard invariant form on H*.
(ai,aj>=A i,j=0,1,...,1

ij

(ag, V)=1, {(a,y)=0 i=1,...

(v, v)=0.

[1>2

569
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DYNKIN NAME B, KACNAME B, [>3
Dynkin diagram with labelling.

0>
1 2 3 -1 !

Generalised Cartan matrix.

(@)
(@)
(@)
(@)
]

0 1 2 3 -1
0 2 -1
1 2 —1
2 -1 -1 2 -1
3 -1 2
2 -1
[—1 -1 2
[ -2
The integers ay, a,, ... , a;.
1 2 2 2 2 2 2 2 2
1:>0 o o o o o a—Do
The integers ¢y, ¢, - - , C}.
1 2 2 2 2 2 2 2 1
1:>0 o o o o o a—>—o

The central element c.

c=hy+hy+2hy+2hy+---+2h,_ +h,.
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The basic imaginary root 8.
do=ay+a,+2a,+ 20+ +20,_, +2a,.

The element h, € HY.

hy=h,+2hy+2hs+---+2h,_,+h,.
The element 6 € (HY)".

O0=oa,+2a,+ 203+ --+2a,_ | +2a,.
The Coxeter number. h=2l.
The dual Coxeter number. h'=2[—1.
The Lie algebra L°.  L°=B,.
The lattice M C HY.

M=7Zh+Zh,+---+Zh,_,+7Zh,.

The lattice M* C (HR)".

M =Za,+Zo,+---+Za,_,+27Za,.
The fundamental alcove A C HJ.

A={heHy ; a;(h)>0 fori=1,...,1
a,(h)+2a,(h)+205(h)+---+2a;,_,(h)+2a,(h) < 1}.
The fundamental alcove A* C (H]‘?R)*.
A ={Ae(HY) s A(h)>0 fori=1,...,1
A(h) +2X(hy)+2A (hy) +- -4+ 2X (b)) + A (h) < 1}.
The root system ® in terms of the root system ®° of L°.
Dy =f{a+r6; acd’, rez}
O, ={ké; keZ, k#0} Multiplicity /.

The fundamental weights w; € H}; i=0,...,[ in terms of the fundamental
weights @;, i=1,...,lof L.

W)=Y, @O =01y, 0=0,+2Y,...,0_1=0,_,+2y, 0,=b,+Y.
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The standard invariant form on H.
(R hj)=a;c;' Ay 0, j=0,1,....1
(hy,dy=1, (h;,d)=0 i=1,...,1
(d,d)=0.

The standard invariant form on H*.
(a[,aj>=ai’lc,«A,«j i,j=0,1,...,1
(ag, yY=1, {(e;,y)=0 i=1,...,1
(v,7)=0.



DYNKIN NAME B!

DYNKIN NAME B!
Dynkin diagram with labelling.

KAC NAME ?A,,_,

>3

KAC NAME 24,, |

[>3

0
z>o o o o o o—a <D
1 2 3 -1 I
Generalised Cartan matrix.
0 1 2 3 -1 l
0 2 -1
1 2 -1
2 -1 -1 2 -1
3 -1 2
2 -1
[—1 -1 2 -2
l -1 2
The integers ay, a,, ... , a,.
1 2 2 2 2 2 2 2 1
O O O O O O K G )
1
The integers ¢y, ¢y, - .- , C}-
2 2 2 2 2 2
O O O O <0

l;.>'2> 2
1

The central element c.

c=hy+hy+2hy+2hy+---+2h,_, +2h,.

573
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The basic imaginary root 6.
o=ay+a,+2a,+2a,+ - +2a,_, +a.
The element h, € HY.
ho=hy+2hy+2hy+---+2h,_+2h,.
The element 6 € (HY)".
O0=a,+20, 4205+ -+2a, |+,
The Coxeter number. h=2l-1.
The dual Coxeter number. h¥=2I.
The Lie algebra L°.  L°=C,.
The lattice M C Hy.
M=Zh,+Zhy+---+Zh,_,+2Zh,.
The lattice M* C (HR)".
M '=Za,+Za,+- -+ Za,_,+Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0 fori=1,...,1
a;(h)+2a,(h) +2as(h) +- - +2a,_,(h)+ o, (h) <1}.
The fundamental alcove A* C (HY)".
A ={rxe(HR) ; A(h)>0 fori=1,...,I
A () +2A(hy) +2A (hy) +- - 4+2X (k) +2A (b)) < 1}.
The root system @ in terms of the root system ®° of L°.
Dp = {a+rd; acd®), rez}
Oy, = {a+2r8 ; acd), reZ}.
b, = {2k6; keZ, k#0} Multiplicity /
U{(2k+1)6; keZ} Multiplicity /—1.

The fundamental weights w; e H; i=0,1,...,[in terms of the fundamental
weights w;, i=1,...,lof L.

Wy=7Y, 0, =w,;+7y, W, =0,+2y, ...,

0_1=0,_,+2y, 0,=0,+2y.
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The standard invariant form on H.
(hinhj)=a;ci'A; 0, j=0,1,....1
(hy,dy=1, (h;,d)=0 i=1,...,1
(d,d)=0.

The standard invariant form on H*.
(ai,aj>=ai"c,~A,~j i,j=0,1,...,1
(ag, y)=1, {(e;,y)=0 i=1,...,1
(v, 7)=0.

575
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DYNKIN NAME C, KACNAME C, [>2
Dynkin diagram with labelling.
o 0 0 0 0 O 0
0 1 2 -2 -1
Generalised Cartan matrix
0 1 2 -2 1-1 [
0 2 -1
1 -2 2 -1
2 -1 2
-2 2 -1
-1 -1 2 -2
[ -1 2
The integers ay, a,, ... , aq,
1 2 2 2 2 2 2 2 1
(o mm» e O O O O O <0
The integers ¢y, ¢y, ..., ¢
1 1 1 1 1 1 1 1 1
o O 0 ‘e ‘e 0 =<0

The central element c.
c=hy+h +hy+---+h_ +h,.
The basic imaginary root 8.
o0=ay+2a,+20,+ - +20,_ 0,
The element h, € Hy.

ho=h+hy+---+h_,+h.



DYNKIN NAME C, KACNAME C, [>2 577

The element 6 € (HY)".
0=20a,+2a,+ - +20,_,+0q,.
The Coxeter number. h=2l.
The dual Coxeter number. R =I1+1.
The Lie algebra L°.  L°=C,.
The lattice M C HS.
M=7h+Zhy+---+Zh,_,+7Zh,.
The lattice M* C (HY)".
M*=27a,+2%Zay+--+272a,_,+ Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0 fori=1,...,1
20,(h)+2a,(h)+---+2a,_(h)+a,(h) < 1}.

*

The fundamental alcove A* C (HY)
A ={Ae(HD) s A(h)>0 fori=1,...,1
Ah)+A(hy)+--+A () +A(h) <1},
The root system @ in terms of the root system ®° of L°.
Pp ={a+rd8; acd’, r €Z}
b, ={kd; keZ, k#0} Multiplicity /.

The fundamental weights w; e H; i=0,1,...,[in terms of the fundamental
weights @, i=1,...,[ of L.
Wy=Y, W=0;+Y, W=01tY, ..., 0_=0,_,+Y, 0=+

The standard invariant form on H.

<hgshj>:ajC;IAij i,j=0,1,...,1

(hg,dy=1, (h,d)=0 i=1,....1
(d, d)=0.
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The standard invariant form on H*.
(ozi, a_,-):ai’lciAij i,j=0,1,...,1
(ag, y)=1, {(e;,y)=0 i=1,...,1
(v 7)=0.
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DYNKIN NAME C! KAC NAME 2D,,, [>2

Dynkin diagram with labelling.

(@)
(@)
(@)
D)
@

=0 O O
2

0 1

Generalised Cartan matrix.

0 1 2 -2 I-1 /
0 2 -2
1 -1 2 —1
2 -1 2
-2 2 —1
-1 —1 2 —1
l -2 2
The integers a, a,, ... , a;.
1 1 1 1 1 1 1 1 1 1
<0 O O O O O O >0
The integers ¢y, ¢y, - .- , ¢}
1 2 2 2 2 2 2 2 2 1
=<0 O O O O O O >0

The central element c.
c=hy+2h+2h,+---+2h,_,+h,.
The basic imaginary root .

o=ayt+a,+a,+-+ao,_+a,.
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The element h, € HY.
hy=2h,+2hy+--+2h,_ +h,.
The element 6 € (HY)".
O=oa,+a,+--+a,_,+a,.
The Coxeter number. h=I1+1.
The dual Coxeter number. h¥=2I.
The Lie algebra L°.  L°=B,.
The lattice M C Hp.
M =2Zh,+2Zhy+---+2Zh,_, +Th,.
The lattice M* C (H2)".
M =Zo,+Zay,+---+Zo,_+Za,.

The fundamental alcove A C HY.

A={heHy ; a;(h)>0 fori=1,...,1

a;(h)+ay(h)+---+a,_(h) +a(h) <1}
The fundamental alcove A* C (HY)".
A ={re(HY) : A(h)>0 fori=1,... 1
2A(h) +2A (hy) +---+2A (h_ )+ A (h) <1}

The root system @ in terms of the root system ®° of L°.

Dp = {a+rd; acd®?, rez}

Dp = {a+2r8 ; acd), reZ}.

Q.= {2ké; keZ, k#0} Multiplicity /

U{(2k+1)6; keZ} Multiplicity 1.

The fundamental weights w; e Hy i=0, 1, ..., [in terms of the fundamental
weights @;, i=1,...,lof L°.

W=7, 0, =0,+2y, w,=w,+2y, ...,0,_=0,_+2y, w,=w,+.
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The standard invariant form on H.
(hihj)=a;ci'A; 0 j=0,1,...,1
(hy,dy=1, (h;,d)=0 i=1,...,1
(d,d)=0.

The standard invariant form on H*.

(0, a))=a;'cA;  i,j=0,1,...,1

~

(ag,yy=1, (e, y)=0 i=1,...
(. v)=0.
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DYNKIN NAME C, KACNAME 24, [>2
(1st description)

Dynkin diagram with labelling.

X0 O O
0 1 2

@)
@)
@)
@)
]

Generalised Cartan matrix.

0 1 2 -2 I-1 1
0 2 -2
1 —1 2 —1
2 —1 2
1-2 2 -1
I—1 -1 2 =2
l —1 2
The integers ay, a,, ... , a;.
2 2 2 2 2 2 2 2 2
<X O O O O O O X0

The integers ¢, ¢y, - .. , ¢}

1 2 2 2
X0 O O

[OX )
(O}
[OR )
[OR )
B

The central element c.
c=hy+2h,+2hy+---+2h,_,+2h,.
The basic imaginary root 6.

0=2ay+20a,+20,+ - +20,_+a.
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The element h, € HY.
hy=h+hy+---+h_+h.
The element 6 € (HY)".
0=2a,+2a,+--+20,_ 4+«
The Coxeter number. h=2l+1.
The dual Coxeter number. h'=2[+1.
The Lie algebra L°.  L°=C,.
The lattice M C HS.
M=7Zh,+Zhy+---+Zh,_, +Zh,
The lattice M* C (HY)".
M '=Za,+Za,+---+Za,_,; + %Zal.
The fundamental alcove A C Hp.
A={heHy ; a;(h)>0 fori=1,...,1
20,(h)+2a,(h)+---+2a,_(h)+a,(h) < 1}.
The fundamental alcove A* C (H3)".
A*={re(HR) ; A(h)>0 fori=1,...,1

20 (M) 42X (hy) 4+ +2X (B ) +2A(hy) < 1.
The root system @ in terms of the root system ®° of L°.

Dy ={1(a+(2r—1)8) ; acd, reZ}

Oy i={a+rd; acd®!, rez}

Dy, ={a+2r8 ; acd), reZ}

®,,={k&; keZ, k#0}  Multiplicity /.

The fundamental weights w, € H; i=0, 1, ...,/ in terms of the fundamental
weights @, i=1,...,[ of L°.

W=7, 0 =0,+2y, w0, =w,+2vy, ...,
W =0, 12y, o,=b,+2y.
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The standard invariant form on H.
(R hj)=a;ci' Ay 0, j=0,1,....1
(hy,dy=2, (h;,d)=0 i=1,..
(d,d)=0.

1

The standard invariant form on H*.
(ai,aj)zai’]ciAU i,j=0,1,...,1
(g, v) =3, (a;, y)=0  i=1,...,1
(v, 7)=0.
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DYNKIN NAME C, KACNAME 24, [>2
(2nd description)

Dynkin diagram with labelling.
> g O

0 1

(@)
(@)
(@)
(@)
E

Generalised Cartan matrix.

0 1 2 -2 1-1 [
0 2 -1
1 -2 2 —1
2 —1 2
-2 2 -1
-1 -1 2 -1
l -2 2
The integers ay, a,, ... , a;.
1 2 2 2 2 2 2 2 2 2
(o mm e O O O O O O >0
The integers ¢y, ¢, ... , ¢}
2 2 2 2 2 2 2 2 2 1
(o mm e O O O O O O >0

The central element c.
c=2hy+2h +2hy+---4+2h,_+h,.
The basic imaginary root 6.

O0=ay+2a,+2a,+ - +20,_; +2a;.
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The element h, € HY.
hg=hi+hy+---+h_+3h.
The element 6 € (HY)".
0=2a,+2a,+ - +2a,_, +2a,.
The Coxeter number. h=2l+1.
The dual Coxeter number. h'=2[+1.
The Lie algebra L°.  L°=B,.
The lattice M C HS.
M =7h,+Zhy+---+Zh,_,+3Zh,.
The lattice M* C (H2)".
M =Za,+Za,+---+Za,_ + Za,.
The fundamental alcove A C HJ.
A={heHy ; a;(h)>0 fori=1,...,1
20,(h)+2a,(h)+---+2a,_(h)+2a,(h) < 1}.
The fundamental alcove A* C (HY)".
A* = {/\E(H]l%)* ; A(h)>0 fori=1,...,1
2A(h) +2A (hy) +- - +2A (h_ )+ A (R) < 1}.
The root system @ in terms of the root system ®° of L.
Dp. ={a+rd; acd), reZ}
Ppi={a+rd; acd, reZ
Dp = {20+ 2r+1)6; acd?, reZj
@, ={k8; keZ, k#0}  Multiplicity /.

The fundamental weights w, e H; i=0, 1, ..., in terms of the fundamental
weights @, i=1,...,[ of L.

Wy =2Y, w,=0,+2y, w,=0,+2y, ...,
0_ =012y, 0,=0,1+7.
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The standard invariant form on H.
(hishj)=ajci' Ay 0, j=0,1,...,1
<ho’ d> = %’
(d,d)=0.

(h,dY=0 i=1,...,1

The standard invariant form on H*.
(a[,aJ-):ai"c[Aij i,j=0,1,...,1
(ag,y)=2, {(a,y)=0 i=1,...,1

(v, v)=0.
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DYNKIN NAME D4 KAC NAME
Dynkin diagram with labelling.

O>D<:3
2
1 4

Generalised Cartan matrix.

0
1 0 2 -1 0
21-1 -1 2 -1 -1
31 0 0 -1
4\ 0 0 -1 0 2
The integers ay, a,, ... , a;.
1 1
X
1 1
The integers ¢, ¢y, ... , ¢}

The central element c.
c=hy+h +2hy+hy+hy,.
The basic imaginary root 8.
O0=oay+a,+20,+a;+ay.
The element h, € HY.
hy=h,+2h,+hs;+h,.
The element 6 € (HY)".
O0=a,+20,+a;+ay.
The Coxeter number. h=6.

The dual Coxeter number. hY=6.
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The Lie algebra L°.  L°=D,.
The lattice M C HS.
M =Zh, +Zh,+Zh,+Zh,.
The lattice M* C (HY)".
M*=Zao,+Zoy+Zoy+ Zay.
The fundamental alcove A C HJ.
A= {heHﬂg ; a;(h)>0 fori=1,...,4
0ty () + 20, (h) + () - ay () < 1.
The fundamental alcove A* C (HH%)*.
A ={re(H)) : A(h)>0 fori=1,... 1
M) +2A (hy) +A (hs) A () < 1)
The root system @ in terms of the root system ®° of L°.
@Rez{a—i—rﬁ s aed, reZ}
@, ={kd; keZ, k#0}  Multiplicity 4.

The fundamental weights w; € Hy i=0,1, .../ in terms of the fundamental
weights w;, i=1,...,[ of L°.

W)=Y, O=0+Y, 0,=0,+2y, 0;=0;+Y, w;=w,+Y.

The standard invariant form on H.

(hihj)=A;  1,j=0,1,2,3,4
(hy,dY=1, (h,d)y=0 i=1,2,3,4
(d, dy=0.

The standard invariant form on H*.
(o, ;) =4,

(ag, y)=1, (a;,y)=0 i=1,2,3,4

i,j=0,1,2,3,4

(v, v)=0.
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DYNKIN NAME D, KAC NAME D,
Dynkin diagram with labelling.

(@)
(@)
(@)
(@)
(@)

0:>>
1 2 3 -3

Generalised Cartan matrix.

0 1 2 3 -3 1-2 1-1 1
0 2 -1
1 2 -1
2 -1 -1 2 -1
3 -1 2
-3 2 -1
(=2 —1 2 -1 -1
-1 -1 2
l -1 2
The integers ay, a, ... , a;.
‘;‘>g R S S S S <‘
1 1
The integers ¢y, ¢y, ..., c;.

o
(O}
(O}
(O}
(O}

1:>!2> r2"\
1
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The central element c.
c=hy+h +2hy,+2hs+---+2h_,+h;_ +h;.
The basic imaginary root 9.
o=ay+o,+20,+ 20+ +20;,_ ,+ o, +a.

The element h, € HY.

he=hy+2h,+2hy+---+2h;_,+h_;+h,.
The element 6 € (HY)".

O0=a,+20, 4205+ -+20;, ,+o,_ +a.
The Coxeter number. h=2l-2.
The dual Coxeter number. h'=2[-2.
The Lie algebra L°.  L°=D,.
The lattice M C HS.

M=7Zh +Zhy+---+Zh_+ZLh,.
The lattice M* C (HR)".
M*'=Zo,+Zo,+--+Za,_,+Za,.
The fundamental alcove A C HY.
A:{heHﬂ% ; o;(h)>0 fori=1,...,1
a,(h)+20,(h)+2a5(h)+- - +2a,_,(h) +a,_ (h) +a,(h) < 1}.
The fundamental alcove A* C (HH%)*.
A ={re(HS)" : AM(h)>0 fori=1,...,1
A(h) 42X (hy) +2A (hy) +- - +2A (h_y) +A () + A (h) < 1}

The root system @ in terms of the root system ®° of L°.

@Re:{a+r8 caed?, reZ}

O, ={ké; keZ, k#£0} Multiplicity /.

The fundamental weights w; € Hy,, i=0,1,...,[ in terms of the fundamen-
tal weights @,, i=1,...,1of L°.

wy=7v, W =0,+Y, W,=w0,+2y, ...,

W_,=0,,+2y, 0_1=0,_+Y, 0=0,1+%.
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The standard invariant form on H.

(hi,hj)=A

124 ]

i,j=0,1,....1

ij

(hy,dY=1, (h,d)=0 i=1,...

(d,d)=0.
The standard invariant form on H*.
(@, a;)=A i,j=0,1,....1

ij

(ag, y)=1, (a;,v)=0 i=1,...

(v, v)=0.



DYNKIN NAME E, KAC NAME E, 593

DYNKIN NAME E6 KAC NAME E;
Dynkin diagram with labelling.

1 2
(e, O

) W
O w
O

Generalised Cartan matrix.

0 1 2 3 4 5 6
o2 0 O 0-1 0 O
1 0O 2-1 0 0 0 O
2 0 -1 2 -1 0 O O
3 0O 0-1 2 -1-1 0
41-1 0 0 -1 2 0 O
5 0O 0 0-1 0 2 -1
6\ 0 0 O O 0 -1 2
The integers ay, a,, ... , a;.
1 2 3 2 1
(e, O O O O
2
1
The integers ¢y, ¢y, - .. , ¢}
1 2 3 2 1
(e, O O O O
2

The central element c.
c=hy+h,+2hy,+3h;+2h,+2hs+ h.
The basic imaginary root &.

O0=ay+a,+2a,+3a;+2a,+ 205+ aq.



594 Appendix

The element h, € HY.

ho=h,+2h,+3hs+2h,+2hs5+ hg.
The element 6 € (HY)".

0=oa,+2a,+ 303+ 20,4+ 205+ ag.
The Coxeter number. h=12.
The dual Coxeter number. h'=12.
The Lie algebra L°.  L°=E,.
The lattice M C HS.

M =7Zh,+Zh,+Zhs+7Zh,+Zhs+ Zhs.
The lattice M* C (H3)".
M*=Za,+Zoy+Zay+Zoy, + Zas+ L.
The fundamental alcove A C HJ.
A={heHy ; a;(h)>0 fori=1,...,6
a,(h)+20,(h)+3a5(h) +2a,(h) +2as(h) + ag(h) < 1}.

*

The fundamental alcove A* C (H3)
A ={re(HY) : A(h)>0 fori=1,...,6
A(h) +2A (hy) +3A (hy) +2A (hy) +2A (hs) + A (he) < 1}
The root system @ in terms of the root system ®° of L°.

Py ={a+r8; acd’, rez}
®,,={ko; keZ, k#0}  Multiplicity 6.

The fundamental weights w, € Hf, i=0,...,6 in terms of the fundamental
weights @;, i=1,...,6 of L°.

W)=Y, W =0;1Y, 0,=0,+2y, w;=0;+37y,
W, =042y, 0s=ws+2Y, ws=w0s+"Y.
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The standard invariant form on H.

(hi,hj)=A i,j=0,...,6

ij

(hy,dY=1, (h,d)=0 i=1,...

(d,d)=0.
The standard invariant form on H*.
(o, a;)=A i,j=0,....6

ij

(ag,Y)=1, {a;,y)=0 i=1,...

(v, 7)=0.

595
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DYNKIN NAME E, KACNAME E,
Dynkin diagram with labelling.

1 2 3 4 6 7 0
O O O I O O O
5
Generalised Cartan matrix.
o 1 2 3 4 5 6 17
0 2 0 0 0 0 0 0 -1
1 o 2-1 0 O 0 0 O
2 0Oo-1 2 -1 0 0 0 O
3 O 0-1 2 -1 0 0 0
4 o 0 O0-1 2 -1 -1 0
5 o 0 0 O0-1 2 0 O
6 o 0o 0 0 -1 0 2 -1
7\-1 0 0 0 O 0 -1 2
The integers ay, a,, ... , q,
1 2 3 4 3 2 1
O O O I O O O
2
The integers ¢, ¢y, ... , C}.
1 2 3 3 2 1
O O O O O O

0 O—O &

The central element c.
c=hy+h +2h,+3h;+4h,+2hs+3hs+2h,.
The basic imaginary root .

d0=ay+a,+2a,+3a;+4a,+2a5+ 30+ 2a;.
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The element h, € HY.
ho=h,+2h,+3hy;+4h,+2hs+3hs+2h,.

The element 6 € (HY)".
O0=oa,+2a,+3a;+4a,+2as+ 305+ 20;.

The Coxeter number. h=18.

The dual Coxeter number. h'=18.

The Lie algebra L°.  L°=E,.

The lattice M C HS.

M=7Zh,+Zhy,+Zhy+Zh,+Zhs+ Zhs+ Zh;.
The lattice M* C (HY)".
M*=Za,+Zo,+Zay+ Loy, +Zos+ Log+ La,.
The fundamental alcove A C HJ.
A={heHy ; a;(h)>0 fori=1,...,7
a;(h)+2a,(h)+3a5(h)+4a,(h)+2as(h) +3ag(h) +2a,(h) < 1}.

*

The fundamental alcove A* C (H3)
A" ={re(HR)" ; A(h)>0 fori=1,....,7

A(hy) +2A(hy) +3X (hy) +4A (hy) +2A (hs) +3A (he) +2A (hy) < 1}.
The root system @ in terms of the root system ®° of L°.

Pp, ={a+r8; acd’, rez}
®,,={ko; keZ, k#0} Multiplicity 7.

The fundamental weights w; € Hg, i=0,...,7 in terms of the fundamental
weights @;, i=1,...,7 of L.

W)=Y, W =0;1Y, 0,=0,+2y, w0;=0;+3y, o,=w,+4y,
Ws=ws+2Yy, wg=ws+3y, w,=0;+2y.
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The standard invariant form on H.

(hi,hj)=A

[ J

i,j=0,...,7

ij

(hy,dY=1, (h,d)=0 i=1,...

(d,d)=0.
The standard invariant form on H*.
(j, a;)=A i,j=0,...,7

ij

(ag,v)=1, {a;,y)=0 i=1,...

(v, 7)=0.
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DYNKIN NAME ES KAC NAME E;
Dynkin diagram with labelling.

0 1 2 3 4 5 7 8
O O O O O I O O
6
Generalised Cartan matrix.
o 1 2 3 4 5 6 7 8
0 2 -1 0 0 0 o 0 o0 o
1{-1 2-1 0 O O O O O
2 oOo-1 2-1 0 0 O 0 O
3 o 0-1 2 -1 0 O O O
4 o 0 0-1 2 -1 0 0 O
5 o 0 0O 0 -1 2 -1 -1 0
6 o 0 O O o0-1 2 o0 O0
7 o o0 O O O0-1 0 2 -1
8 o 0 O O o0 0 0 -1 2
The integers ay, a,, ... , a,.
1 2 3 4 5 6 4 2
O O O O O I O O
3
The integers ¢y, ¢y, ..., C;.
1 2 3 4 5 4 2
O O O O O O O

w O—Oo

The central element c.
c=hy+2h,+3hy,+4h;+5h,+6hs+3he+4h, +2hg.
The basic imaginary root .

d=ay+2a,+3a,+4a;+ 50, +60as+ 30 +4a;+2a,.
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The element h, € HY.

hg=2h,+3h,+4h;+5h,+6hs+3hs+4h;+2hy.
The element 6 € (HY)".

0=20,4+3a,+4a;+5a,+605+3a,+4a,+2ay.
The Coxeter number. h=30.
The dual Coxeter number. h'=30.
The Lie algebra L°.  L°=E;.
The lattice M C HS.

M=7h,+Zh,+ Zhy+ Zh,+ Zhs + Zhg + Zh, + Zhs.
The lattice M* C (H2)".
M*=Zo,+Zo,+ Lo+ Loy + ZLoas+ Zog+ Lo + Loy,

The fundamental alcove A C Hp.

A={heH]; ay(h)>0 fori=1,...,8
2a,(h)+3a,(h) +4a;(h)+5a,(h) +6as(h)
+3ag(h)+4a;(h)+2a4(h) < 1}.

The fundamental alcove A* C (HY)".
A ={re(HD)" ; A(h)>0 fori=1,...,8
22X (hy)+3A (hy) +4A (hy) +5A (hy) +6A (hs)
+3A (hg) +4A (hy)+2X (hg) < 1}.
The root system @ in terms of the root system ®° of L°.
Py ={a+r8; acd’, rez}
@, ={kd; keZ, k#0}  Multiplicity 8.

The fundamental weights w, € Hy, i=0,..., 8 in terms of the fundamental
weights @;,, i=1,...,8 of L.

wy=7, 0 =012y, w,=w,+3y, w;=w;+4y, w,=w,+5v,
ws=0s+6Y, we=0s+3y, w;=0;+4y, wg=wz+2y.
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The standard invariant form on H.

(hi,hj)=A

1% J

i,j=0,...,8

ij

(hy,dY=1, (h,d)=0 i=1,...

(d,d)=0.
The standard invariant form on H*.
(, a;)=A i,j=0,....8

ij

(ag,v)=1, {a;,y)=0 i=1,...

(v, 7)=0.
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DYNKIN NAME [, KAC NAME F,

Dynkin diagram with labelling.

0 1 2 3 4

Generalised Cartan matrix.

o 1 2 3 4
0 2 -1 0 0 O
11-1 2 -1 0 O
2 0O -1 2 -1 0
3 o 0 -2 2 -1
4 o 0 0 -1 2

The integers ay, a,, ... , a;.
1 2 3 4 2
oO—O0—C—5>0—0

The integers ¢y, ¢;, ..., C;.
1 2 3 2 1
O—O0—Q0—>0O0—o0

The central element c.
c=hy+2h,+3h,+2hs+ hy.
The basic imaginary root .
d=oay+2a,+3a, +4a;+2a,.
The element h, € HY.
hg=2h,+3h,+2hs+h,.
The element 6 € (h,)".
0=2a,+3a,+40;+2a,.
The Coxeter number. h=12.
The dual Coxeter number. h*=9.
The Lie algebra L°.  L°=F,.
The lattice M C HY.
M =Zh,+Zh,+Zhy+Zh,.
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The lattice M* C (H)".
M*=Zo,+Zo,+2Zay+270,.
The fundamental alcove A C HY.
A={heHy ; ay(h)>0 fori=1,...,4
20, (h)+3a,(h) +4a,(h)+2a,(h) < 1}.
The fundamental alcove A* C (HH%)*
A ={Ae(HY) ; A(h)>0 fori=1,....4
2 X (hy)+3A () +2A () + A (hy) < 1}
The root system @ in terms of the root system ®° of L°.
@Re:{a+r8 caed?, reZ}
®, ={k&; keZ, k£0}  Multiplicity 4.

The fundamental weights w; € H}; i=0,...,[ in terms of the fundamental
weights w;, i=1,...,lof L.

W=7, ©;=0,+2Y, 0,=0,+3y, w;=0;+2y, w,=w,+Y.
The standard invariant form on H.
<hi,hj>=ajcj_1Aij i,j=0,...,1
(hy,dy=1, (h;,d)=0 i=1,...,1
(d,d)=0.
The standard invariant form on H*.
(ai,aj>=ai_lciAij i,j=0,...,1
(ay, v)=1, (a;,y)=0 i=1,...,1

(v, v)=0.
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DYNKIN NAME F, KAC NAME Z2E
Dynkin diagram with labelling.

0 1 2 3 4

Generalised Cartan matrix.

o 1 2 3 4
0 2 -1 0 0 O
11-1 2 -1 0 O
2 o -1 2 -2 0
3 o 0 -1 2 -1
4 o 0 0 -1 2

The integers ay, a,, ... , a;.
1 2 3 2 1
oO—O0—C<X0—0

The integers ¢y, ¢;, ..., C;.
1 2 3 4 2
oO—O0—O0X0—0

The central element c.
c=hy+2h,+3h,+4h;+2h,.
The basic imaginary root 8.
O0=oay+2a;+3a,+20;+ay.
The element h, € HY.
he=2h,+3h,+4h;+2h,.
The element 6 € (HY)".
0=2a,+3a,+20;+a,.
The Coxeter number. h=09.
The dual Coxeter number. h¥=12.
The Lie algebra L°.  L°=F,.
The lattice M C HY.
M=7h,+Zhy,+27Zhy+2Zh,.
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The lattice M* C (HY)".
M =Zo,+Za,+Zoy+ Zay,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0 fori=1,... 4
2a,(h)4+3a,(h)+2a5(h)+a,(h) < 1}.
The fundamental alcove A* C (HH%)*.
A ={re(HY) : A(h)>0 fori=1,....,4
2N (hy)+3A () +4A () +2A () < 1} .
The root system @ in terms of the root system ®° of L°.
Dy = {a+r8 ; ae(Dg, reZ}
Dy = {a+2r5 s acd?, reZ}
®, = (2k6; keZ, k#£0)  Multiplicity 4
U{(2k+1)8; keZ)}  Multiplicity 2.

The fundamental weights w; € H} i=0,...,[interms of the fundamental
weights w;, i=1,...,lof L.

wy=7v, 0 =042y, w,=w,+3y, w;=w;+4y, w,=w,+27y.
The standard invariant form on H.

(h- h-):ajcj_lA-

i ij

i,j=0,...1
(hy,dy=1, (h;,d)=0 i=1,...1
(d,d)=0.

The standard invariant form on H*.
(0, a)=a;'cA;  i,j=0,...,1
(ag,y)=1, (e, y)=0 i=1,...1

(v, v)=0.



606 Appendix

DYNKIN NAME (~?2 KAC NAME G,
Dynkin diagram with labelling.

O—C—0
0 1 2
Generalised Cartan matrix.
0 1 2
0 2 -1 0
111 2 —1
2 0o -3 2
The integers a, a,, ... , a;.
1 2 3
oO—C—0
The integers ¢y, ¢y, - .. , ¢}
1 2 1
o—C==0

The central element c.
c=hy+2h,+h,.
The basic imaginary root 8.
d0=ay+2a,+3a,.

The element h, € Hy.

hg=2h,+h,.
The element 6 € (HY)".

0=2a,+3a,.
The Coxeter number. h=6.
The dual Coxeter number. h'=4.
The Lie algebra L°.  L°=G,.
The lattice M C HS.

M=7h,+7h,.
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The lattice M* C (H)".
M =Z7a,+3Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0 fori=1,2
2a,(h)+3a,(h) < 1}.
The fundamental alcove A* C (HH%)*.
A ={re(HY) : A(h)>0 fori=1,2
2A(h)+ A (hy) <1}
The root system @ in terms of the root system ®° of L°.
(DRe:{a—}—rﬁ caed?, reZ}
D, ={ké; keZ,k#0} Multiplicity 2.
The fundamental weights w, € H; i=0,...,[ in terms of the fundamental

weights @;, i=1,...,1of L.
W=7, ©;=0,+2Y, w,=0,+7.
The standard invariant form on H.
(R hj)=a;ci' Ay 0, j=0,....1
(hy,dy=1, (h;,d)=0 i=1,...,1
(d,d)=0.
The standard invariant form on H*
(ai,aj>=ai"ciAij i,j=0,...,1
(g, v)=1, (e, v)=0 i=1,...,1
(v 7)=0.
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DYNKIN NAME Gtz KAC NAME 3D4
Dynkin diagram with labelling.

o0———C—=<=0
0 1 2
Generalised Cartan matrix.
o 1 2
0 2 -1 0
11{-1 2 -3
2 0 -1 2
The integers ay, a,, ... , a;.
1 2 1
oO—C==0
The integers ¢, ¢y, ... , ¢}
1 2 3
oO———C===0

The central element c.

c=hy+2h,+3h,.
The basic imaginary root .

d=ay+2a,+a,.

The element h, € HY.

hg=2h,+3h,.
The element 6 € (HY)".
0=2a,+a,.
The Coxeter number. h=4.
The dual Coxeter number. h¥=6.

The Lie algebra L°.  L°=G,.
The lattice M C HY.

M=7h,+3Zh,.
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609
The lattice M* C (H)".
M =Zo,+Za,.
The fundamental alcove A C HY.
A={heHy ; a;(h)>0 fori=1,2
2a,(h)+a,(h) <1}.
The fundamental alcove A* C (HH%)*.
A ={re(HY) : A(h)>0 fori=1,2
2A (hy)+3A (hy) < 1}.
The root system ®, in terms of the root system ®° of L°.
Dy, = {a+r8 ; ae@?, reZ}
Dy = {a+3r6 s acdf, reZ}
®,, = {3k6 ; keZ, k#0} Multiplicity 2
U{(Bk+1)o; keZ} Multiplicity 1
U{(Bk+2)0; keZ} Multiplicity 1.
The fundamental weights w, € H; i=0,...,[ in terms of the fundamental
weights @, i=1,...,[of L°.

w,=7Y, 0, =0,+2y, w,=w,+3y.

The standard invariant form on H.

(hivhj)=a;c;'A;  i,j=0,1,2
(hg,dy=1, (h,dy=0 i=1,2
(d, d)y=0.

The standard invariant form on H*.
<ai,aj)=aflciAij i,j=0,1,2

<a0’ y>=17 <01,,’)’>=O l:1,2
(v, 7)=0.



Notation

VRV
VAV

()
()

Meaning

Lie product of elements

Lie product of subspaces

the Lie algebra of an associative
algebra A

tensor product

exterior product

the Killing form on a finite
dimensional Lie algebra

the standard invariant form on a
Kac—Moody algebra

a bilinear form on the loop algebra

a contravariant form

a symmetric scalar product

partial order on weights

the multiplicity of L(w) in V

vector associated with an affine
Cartan matrix

the adjoint map

a Cartan matrix

a generalised Cartan matrix (GCM)

a principal minor of A

the underlying Cartan matrix of an
affine Cartan matrix A

the fundamental alcove

610

Page of definition

152
271

39

367
418
520
121
185
459

386
71
319
344

394
410



Symbol

b N

A*

Cos Cps - - -
c(A)

chV
chV

9cl

Notation

Meaning

the closure of the fundamental
alcove

the fundamental alcove in the dual
space

the closure of the fundamental dual
alcove

the set of alcoves

the subalgebra H@® N

the Casimir element

the canonical central element

vector associated with an affine
Cartan matrix

scalar action of generalised Casimir
operator

the character of an L-module V

the character of a module in
category O

the fundamental chamber

closure of the fundamental chamber

the Clifford algebra

positive part of the Clifford algebra

negative part of the Clifford algebra

the algebra of Laurent polynomials

the scaling element

degrees of the basic polynomial
invariants

the Weyl dimension of an
L°-module

a diagonal matrix

an endomorphism in the basic
representation

a root vector

a fundamental root vector

a generator of L(A) or L(A)

a characteristic function

the characteristic function e,

a generator of L°

a root vector for —¢;

611

Page of definition

413
415

415
411
177
238
391

388

487
241

459
112, 247, 378
247, 378
282
283
283
417
388

222

491
110, 390

516
88
96
323,332
242
487
421
96
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Symbol
fi

FL(X)
al, (k)

h(n)
h(0)

ht o

T

Notation

Meaning

a generator of L(A) or L(A)

a generator of L°

the free Lie algebra on a set X

the general linear Lie algebra of
degree n over k

the adjoint group

the Coxeter number of a simple
Lie algebra

the Coxeter number of an affine
algebra

the dual Coxeter number of an
affine algebra

a fundamental coroot

the coroot of the root «

the element of H corresponding to
o in H*

the coroot of 6

an endomorphism of the basic
module

an endomorphism of the basic
module

the height of a root «

a Cartan subalgebra of a Lie algebra

a Cartan subalgebra of a
Kac—Moody algebra

the dual space of H

a rational vector space in H

a real vector space in H

the dual space of Hy

a generator of L°

a hyperplane

the positive side of hyperplane H,

the negative side of hyperplane H,

the diagonal subalgebra of L

the kernel of the map from L(A) to
L(A)

the positive subspace of /

the negative subspace of /

Page of definition

323, 332
421
161

207

252

485

485
88, 320
89, 397

46
405

513

515
62
23

334
46
56
56
57

421
112
112
112

324

105, 331
105, 479
105, 479



Notation

Meaning

an orbit

the maximal submodule of M(A)

the modular j-function

a set of positive imaginary roots

the kernel of the map from 11(L) to
M)

the set of vectors u with Au>0

the generalised partition function

the rank of L

the length of w

a Lie algebra

a power of the Lie algebra L

a power of the Lie algebra L

the null component of x in L

a root space of L

the Lie algebra with generators X
and relations R

the simple Lie algebra with Cartan
matrix A

the Kac—-Moody algebra with
GCM A

the derived subalgebra of the
Kac—-Moody algebra L(A)

a Lie algebra associated with Cartan
matrix A

a Lie algebra associated with
GCM A

the fixed point subalgebra of o on
L(A)

the irreducible module with highest
weight A

a root space of L(A)

the simple Lie algebra with Cartan
matrix A°

a reflecting hyperplane

an affine hyperplane

a wall of the fundamental alcove

the walls of the fundamental alcove
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Page of definition

166
185, 455
533
380

178
339
473
59
63

1

7

8

23

36, 333

163
99
331
335
99
323,
166

186, 455, 525
328

416
246
409
409
412
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Symbol

M())

N(H)
p(k)

pi(k)
P(L)

P(L)°

Notation

Meaning

a set of affine hyperplanes

a set of affine hyperplanes in the
dual space

the loop algebra of L°

a central extension of the loop
algebra

realisation of an untwisted
Kac—Moody algebra

realisation of a twisted Kac—-Moody
algebra

a highest weight vector in a Verma
module

multiplicity of a root «

a lattice

a lattice in the dual space

a Verma module

the orthogonal subspace of a
subspace M

Monster Lie algebra

an automorphism of L(A)

the number of positive roots made
negative by w

structure constant

positive subalgebra of L(A)

negative subalgebra of L(A)

positive subalgebra of L(A)

negative subalgebra of L(A)

normaliser of a subalgebra H

Bernstein—Gelfand—Gelfand
category of modules

the number of partitions of k

the number of partitions of k into
[ colours

algebra of polynomial functions
on L

G-invariant polynomial functions
on L

Page of definition
409

414
417

420
420
432

180, 452
454
407
413

178, 452

40
535
373

63
89
103, 324
103, 324
107, 331
107, 331
23

452
507

508
208

210



Symbol
P(H)"

PSL,(Z)
B(A)

supp «
Supp f
S(L)
S(L)¢

S(E)™

IZM)
t(M*)

(L)
(V)

u(L)
uL)*
v

Wy

Notation

Meaning

We-invariant polynomial functions
on H

the modular group

the number of partitions of A into
positive roots

the root lattice

positive part of the root lattice

negative part of the root lattice

root lattice of L°

quadratic form

a ring of functions on H*

fundamental reflection

reflection

reflection corresponding to root 6

affine reflection

special linear Lie algebra of degree
n over C

support of a root

support of a function f

symmetric algebra of L

G-invariants in the symmetric
algebra of L

W-invariants in the symmetric
algebra of H

a linear map on H

a linear map on H*

translation subgroup of the affine
Weyl group

translation subgroup of the affine
Weyl group

tensor algebra of L

tensor algebra of V

a subalgebra of L(A)

the negative part of T

universal enveloping algebra of L

the ideal L11(L) of 11(L)

the dual module of V

longest element of the Weyl group

615

Page of definition

211
531

182
103, 328
103, 328
103, 328

404

73

242
63, 373

60

405

410

52
378
241
201

223

223
406
413

407

413
152
324
500
500
153
475
306
65



[ = ¥

A(A)

A(7)
$(q)
®

(I)+

Notation

Meaning

longest element of W,

the weight of «;

the Weyl group of a semisimple
Lie algebra

the Weyl group of a Kac—-Moody
algebra

the Weyl group of L°

a Weyl subgroup of W

the group of o-stable elements of W

the weight lattice

dominant integral weights

strictly dominant integral weights

a vertex operator

the centre of the enveloping algebra

fundamental roots of a semisimple
Lie algebra

fundamental roots of a Kac—Moody
algebra

dual root

the fundamental weight w, of an
affine algebra

component in a vertex operator

the basic imaginary root of an
affine algebra

the Weyl denominator

the Kac denominator

the Dynkin diagram of a semisimple
Lie algebra

the Dynkin diagram of a
Kac—Moody algebra

Dedekind’s delta function

Euler’s ¢-function

the root system of a finite
dimensional Lie algebra

the root system of a Kac—Moody
algebra

set of positive roots

set of negative roots

Page of definition

170
267

60

373
394
170
169
190, 466
190, 466
469
514
226

62

377
150

389
515

384
245
469

80
353
533
491

36
377

58, 377
58, 377



Symbol

Notation

Meaning

the dual root system of @

the real roots in ®

the imaginary roots in ®

the short real roots in &

the long real roots in ®

the intermediate real roots in @

the root system of L°

the short roots in ®°

the long roots in ®°

a central character

an irreducible character of L°

the exterior algebra of V

the i th exterior power of V

fundamental roots of a semisimple
Lie algebra

fundamental roots of a Kac—Moody
algebra

fundamental roots of a Borcherds
algebra

fundamental roots in @Y

fundamental coroots of a
Kac—Moody algebra

fundamental roots in ®°

real fundamental roots of a
Borcherds algebra

imaginary fundamental roots of a
Borcherds algebra

sum of the fundamental weights

an element satisfying p (h;,) =1

an element in Borcherds’ character
formula

the element 6 — a, ¢

an automorphism of L

the highest root

the highest short root

an orbit representative

an automorphism of L(A)

an automorphism of L(A)
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Page of definition

148
377
377
395
395
395
394
400
400
226
487
271
271

58
320, 334

524
148

320, 397
394

525

527
228
460

526
404
108
251
251
433
333
323



Notation

Meaning

the fundamental weights of a simple
Lie algebra

the fundamental weights of an
affine Kac—Moody algebra

generalised Casimir operator

an operator on a 7-module in
category O

Page of definition

190

494
461

500
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